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Abstract: Extensive research in smart manufacturing and industrial grinding has targeted the en-
hancement of surface roughness for diverse materials including Inconel alloy. Recent studies have
concentrated on the development of neural networks, as a subcategory of machine learning tech-
niques, to predict non-linear roughness behavior in relation to various parameters. Nonetheless, this
study introduces a novel set of parameters that have previously been unexplored, contributing to the
advancement of surface roughness prediction for the grinding of Inconel 738 superalloy considering
the effects of dressing and grinding parameters. Hence, the current study encompasses the utilization
of a deep artificial neural network to forecast roughness. This implementation leverages an extensive
dataset generated in a recent experimental study by the authors. The dataset comprises a multitude
of process parameters across diverse conditions, including dressing techniques such as four-edge
and single-edge diamond dresser, alongside cooling approaches like minimum quantity lubrication
and conventional wet techniques. To evaluate a robust algorithm, a method is devised that involves
different networks utilizing various activation functions and neuron sizes to distinguish and select
the best architecture for this study. To gauge the accuracy of the methods, mean squared error and
absolute accuracy metrics are applied, yielding predictions that fall within acceptable ranges for
real-world industrial roughness standards. The model developed in this work has the potential to be
integrated with the Industrial Internet of Things to further enhance automated machining.

Keywords: artificial neural network; grinding; Industrial Internet of Things; machine learning;
modeling; sustainable manufacturing; surface roughness; superalloys

1. Introduction

In various industrial productions involving different alloys, achieving smooth surfaces
at the end of the manufacturing process is challenging, often resulting in less aesthetically
pleasing outcomes [1]. Furthermore, the quality of the ground surface holds paramount
importance in advanced systems such as high-speed rotational blades, influencing their
efficiency [1]. As a finishing step in the production line, the grinding process strives to
achieve fine and precise dimensions within microns on the workpiece, while generating
the necessary surface roughness [2]. Diverse types of grinding operations exist, varying
in terms of wheel shape, workpiece design, and relative tool-workpiece movement [3].
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The grinding process entails an intricate geometrical cutting mechanism, shaped by the
number and configuration of undefined cutting edges that interact with the workpiece’s
surface. This complexity results in various parameters describing the process, arising from
the intricate interplay between grinding tools and workpieces. In the context of standard
tangential surface grinding, crucial parameters encompass the cutting speed (vc), feed
velocity (vf), depth of cut (ae), and width of cut (ap). Cutting speed equals the grinding
wheel’s rotational speed, while the feed velocity aligns with the feed direction, which can
be tangential or axial relative to the grinding wheel. In this regard, tangential feed velocity
(vft) and axial feed velocity (vfa) are defined based on the grinding wheel’s n relation to
the workpiece. Notably, the ground surface roughness is significantly influenced by the
grinding wheel’s material [4] and sharpness, particularly the sharpness of its grains. The
grinding process can generate excessive heat, which poses risks to the surface of the work
material and can induce flaws due to insufficient removal rates and wheel wear. The
energy consumed by the process is distributed among the wheel, workpiece, chip, and
coolant. Swift heat dissipation from the workpiece is crucial to prevent the formation of
high local temperatures and phase transformations, as well as to mitigate elevated residual
temperatures post-grinding. To address this, an effective cooling approach, such as dry
methods or lubricating fluids, coupled with the careful selection of process parameters, can
curtail heat generation. The choice of appropriate cooling agents is of utmost importance,
considering their varied biological, physical, and chemical properties. Some coolants
possess environmental hazards and contain chemical compounds that necessitate post-
process refinement. Typically, three primary cooling resources are employed in the industry:
air, water, and oil. However, optimal cooling strategies often involve a combination of
these resources in real-world applications [5,6].

