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Abstract: Arc additive manufacturing (AAM) has the advantages of fast deposition speed and good
surfacing quality. It is a promising additive manufacturing (AM) method. However, arc additive
manufacturing is difficult to use widely in industry due to its poor deformation, microstructure,
and mechanical properties. Since the mechanical properties of materials can be greatly improved by
rolling, a method for configuration synthesis of the side-rolling mechanism by using metamorphic
mechanism theory is presented in this paper. Firstly, by analyzing the operational demands of the
side-rolling mechanism, we obtained the motion cycle diagram for the metamorphic mechanism
in addition to the corresponding equivalent resistance gradient matrix. Secondly, according to the
motion cycle diagram and equivalent resistance gradient matrix of the metamorphic mechanism,
the structure and constraint form of the metamorphic joints were established, and the relationship
between the force variation and the structure and the constraint form of the metamorphic joints was
also obtained. Then, the structures of all 12 corresponding constrained metamorphic mechanisms
were synthesized. Ultimately, one among the twelve mechanisms was chosen as the side-rolling
metamorphic mechanism. The topological transformation of its working configuration was examined.
The results confirmed the feasibility and practicality of the proposed structural synthesis method in
this study.

Keywords: metamorphic mechanism; metamorphic joint; kinematics; arc additive manufacturing;
structural design

1. Introduction

AM [1], also called 3D printing [2], has a high profile within the industry and the
wider public. Several AM methods have been developed to fabricate metal parts, such as
3D welding [3], selective laser melting [4], selected laser sintering [5], laser-engineered net
shaping [6], direct metal deposition [7], laminated object manufacturing [8], and electron
beam melting [9,10]. An important aspect that is often overlooked is that material properties
may be lower than those of conventional forged products, which may limit the applicability
of the AM processes. In addition, the residual stress and deformation can be very serious,
which may lead to parts being out of the tolerance range, affecting performance. In the field
of welding, rolling is a very effective method to reduce residual stress and deformation [11].
Recently, this concept has been used by two organizations to manufacture components:
One was adopted by Colegrove et al. [12] at Cranfield University in the UK. When the
material is cooled to near-ambient temperature, it is applied between the passes of the
additive manufacturing test block. This technique was applied to an AM wall between
passes, where the material cooled to near-ambient temperature. The other example is that
of Zhang et al. [13] from Huazhong University of Science and Technology, who adopted
hybrid deposition and micro-rolling (HDMR) [14] technology, which is directly applied
behind the deposition welding torch. Their purpose was to improve the microstructure and
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texture [15,16], properties [17], geometric structure [18], and residual stress and deformation
of AM components [19]. Since the mechanical properties of materials can be greatly
improved by rolling, a method for configuration synthesis of the side-rolling mechanism
by using metamorphic mechanism theory is presented in this paper.

The metamorphic mechanism was discovered in the study of reconfigurable mecha-
nisms in 1996 and was proposed as a new mechanism at the 25th American Society of Me-
chanical Engineers (ASME) Biannual Conference on Mechanism and Robotics in 1998 [20].
The configuration switching of the metamorphic mechanism is realized by switching the
motion states of the metamorphic joints [21]. The proposal of a metamorphic mechanism
brings vitality to traditional mechanism science [22]. At present, the comprehensive re-
search on the configuration of metamorphic mechanisms pays more attention to the source
metamorphic mechanisms and their topological transformation [23–25]. However, starting
from the same source metamorphic mechanism, research on the accessory form/structure
of the metamorphic joints and their corresponding metamorphic configurations is rare.

This study embraces the concept of active–passive compound drive [26,27], employ-
ing a driving methodology that amalgamates an active motor with passive components.
According to the special operation and technical background of side rolling, it compre-
hensively considers the requirements of multi-degrees of freedom, underactuated opera-
tion, specific movement requirements, and special operating conditions. A two-degree-
of-freedom (2-DOF) metamorphic mechanism was designed based on the principles of
metamorphosis, with the intention to function as a side-rolling metamorphic mechanism.

The innovations of this paper include the following:

1. Under drive, the side-rolling mechanism adopts the principle of metamorphic transfor-
mation, and only one drive can be realized when unilaterally rolling, which simplifies
the driving and control system and increases the practicability;

2. A method of configuration synthesis of the side-rolling metamorphic mechanism is
herein proposed. By establishing the configuration matrix of the side-rolling meta-
morphic mechanism, all 12 structural forms of constraint metamorphic motion pairs
and their corresponding theoretical configurations of the metamorphic mechanism
are summarized. According to the principle of high reliability and simple structure,
one of them is selected as the side-rolling metamorphic mechanism;

3. The method of composite manufacturing and constant pressure control is used in
the forming process of the additive material. In addition to making the side roll
and the welding gun move synchronously, the side roll applies the rated rolling
force to the weld bead, and the constant pressure control method is also used so that
the mechanism can react and adjust in time under the condition of overload, so the
mechanism can work smoothly.

The rest of this paper is organized as follows: In Section 2, the design of a 2-DOF
planar-constrained metamorphic mechanism according to the special task requirements
of the side-rolling mechanism is described. Section 3 introduces the metamorphic mode
of the metamorphic mechanism, the structure and constraint form of the metamorphic
joint, the equivalent resistance gradient sketch of metamorphic joints, and the structural
topology matrixes of the metamorphic mechanism. In Section 4, the selection of the
metamorphic mechanism is introduced, and its working configuration is analyzed. In
Section 5, combined with the rolling target, the key structural parameters of the side-
rolled metamorphic mechanism are determined, and the kinematic analysis and dynamic
simulation of the mechanism are carried out. Finally, Section 6 concludes this paper and
gives an outlook for our future work.

2. Materials and Methods

In this paper, a design method of a side-rolling mechanism is proposed by combining
the design idea of an underactuated mechanism and a metamorphic mechanism, and
its flow diagram is shown in Figure 1. An underactuated mechanism is defined as one
in which the number of actuators is fewer than the degrees of freedom [28]. Firstly, the



J. Manuf. Mater. Process. 2023, 7, 227 3 of 17

motion requirements and working conditions of the side-rolling mechanism were briefly
introduced, and a 2-DOF planar constraint mechanism was designed. Then, we used the
motion cycle diagram to describe the working-state transition of the 2-DOF planar con-
straint metamorphic mechanism and obtain the equivalent resistance gradient sketch. The
equivalent resistance matrix was used to describe the equivalent resistance gradient sketch.
By analyzing the relationship between the constraining configurations of metamorphic
joints and the corresponding resistance matrices, we established the structural topology
matrix of the constrained metamorphic mechanism.
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Finally, according to the structural topological matrix, a variety of corresponding
constrained metamorphic mechanisms were designed to satisfy the side-rolling operation.
Based on the reliability of configuration conversion and the simplicity of the structure, the
final metamorphic mechanism was selected.
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2.1. Functional Requirements

In line with the functional requirements of the mechanism, the lateral-rolling mech-
anism proposed in this study possesses a 2-DOF metamorphic mechanism. When the
mechanism starts to move, the two links adjacent to the spring are fixed together under
the constraint of the spring. At this time, the number of links in the mechanism changes,
and the mechanism is one degree of freedom. When one of the links adjacent to the spring
and the frame becomes one, the other link breaks free from the constraint of the spring
force and starts to move; at this time, the mechanism also has a degree of freedom. Due
to the special operating conditions, it is required to reduce the weight of the drive and
simplify the control system. Therefore, only one actuator is used in the 2-DOF-constrained
metamorphic mechanism.

2.2. The Design of the Metamorphic Mechanism for Side Rolling

Nine structural forms of extended class II Assur groups were proposed in the refer-
ence [25], and the composition principle of constrained metamorphic mechanism based
on extended Assur groups was also proposed. According to the kinematic requirements
and operating conditions, a metamorphic mechanism with 2-DOF and two rotationally
constrained metamorphic joints were designed, as shown in Figure 2. The mechanism
consists of an extended Assur group (RRRR) successively connected to the driving link and
the frame, where A, B, C, D, and E are the serial numbers of the joints in the mechanism.
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Figure 2. Assembly drawing of the planar-constrained metamorphic mechanism with two degrees of
freedom. 1, frame; 2, link 2; 3, spring; 4, link 4; 5, link 5; 6, drive link.