1.1. Grinding of Inconel Alloy

The term Inconel serves as a trademark encompassing a diverse range of over twenty
nickel-based superalloys. The hallmark feature of Inconel alloys lies in their exceptional
resistance to a spectrum of challenges, including corrosion, oxidation, carburization, pitting,
crevice corrosion, and high-temperature strength. These alloys find extensive application
in demanding environments such as chemical and petrochemical equipment, components
exposed to high-stress conditions like sea-water, gas turbines, rocket motors/engines,
spacecrafts, and nuclear reactors [7]. Among these alloys, Inconel 738 stands out as a
vacuum-melted, vacuum-cast, precipitation-hardenable nickel-based alloy, comprising
approximately seventeen distinct constituents. This alloy is further categorized into the
high-carbon version, IN-738C, and the low-carbon version, IN-738LC. An overview of
some crucial properties of this remarkable superalloy is provided in [8]. The distinctive
mechanical and structural properties of superalloys render machining a complex endeavor,
necessitating elevated temperatures and specialized cooling approaches. Notably, the
hardening phenomena during the machining process introduce alterations to product
mechanical structures, leading to increased tool wear and undesired vibrations. Surface
roughness, a fundamental material property, exerts a direct influence on fracture, fatigue,
corrosion, and creep behaviors. Consequently, the quest for optimal parameters stands as a
substantial challenge within the realm of mechanical engineering.

1.2. Neural Networks

The neurobiologists McCulloch and Pitt introduced neural networks to replicate
human brain functions through interconnected computational neurons and weighted
connections, as outlined in [9]. Artificial neural networks, a subset of machine learning,
provide powerful tools rooted in statistics for solving real-world problems. They excel at
handling nonlinearity, parallelism, and noise, enabling researchers to approach complex
challenges similarly to how the human brain functions. This involves learning from data
to predict outcomes. Neural networks consist of various categories, including Artificial
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Neural Networks (ANN) [10], often referred to as Feed-Forward Neural Networks, which
process inputs sequentially to make predictions (as depicted in Figure 1).
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Figure 1. A standard feedforward neural network structure with backpropagation error estimation.
This is capable of learning and solving any nonlinear function, and, because of that, this network is
popularly known as Universal Function Approximation [10].

1.3. A Literature Review Based on Using NN in the Grinding Process

ANNs find utility in machining and grinding due to their capacity to predict parameter
relationships that influence critical outcomes like surface roughness. These processes have
an impact across diverse industries [11–14], including aerospace and power generation,
where the emphasis lies on optimizing and controlling parameters to achieve improved
outcomes. ANNs offer a predictive tool beyond experimental and theoretical analyses,
aiding in understanding and controlling complex parameter interactions for improved
machining and grinding performance [15–19]. In the realm of grinding procedures for
demanding materials like titanium superalloys, it is essential to acknowledge that factors
beyond mere roughness measurement hold significance. Temperature control, notably,
emerges as a pivotal aspect in this context. Liu et al. employed a backpropagation (BP)
neural network using particle swarm optimization to predict high-speed grinding temper-
atures for titanium matrix composites [15]. The difficulty in machining superalloys like
titanium led to the adoption of specialized approaches, such as creep-feed deep grinding
(CFDG), influenced by parameters like wheel speed, workpiece velocity, depth of cut, and
cooling, which impacts both roughness and grinding force [16]. The study integrated
ANN variations to predict grinding forces for titanium machining, aiming for improved
results [14]. In the case of hybrid machining processes (HMPs), which combine electrical
discharge machining (EDM) and grinding, the authors in [17] investigated hybrid parame-
ters affecting material removal rate and surface roughness using ANN and RSM, leveraging
different tests. The complexity of grinding nature necessitates a demanding optimization
of prediction methods, where BP neural networks offer potential for automatic optimiza-
tion by establishing relationships between processing parameters and surface roughness,
addressing the intricate physical mechanisms involved in industrial grinding [18]. In [19],
the authors introduced a technique employing the radial basis function (RBF) to tackle
the issue of unevenly distributed abrasive particles in belt grinding procedures. Likewise,
ANNs have been employed for surface roughness prediction in studies [20–28], yet cooling
methods [29,30] and dressing parameters [31] have not been treated as distinct variables in
the prediction algorithms. Additionally, it is important for the dataset size to be sufficiently
large, which has not been consistently observed in the literature. Furthermore, in the
domain of grinding, proficient neural network implementation should encompass various
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sizes and transfer functions [32–34]. Addressing the gaps in the current literature, this study
utilizes ANNs with a substantial dataset [15–19,35,36], varying sizes, and transfer functions.
In this study, cooling methods and dressing parameters are also considered as independent
factors and are quantified for the modeling and prediction of surface roughness, which was
not considered in the previous works. One of the most promising aspects of this model
lies in its compatibility with the Industrial Internet of Things (IIoT). When this model is
smoothly integrated with the IIoT infrastructure, a higher level of innovation and efficiency
in digital manufacturing processes can be realized. Through this integration, access to
a valuable stream of real-time data is facilitated, enabling the monitoring, analysis, and
optimization of machining operations to a greater extent than previously achievable.

This study explores the impact of industrial grinding process parameters on surface
roughness, comparing MQL and conventional cooling methods. It employs a range of
parameters, including various dressing depths, tool feed rates, and stationary dresser
types, to establish the grinding wheel cycle on an Inconel 738 superalloy workpiece. The
research emphasizes the substantial influence of the dresser and cooling method on surface
roughness and acknowledges the complexity of this relationship. It introduces the novel
approach of treating cooling methods and dressers as independent parameters, enhancing
accuracy and introducing complexity. This study also presents a sophisticated algorithm for
optimizing the ANN structure, indicating the ideal network configuration for the dataset.
The ANN algorithm is found to be versatile and suitable for online deployment and broader
applications across engineering domains.

The rest of this paper is organized as follows. The experimental setup is explained in
Section 1 followed by the methodology of implementing ANNs in Section 3. The results of
applying the ANNs are discussed in the following sections.

2. Experimental Setup

A prompt 300–1000 grinding machine (Taichung City, Taiwan) was utilized to conduct
the experiments in this study (Figure 2). The workpiece material was Inconel 738 with
dimensions of 200 × 40 × 16 mm. Dressing tools included both single-edge and for-edge
diamond dressers with access angles of (α = 10◦). The grinding wheel, Al2O3 (WA60K9V)
type, maintained a constant peripheral speed (cutting speed) of 47 m/s and a 450 mm
diameter (Figure 2). The depth of cut during the grinding of specimens was fixed at
10 µm. Prior to each experiment, the grinding wheel underwent three dressing cycles with
varying dressing conditions, which are also detailed in Table 1. Cooling methods, crucial
for workpiece quality in industrial settings, were implemented using two approaches [37].
The conventional wet machining technique employed a 5% concentration of water-miscible
coolant lubricant at a flow rate of 4 L/min. Minimum quantity lubricant (MQL) involved a
handmade system controlling a constant flow rate of 200 mL/h of vegetable oil, utilizing
the Venturi effect to mix air and oil. Surface roughness was measured for each condition
to determine the coolant’s effects on output parameters. The experimental details and
conditions are summarized in Tables 1 and 2.

Any prediction method, whether statistical or artificial, relies on data availability.
Sufficient data quantity is crucial for results to hold merit across most scenarios, a consid-
eration that some prior publications have neglected regarding the impact of data size on
simulation accuracy. In this study, using the experimental setup, a substantial dataset com-
prising 125 unique conditions and encompassing eight distinct parameters was collected.
Five of these parameters were input variables measured prior to the experimental setup,
while the remaining three represent mean, maximum, and minimum surface roughness
values. Mahr Surf PS1 Model-Germany was used to take multiple precise measurements
of surface roughness. This resulted in three data points for dressing depth, which were
then used for further analysis. One challenge in implementing the dataset is transforming
qualitative parameters into quantitative ones for compatibility with prediction algorithms.
Thus, assigning non-zero positive real numbers to each type of qualitative input parameter
becomes necessary. In this study, two cooling methods, Wet and MQL, were employed and
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designated as numbers 1 and 2, respectively. Similarly, for dressing types, the numbers 1
and 4 correspond to single and four points.
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Figure 2. Experimental setup: (a) grinding wheel, (b) coolant–lubricant nozzle, (c) dressing tool,
(d) dressing table, and (e) dressing table controller.

Table 1. Fixed parameters during the grinding process [37].