We assume that the horizontal axis represents the driver’s displacement θ (either the
turning angle or the moving distance) and that the vertical axis denotes the operational
states of the joints J (where it signifies the revolute joint or denotes the prismatic joint)
during the corresponding operational stages [29]. Then, the working-state transition of
the metamorphic mechanism can be described by the motion cycle diagram, as shown in
Figure 3 [30].

The figure shows the driving link moving along the screw under the drive of the motor
and the different working states of all the moving joints in different working stages. When
working in configuration I, there is no relative rotation between the two connected links
at point B due to the effect of spring preload and geometric position constraints. When
working in configuration II, lAB becomes a part of the frame, and the link lBC will overcome
the resistance of spring 3 and start to rotate around the joint B.
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3. The Structural Topology Matrix of the Side-Rolling Metamorphic Mechanism

The main task of the design of the metamorphic mechanism is the design of the meta-
morphic joint. The metamorphic mode realizes the conversion between configurations by
metamorphic joint, and the design of the metamorphic joint is the basis of the configuration
synthesis of the metamorphic mechanism.

3.1. The Mode of the Metamorphic Process Used by the Metamorphic Mechanism

There are three main modes of metamorphic transformation. The first is the combina-
tion and separation of components in the mechanism. The second is that the properties of
the components in the mechanism change; for example, the switch between rigidity and
flexibility can be realized by changing the material of the components. The third is that the
number and attributes of metamorphic joints in the mechanism change.

3.2. Constrained Metamorphic Joints

Reference [30] offers a comprehensive overview of various metamorphic kinematic
joints and delineates the relationships among the variations exhibited by their components,
as illustrated in Figure 4.
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Figure 4a illustrates a metamorphic kinematic joints constrained geometrically and fea-
turing mechanical hard stops. Figure 4b,c display metamorphic kinematic joints constrained
by force, specifically governed by spring force control. Figure 4d,e depict metamorphic
kinematic joints subject to both geometric and force constraints.

3.3. The Gradient of Equivalent Resistance for the Constrained Metamorphic Joints

In the operation of the metamorphic mechanism, each configuration is associated
with a specific metamorphic joints that engages in relative movement, while the remaining
metamorphic joints stay fixed. Utilizing the equivalent resistance gradient model outlined
in Figure 3 and detailed in reference [31], we present the equivalent resistance gradient
diagram for a 2-DOF metamorphic mechanism in Figure 5. The term fe denotes the
equivalent resistance gradient coefficient, defined as the ratio between the constraint force
exerted by the metamorphic joint and the actual force encountered during the specific
working configuration; θ signifies the angle of rotation or displacement [30].
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The equivalent resistance gradient sketch for metamorphic joints can be represented
by a matrix, specifically the equivalent resistance matrix [30]. Here, the working config-
urations are depicted in the matrix’s columns, while the rows display the constrained
states of metamorphic joints under various working configurations, with fij indicating
that metamorphic joint Rij remains constrained and 0 signifying that joint Rij continues
to function.

F =

[
0 f12

f24 0

]
(1)

As in (1), f12 is fA, and f24 is fB; they are constrained.

3.4. The Structural Topology Matrix of the Metamorphic Mechanism

To build the connection between constrained structures of metamorphic joints and
their equivalent resistance matrixes corresponding with working stages, the structural
topology matrix C of constrained metamorphic mechanism and the constrained structures
matrix Jij of constrained metamorphic joints are built:

C =

[→
J12→
J24

]
=

[
0 c12

c24 0

]
(2)
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In matrix C, the columns correspond to the working configurations, and the rows
correspond to the constrained structures matrix Jij of metamorphic joints [30]. When
compared to the constrained structures depicted in the rows of (2) from Figure 4, the matrix
for the constrained structures of metamorphic joints can be inferred:{ →

J12 = [r/rt/rtg]
→
J24 = [rk/rt/rkg/rtg]

(3)

By substituting Equation (3) into Equation (2), we obtain the structural topology matrix
for the constrained metamorphic mechanism:

C =

[→
J12→
J24

]
=

[
0 c12

c24 0

]
=

[
0 r/rt/rtg

rk/rt/rkg/rtg 0

]
(4)

According to (4), twelve structural topology matrices can be derived:

C1 =

[
0 r
rk 0

]
, C2 =

[
0 r
rt 0

]
, C3 =

[
0 r

rkg 0

]
, C4 =

[
0 r

rtg 0

]
, C5 =

[
0 rt
rk 0

]
, C6 =

[
0 rt
rt 0

]
,

C7 =

[
0 rt

rkg 0

]
, C8 =

[
0 rt

rtg 0

]
, C9 =

[
0 rtg
rk 0

]
, C10 =

[
0 rtg
rt 0

]
, C11 =

[
0 rtg

rkg 0

]
,

C12 =

[
0 rtg

rtg 0

]
.

There are twelve constrained structures of metamorphic joints for metamorphic mech-
anisms, which theoretically can result in the design of twelve corresponding constrained
metamorphic mechanism configurations to meet the lateral-rolling operations.

4. Analysis of Structural Design and Operational Configurations for Side-Rolling
Constrained Metamorphic Mechanisms
4.1. Structural Diagram of the Constrained Metamorphic Mechanism

According to Equation (4), the structural diagrams of 12 kinds of side-rolling con-
strained metamorphic mechanisms are shown in Figure 6.
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4.2. Design and Topological Transformation of Constrained Metamorphic Mechanism for
Side Rolling

The selection of the structure for the side-rolling mechanism hinges on the reliability
of the ability to transform the working configuration and the structural simplicity. Guided
by this rationale, both mechanisms shown in Figures 6c and 6d can achieve a reliable
metamorphic process at joint B. The mechanism shown in Figure 6c was selected as the
actual side-rolling metamorphic mechanism given that its joint exhibits greater simplicity
compared to that depicted in Figure 6d.

As shown in Figure 6a,b, there are only spring force constraints but no geometric con-
straints at the joint B of the mechanism, which deselects them. Since the form combinations
of the metamorphic joints at joint A controlled by the spring force are not as reliable as that
of Figure 6c in the configuration transformation, the mechanisms of Figure 6e–h were not
considered. When it comes to Figure 6i–l, the structural simplicity of joint A is not as good
as that of Figure 6c, and they were not considered for selection.

The mechanism in Figure 6c was selected as the actual metamorphic mechanism for
side rolling. The joint B has a spring force constraint and geometric constraint, while
the joint A has a geometric constraint. Considering the symmetrical operation of the
actual mechanism, the actual side-rolling mechanism was finally designed, and the motion
diagram of the mechanism is shown in Figure 7. The lateral-rolling mechanism is a planar
seven-link mechanism, which consists of two parts: One part is a Class II link group
composed of link 7 and slider 8; the other part is the side-rolling metamorphic mechanism
as shown in Figure 6c, which is a five-link mechanism composed of link 2, link 4, link 5,
driving link 6, and frame 1 in the x-y plane. The slider moves horizontally along the
guide rail.
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4.3. Analysis of Working Configuration of Mechanism for Side Rolling

The side-rolling mechanism is driven by a drive motor, and the power is transmitted
through the ball screw pair, driving the drive link to linear motion.

When in the working configuration I, as shown in Figure 7, there is no relative rotation
between link 2 and link 4 at the joint B due to the action of spring preload and geometric
position constraints; at this time, the link ABC, link 5, the driving link 6, and the frame
1 constitute a four-link mechanism. In this configuration, the degree of freedom of the
mechanism is one. As the driving link moves down under the drive of the motor, the slider
moves towards the weld bead.

When in working configuration II, as shown in Figure 8, link 2 becomes a part of the
frame due to the constraints of the geometric limit at the frame, and link 4 will overcome
the resistance of spring 3 and begin to rotate at the joint B; at this time, the link BC, link 5,
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the driving link 6, and the frame 1 constitute a four-link mechanism. In this configuration,
the degree of freedom of the mechanism is one. As the driving link moves down under the
drive of the motor, the slider moves towards the weld bead, making contact with the weld
at some point and rolling against the pass.
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5. Evaluations and Results

In this section, we detail how the specific structure size of the metamorphic mechanism
of side rolling was determined first. Then, the kinematic analysis of the two configurations
of the mechanism was carried out. Finally, Solidworks software 2022 was used to model
and assemble the side-rolling metamorphic mechanism, and the mechanism was imported
into Adams software 2019 for dynamic simulation, which verified the effectiveness of the
design theory and method proposed in this paper.