Grinding Elements Parameters

Grinding Mode Plunge surface grinding, down cut

Grinding Wheel Al2O3: WA60K9V (ds = 450 mm)

Wheel Speed (vs) 47 m/s

Depth of Grinding (ae) 30 µm

Fluid used in grinding with cutting fluid and
dressing operation Water-soluble oil with a concentration of 5%

Cutting fluid flow rate in wet grinding 4 L/min

MQL Oil Vegetable oil

MQL flow rate 200 mL/h

MQL Viscosity (at 20 ◦C) 84 cP

MQL Carrier Gas Compressed air

MQL Gas Pressure 5 bar

Workpiece Material Nickel-base superalloy-Inconel 738

Workpiece Dimensions 200 mm × 40 mm × 16 mm

Dresser Material Stationary Diamond

Dresser Type Single-edge and Four-edge

Dresser Access Angle (αd) 10◦
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Table 2. Five input parameters are taken into account, each with multiple values, as illustrated in
the provided table. It is noted that according to the literature review, other studies consider lower
numbers of parameters [37].

Grinding Variable Parameter Value

Grinding Feed Rate—Table Speed (vft) 4.5, 15 m/min

Dressing Feed (vfd) 50, 85, 213, 420, 600 mm/min

Depth of each dressing pass (ad) 2, 5, 10, 20 µm

Number of Dressing passes Ndt = 3

Cooling Type Wet; MQL

Stationary Diamond Dresser Type Single-edge; Four-edge

The dataset for the ANN is collected under the aforementioned experimental condi-
tions and parameters, and a randomly selected set of the gathered data is displayed in
Appendix A, Table A1. A comparison of the real surface roughness (Rz) against predicted
roughness with ANN is presented in Appendix B, Figure A1, along with the analysis of the
ANN test data in Table A2. The influence of tool conditions on the final results is worth
highlighting. Therefore, prior to each test, the health of tools (with special attention to
the grinding wheel) was inspected, and after each dressing procedure, the examination
was reiterated.

3. Methodology
3.1. Networks with Hidden Layers

To process the data and predict the surface roughness, the employed ANN structure as
well as accuracy metrics are outlined as follows. In the current study, a neural network with
five inputs has been implemented, as illustrated in Figure 3. To fulfill the neural network
requirement, qualitative parameters like dressing type and cooling type have also been
transformed into quantitative ones. The architecture employed is a feedforward [38,39]
neural network featuring one or two hidden layers, which is commonly recognized as a
deep-learning network due to its ability to uncover intricate patterns.
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The diagram in Figure 4 shows the data preparation, training, and testing process.

3.2. Accuracy Metrics

Accuracy metrics refer to the procedure used to evaluate the machine learning predic-
tion’s validity. Selecting an appropriate accuracy metric for assessing a specific prediction
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is investigated in [40]. The correlation coefficient (R) and coefficient of determination
(R2) are widely used for the evaluation of the goodness of linear fit of regression models
in ANNs [41]. Metrics that rely on absolute errors or squared errors are termed scale-
dependent metrics [42]. These metrics maintain the same scale as the initial data, presenting
errors in the same units [43]. The comparison of scale-dependent metrics can be challenging
when dealing with series of varying scales or units. Despite their lack of unit-free character-
istics, scale-dependent metrics are often preferred in machine learning evaluation. Widely
used examples include Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE) [43]. The methods described in this section are applied,
in a MATLAB environment, to the dataset achieved by the experimental setup, and the
results, including the evaluation of the prediction by the MSE metric, are reported in the
following section.
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4. Results and Discussion
4.1. Surface Roughness

Workpiece surface roughness values (Figures 5–7) indicate that the MQL technique in
the gridding of Inconel 738 has significant effects on the grinding performance. Notably, in
the experimental set up, this is achieved by significantly reducing cutting fluid consump-
tion from 4 L/min to 200 mL/h. On the other hand, by increasing the dressing feed and
generating a coarse topography on the grinding wheel surface, the ground workpiece sur-
face roughness is increased. One of the factors increasing the workpiece surface roughness
is the penetration of more grains into the workpiece. Increasing the table speed during
grinding will result in the penetration of more grains, which is shown in Figures 5–7 for dif-
ferent machining conditions. The experimental results and analysis have been extensively
reported in [37], and this article explores the modeling and prediction of surface roughness
using artificial neural networks. It is important to mention that in this article, to prevent the
model from overfitting during the prediction of surface roughness, the algorithm employs
random data selection. Consequently, the parameter values presented in different figures
may vary accordingly.
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4.2. ANOVA

The ANOVA technique was performed to test the adequacy of the established models.
The results of fitting the response surface model are presented in Tables 3 and 4. Significance
tests for both regression models and individual coefficients, along with a lack-of-fit test,
were conducted using Minitab 16 software. The process involved backward elimination to
remove nominal model terms, leading to an ANOVA (shown in Table 3) summarizing the
significant model terms and quadratic response surface models. Remarkably, the outcomes
highlight that beyond key grinding parameters like dresser speed and table speed, the
cooling condition also notably impacts the ultimate surface roughness. Table 3 reveals,
based on the p-values, that three of the examined parameters hold significant importance,
both in terms of their physical influence and statistical significance. Table 4 displays the
dependance between parameters.

In Table 4, the dresser’s dependance on ad is the most significant and creates the
most sensitivity on the surface roughness as the output. Cooling is also dependent on ad.
As the dynamic governing the surface roughness is very complex, analytical approaches
and a mathematical model will not show all aspects of it. Therefore, the dependence of
all of the parameters cannot be shown by an ANOVA test only, and it may need more
complex investigations, which is out of the scope of this work. In the practical approach and
experimental setup, surface roughness is shown to be not only sensitive to the parameters
proved by ANOVA, but also the remaining parameters in Table 4. Thus, in this study, all of
the parameters are chosen for training the model in an ANN.
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Table 3. Final results of ANOVA implementation on the current dataset.

Parameter Sum of Squares (SS) Degrees of Freedom (DF) Mean Squares (MS) F p-Value

Dresser 0.0015 1 0.0015 0.04 0.8506

ad 0.2283 5 0.0457 1.06 0.386

vfd 0.5124 4 0.1281 2.98 0.0223

vft 0.4784 1 0.4784 11.12 0.0012

Cooling 0.7185 1 0.7185 16.7 0.0001

Error 4.8199 112 0.0430 - -

Total 6.7590 124 - - -

Table 4. Dependence between the parameters with ANOVA.