5.1. A Dimensional Parameter of the Mechanism for Side Rolling

Taking the compactness of the metamorphic mechanism as the design basis, the key
structural parameters of the side-rolling mechanism were preliminarily determined as
shown in Table 1. In addition, the three-dimensional model of the side-rolling mechanism
is shown in Figure 9. The optimization process for the mechanism’s dimensional parameters
is thoroughly detailed in reference [32] and thus will not be reiterated herein. An objective
function approach was employed with the aim of minimizing the motor torque subject to
the specified rolling force.
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Table 1. Structural parameters of the side-rolling metamorphic mechanism.

Parameter Quantity

y0/mm 5

l1/mm 50

l2/mm 60

l3/mm 70

l4/mm 96

5.2. Position Analysis of Metamorphic Mechanism for Side Rolling

The side-rolling metamorphic mechanism is composed of two symmetrical planar five-
link mechanisms, so only one-half of it needs to be analyzed; for example, we can analyze
the right half. To analyze the movement of the side-rolling metamorphic mechanism
in the moving process, the states of the moving phase are divided into configuration I
and configuration II. The commonly used kinematics analysis methods include the vector
method, matrix method, spinor method, and influence coefficient method. For the planar
mechanism, the vector method is more suitable, so this paper adopts the vector method for
kinematics analysis.

5.2.1. Kinematics Modelling in Configuration I

As shown in Figure 10, a plane coordinate system of working configuration I was
established with the lower end face of the slider, the central axis along the guide rail as the
x axis, and the central axis of the driving link as the y axis. The x and y axes intersect at o.
The active link is simplified as a slider, its downward movement speed is v, and the motion
law of the slider is yt = y0 + vt, where y0 is a fixed value, which is the initial position of
the slider. li represents the link length, i.e., i = 1, 2, 3, 4. θi represents the angle between
the positive direction of the x axis and li. The angle is positive in the counterclockwise
direction and negative in the clockwise direction. When the mechanism remains in the
configuration I, the degree of freedom of the mechanism is one. h, l, and y0 are known; yt
is the input parameter; θ1, θ2, θ3, and θ4 are unknown; and the angle between θ2 and θ1 is
relatively fixed, in which case θ2 = θ1 + 60

◦
.
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It is derived from Euler’s equations:{
l + l3 cos θ3 = −(l1 cos θ1 + l2 cos θ2)
−yt + l3 sin θ3 = −(l1 sin θ1 + l2 sin θ2)

(6)

Subtracting θ3 from (6) gives the following:

(2ll1 + ll2 −
√

3ytl2) cos θ1 − (
√

3ll2 + 2ytl1 + ytl2) sin θ1 + l2 + l2
1 + l2

2 + y2
t − l2

3 = 0 (7)

The following can be can be solved from (7):

θ1 = arcsin((bc + a
√

a2 + b2 − c2)/(a2 + b2)) (8)

In the equation above, the following is true:

a = 2ll1 + ll2 −
√

3ytl2, b =
√

3ll2 + 2ytl1 + ytl2, c = l2 + l2
1 + l2

2 + y2
t − l2

3 .

We substitute Equation (8) into Equation (6) to obtain the following:

θ3 = arcsin((yt − (l1 sin θ1 + l2 sin θ2))/l3) (9)

For closed-loop DECD, the closed-loop vector equation can be obtained:

→
EC +

→
CD =

→
ED (10)

It is derived from Euler’s equations:

l4 sin θ4 − l3 sin θ3 = h − yt (11)

The following can be solved from (11):

θ4 = arcsin(((h − yt) + l3 sin θ3)/l4) (12)

5.2.2. Kinematics Modelling in Configuration II

As shown in Figure 11, when the mechanism remains in configuration II, due to the
geometric limit, l2 becomes a part of the frame, and θ1 = 90◦. When the mechanism is kept
in configuration II, the degree of freedom of the mechanism is one. h, l, and y0 are known;
yt is the input parameter; θ2, θ3, and θ4 are unknown.
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For closed-loop AODCBA, the closed-loop vector equation can be obtained:

→
AB +

→
BC=

→
AO+

→
OD+

→
DC (13)

It is derived from Euler’s equations:{
l + l3 cos θ3 = −l2 cos θ2
−yt + l3 sin θ3 = −(l1 + l2 sin θ2)

(14)

Subtracting θ3 from (14) yields the following:

2ll2 cos θ2 + 2(l1l2 − ytl2) sin θ2 + l2 + l2
1 + l2

2 + y2
t − l2

3 − 2ytl1 = 0 (15)

The following can be solved from (15):

θ2 = sin−1
[
(bc + a

√
a2 + b2 − c2)/(a2 + b2)

]
(16)

In the equation above, the following is true:

a = 2ll2, b = 2l2(l1 − yt), c = l2 + l2
1 + l2

2 + y2
t − l2

3 − 2ytl1

We substitute Equation (16) into Equation (14) to obtain the following:

θ3 = arcsin((yt − (l1 + l2 sin θ2))/l3) (17)

For closed-loop DECD, the closed-loop vector equation can be obtained:

→
EC +

→
CD =

→
ED (18)

It is derived from Euler’s equations:

l4 sin θ4 − l3 sin θ3 = h − yt (19)

The following can be solved from (19):

θ4 = arcsin(((h − yt) + l3 sin θ3)/l4) (20)

According to Equations (5)–(20), the relationship between θ1 and θ2 is shown in
Figure 12. The value of the key kinematic parameters is listed in Table 2.
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Figure 12. The correlation of θ1 and θ2 in two different configurations.



J. Manuf. Mater. Process. 2023, 7, 227 13 of 17

Table 2. The crucial kinematic parameters transitioning from configuration I to configuration II.

Stages yt (mm) θ1 (◦) θ2 (◦)

Configuration I 5–27 100–90 160–150

Transforming 27 90 150

Configuration II 27–40 90 150–143

5.3. Dynamic Simulation and Experimental Verification of side-Rolling Metamorphic Mechanism

In this section, we describe how the three-dimensional model of the lateral-rolling
mechanism was established by using Solidworks software 2022, and the kinematics simula-
tion of the full configuration of the lateral-rolling mechanism was carried out to provide a
basis for experimental verification.

The whole working process of the side-rolling mechanism is shown in Figure 13. When
working, the drive motor is driven by the ball screw pair to drive the drive link to linear
movement. Figure 13a shows the configuration I. At this point, l1 and l2 are held together by
a spring and geometric limit. Figure 13b shows the switch between configurations in which
l1 contacts the geometric limit on the frame and becomes part of the frame. Figure 13c
shows the configuration II. At this time, with the movement of the driving link, l2 begins to
rotate around the joint between l1 and l2 after overcoming the spring resistance, thereby
driving l4 to further move and pushing the side-rolling slider to further move.
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In reality, to acquire the rolling force in real time, a pressure sensor was installed on 
the side-rolling slider, as shown in Figure 16a. Through the sensor feedback rolling force 
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position between configurations; (c) configuration II.

In the above part, we mainly analyzed the motion of the mechanism in SolidWorks
software 2022 without considering the forces related to the motion of the mechanism. For
the whole mechanism, since there is no other load except gravity and the self-locking
property of the ball screw, all members of the mechanism are considered to be in force
balance at any moment in configuration I to configuration II. Due to the symmetry of the
side-rolling mechanism, we only needed to study the right part of the mechanism when
conducting the dynamics simulation in Adams software. To improve the stability of the
flexible system, we determined the stiffness of the spring should be appropriately increased.
The spring stiffness was 6.77 N/mm, and the original length was 41.5 mm; the driving rod
speed v = 1 mm/s was used as the driving force for dynamic simulation. The parameters
of the spring are shown in Table 3.

The variation of the spring force during the whole movement of the mechanism is
shown in Figure 14. It can be seen from the figure that the value of spring force gradually
increased linearly from t = 21.3 s, indicating that the elastic body began to stretch, and the
movement of the mechanism conformed to the predetermined scheme.

Table 3. The spring parameters.