Source Sum Sq. d.f. Mean Sq. F Prob > F

Dresser 0.00153449 1 0.00153449 0.05395521 0.81694287

ad 0.22826081 5 0.04565216 1.60520327 0.16889796

vfd 0.51240222 4 0.12810055 4.50422116 0.00255408

vft 0.47842361 1 0.47842361 16.8221422 0.00010205

Cooling 0.71846775 1 0.71846775 25.2624797 3.24 × 10−6

Dresser:ad 0.31042206 3 0.10347402 3.63831266 0.01644337

Dresser:vfd 0.24138786 4 0.06034697 2.12189618 0.08621938

Dresser:vft 0.06965573 1 0.06965573 2.44920745 0.12173884

Dresser:Cooling 0.0117457 1 0.0117457 0.41299783 0.5223859

ad:vfd 0.58353194 11 0.05304836 1.86526544 0.05754152

ad:vft 0.05313967 3 0.01771322 0.62282532 0.60241049

ad:Cooling 0.45124279 4 0.1128107 3.96660521 0.00561895

vfd:vft 0.82265751 4 0.20566438 7.23148964 5.46 × 10−5

vfd:Cooling 0.11375702 4 0.02843925 0.99996982 0.41296357

vft:Cooling 0.00087229 1 0.00087229 0.03067123 0.86144164

Error 2.16144852 76 0.02844011

Total 6.75894998 124

In Table 4, the dresser’s dependency on ad emerges as the most significant, exerting the
highest sensitivity on surface roughness as the output. Cooling also exhibits a dependency
on ad. Given the intricate nature of the factors affecting surface roughness, analytical and
mathematical approaches might not encompass all aspects of its complexity. Consequently,
the reliance of all parameters cannot be exclusively illuminated through ANOVA testing
alone, possibly necessitating more intricate investigations beyond the scope of this study.
In practical application and experimental setup, surface roughness is demonstrated to
be sensitive not solely to parameters confirmed by ANOVA, but also to the remaining
parameters outlined in Table 4. As a result, all parameters in the table have been considered
for training the ANN model in this study, including the parameters with high p-values
(such as dresser effect) [44]. This decision was made because a purely statistical analysis,
such as ANOVA, may show only some of the correlations but not adequately account for
the highly non-linear nature of all of the grinding system parameters, which will indirectly
influence the surface roughness.
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4.3. ANN Model Implementation

Neurons were trained to determine the best network parameters, including hidden
layers, neurons, transfer function layers, and weight values in order to achieve an effective
network for modeling the target. Parameters were adjusted to minimize errors during
training and testing, and different configurations were evaluated to identify the improved
model (Figure 8).
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Figure 8. The figure above presents the outcomes of various network implementations. Two network
structures were employed, featuring either one hidden layer or two hidden layers. Each hidden layer
utilized activation functions such as tansig and logsig, along with varying neuron quantities. The
figure showcases the relationship between neuron quantity and Mean Squared Error (MSE), serving
as an accuracy metric for the implemented networks.

Ultimately, a network configuration consisting of one input layer, two hidden layers,
and one output layer was chosen as the most effective. The highest-performing neuron
counts were identified as nine and ten for the hidden layers, while the input and output
layers employed four and one neurons, respectively. The transfer functions used between
layers are tansig, logsig, and purelin, and the training algorithm employed is trainbr (as
shown in Table 5).

Table 5. The overall ANN properties of the current implementation.

Network Configuration Learning Condition
Object model Rz Learning Scheme Supervised Learning

Input neurons
Dresser
ad
v f t
v f d
Cooling

Learning rule Gradient descent
Hidden neurons 6~20
Output neuron 1

Output neuron Rz Sample pattern
80% train
10% validation
10% test

Transfer Functions
Purelin
Tansig
Logsig

Learning rate 0.01

Marquart adjustment Mu = 0.05
Training Function TRAINBR Max. epoch 1000
Learning Function LEARNGDM Goal 0.001

To mitigate overfitting, the data are divided into folds, and accuracy is assessed in
each fold. For these datasets, a cross-validation fold value of 5.0 is chosen, determined
through iterative experiments to fine-tune the hyperparameters of the selected models.
More details of the modeling results are provided in Appendix B.
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5. Results and Discussion of NN Implementations

This subsection involves a comparison between the prediction of surface roughness
using an ANN and two other methods: Gaussian process regression (GPR) and Regression
Trees (RT). This comparison serves to highlight the superior performance of the ANN
and the rationale behind its selection for this study. A cross-validation fold value of 5.0
is also implemented in these approaches. The training process encompasses 112 samples
obtained from experimental procedures. The results of the chosen features for validation
and testing are depicted in Figure 9. The plotted graphs display a comparison between the
true and predicted responses of the adopted model. Comprehensive information about
these networks is provided in Tables 6 and 7. Both the graphical representations and the
tabulated details demonstrate that the ANN offers a superior fit to the data.
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Table 6. Evaluation of the training phase among different algorithms: RT, GPR, and ANN.

Training Phase

Model
Validation Metrics

R2 RMSE MSE MAE

RT 0.3 0.22 0.05 0.16

GPR 0.23 0.20 0.04 0.15

ANN 5-17-7-1 0.46 0.18 0.04 0.12

Table 7. Evaluation of the modeling with testing data among different algorithms: RT, GPR, and ANN.