Parameter d/mm D/mm F0/N H0/N k/
(
N·mm−1) Fs/N

Quantity 2 14 18.8 41.5 6.77 153
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In reality, to acquire the rolling force in real time, a pressure sensor was installed on
the side-rolling slider, as shown in Figure 15a. Through the sensor feedback rolling force
parameters, the rolling process constant-pressure closed-loop control was realized. The
target load of rolling was set on the upper computer, and the rolling quantity of molten
deposit was obtained by controlling the rolling force. According to the technical indicators,
installation size, operating environment, and other factors, the NTJH-10 micro-pressure
sensor was selected. The pressure sensor adopted a miniature load pressure sensor, as
shown in Figure 15b; the range of the sensor is 0.1~30 kN, and the specific parameters are
shown in the following Table 4. The substrate material used in this study is low-carbon
steel Q235, with the selected wire material being a 1.2 mm diameter welding wire ER50-6.
Based on the lateral-rolling mechanism designed in this paper, a lateral rolling force of
3000 N was applied to the side of the formed weld bead. To verify the effectiveness of
the rolling mechanism, comparative experiments were conducted between free fusion
and lateral-rolling processes, focusing primarily on comparisons in terms of morphology
and mechanical properties: (1) As shown in Figure 16, the weld seam sides produced by
the direct lateral-rolling process were greater even compared to those produced by free
fusion welding. (2) In terms of mechanical properties, the average tensile strength of the
specimens formed by free fusion was 507 Mpa, while that of the specimens formed by direct
lateral rolling was 578 Mpa, marking a 14% improvement over the free fusion process. The
experimental results indicate that this study has both theoretical and practical implications
for the engineering application of arc additive manufacturing technology.
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Table 4. The miniature load pressure sensor parameter table.

Type NTJH-10

Range 0.1~30 kN
Sensitivity 1.0~1.5 mV/V

Operating temperature −20~65 ◦C
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Figure 16. The morphologies of the two processes are compared as follows: (a) free deposition
forming pass; (b) the side of the pass is rolled.

6. Conclusions

This study focuses on the implementation of the auxiliary lateral-rolling process in
arc additive manufacturing, incorporating the principles of planar mechanism design, and
it proposes a comprehensive strategy for configuring the lateral-rolling mechanism. The
research findings and conclusions are as follows:

1. A comprehensive configuration approach for underactuated side-rolling metamorphic
mechanisms is herein presented. This was achieved through the creation of a con-
figuration matrix for the lateral-rolling mechanism. From a comprehensive analysis,
the structural forms of all 12 constrained metamorphic joints were derived, along
with their corresponding 12 theoretical mechanism configurations. Considering the
reliability of structural transformation capability and structural simplicity, one type
was selected as the side-rolling metamorphic mechanism;

2. A kinematic analysis was conducted on both configurations of the mechanism. Us-
ing SolidWorks software 2022, a 3D model of the lateral-rolling mechanism was
constructed. Furthermore, a kinematic simulation was executed on the complete
configuration of the lateral-rolling mechanism. Finally, a dynamic simulation of
the mechanism was conducted using Adams software 2019. The accuracy of the
mechanism’s motion was validated via the spring force process;

3. The performance of the rolling mechanism was evaluated through comparative ex-
periments between free fusion and lateral-rolling processes, focusing particularly on
morphological and mechanical aspects. Experimental results showed that the weld
beads generated by the upright lateral rolling process exhibited smoother surfaces
than those produced by the free fusion process. Regarding mechanical properties, a
significant difference was observed: The average tensile strength of samples formed
by the free fusion process was 507 Mpa, whereas that of samples formed by the
upright lateral-rolling process was 578 Mpa, representing a 14% increase in strength
in comparison with the free fusion method.

This paper focuses exclusively on the structural synthesis and design of a two-degree-
of-freedom (2-DOF) constrained metamorphic mechanism. It provides a novel approach to
designing lateral-rolling mechanisms and lays out new insights for the analysis and design
of subsequent multi-degrees-of-freedom (multi-DOF) metamorphic mechanisms.

The primary limitations of this study stem from the limited number of components
considered. Future research is imperative for metamorphic mechanisms with a larger
number of components and degrees of freedom. Additionally, it is necessary to expand the
innovative design methods of the metamorphic mechanism, which could be utilized in the
design research of limb rehabilitation robots.
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