Test Phase

Model
Validation Metrics

R2 RMSE MSE MAE

RT 0.3 0.19 0.04 0.15

GPR 0.27 0.22 0.05 0.17

ANN 5-17-7-1 0.58 0.17 0.03 0.12

6. Conclusions

This study analyzes the influence of industrial grinding process parameters on surface
roughness in an industrial setup, comparing MQL and conventional cooling methods. For
this purpose, dressing depths of 2, 5, 10, and 20 microns, a tool feed rate ranging from 50 to
600 mm/min, and an attack angle of 10 degrees were employed to establish the grinding
wheel cycle. The grinding procedure on the Inconel 738 nickel-based superalloy workpiece
involved a cutting speed of 47 m/s, a feed rate ranging from 4.5 to 15 m/min, and a cutting
depth of 30 microns. The neural network was trained and evaluated using the generated
dataset. The key findings of this study are summarized as follows:

In this study, the ANOVA test highlights the substantial impact of the dresser and
cooling method on surface roughness, underlining their sensitivity to ad. The complexity
of surface roughness dynamics is acknowledged, suggesting that relying solely on ANOVA
testing may not fully illuminate the complete range of parameter dependencies. This study
goes beyond ANOVA-confirmed parameters, considering all relevant factors in the analysis
to train an Artificial Neural Network (ANN). Notably, the novelty lies in treating cooling
methods and dressers as independent parameters, which contributes to the study’s unique
level of accuracy and emphasizes the introduction of complexity and variability. The future
direction involves improving accuracy through the incorporation of these factors and more
advanced algorithms in subsequent research.

The results of the ANOVA analysis revealed a significant correlation between grinding
parameters, particularly qualitative parameters such as cooling. However, the analysis
indicated that some other parameters, such as the dresser type, do not significantly con-
tribute to the model and could potentially be excluded from the implementation. Despite
this, in the literature mentioned in Section 4.2, it is illustrated that in practice, it is not
feasible to entirely eliminate these parameters from the grinding process and there are
indirect and nonlinear correlations. It is also important to note that the ANOVA process is
highly sensitive to data distribution. The data must be normally distributed for ANOVA to
function correctly, and the parameters in this study did not sufficiently meet this criterion.
Therefore, while ANOVA provides an initial insight into this research, it demonstrates
that a purely statistical analysis may not yield a comprehensive and reliable solution for
the current study. As such, a more robust approach such as machine learning for further
analysis has been proposed in this work.

Furthermore, the study introduces a sophisticated algorithm to establish an optimal
network structure for the ANN, considering various transfer functions and neural sizes.
The results indicate that a deeper network with two hidden layers using specific transfer
functions and neuron sizes is favorable for the available dataset. The ANN algorithm
exhibited independence from the quantity of parameters and was found to be versatile
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for potential online deployment and broader application across engineering domains.
The authors’ future research endeavors aim to enhance prediction accuracy, specifically
by treating the coolant and dresser as independent parameters. They also intend to use
digitized data and models for smart machining via the Industrial Internet of Things (IIoT),
seeking to achieve desired surface roughness levels more efficiently.
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Appendix A

Table A1. A subset of 12 random data points is taken from the primary dataset for testing of the
trained model. The current dataset encompasses a total of 125 data sets for the grinding process.

Input Parameters Output Parameters
vft vfd ad Dressing Cooling Rz Rz(max) Rz(min)

1 4.5 213 5 1 1 2.4425 2.64 2.36
2 4.5 50 10 1 2 2.37 2.58 2.25
3 15 600 10 1 2 2.2625 2.45 2.11
4 4.5 213 10 4 1 6.585 6.47 5.94
5 15 50 5 4 1 3.36 3.94 3.17
6 15 50 10 4 1 4.175 4.56 3.82
7 15 213 10 4 1 3.39 3.65 3.08
8 4.5 420 5 4 2 3.49 3.77 3.18
9 15 600 10 4 2 4.41 4.69 4.39
10 15 420 20 4 2 3.925 4.39 3.66
11 4.5 50 2 1 1 2.635 2.8 2.56
12 15 600 20 4 1 2.4425 2.64 2.36
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Figure A1. Comparison of the real surface roughness (Rz) against predicted roughness with ANN (a).
It is noteworthy to observe that the predicted observations from the test data closely match the ideal
prediction in (b).
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Table A2. Analysis of the Artificial Neural Network test data.

Analysis Type Results
Acc (mean) 82

Acc (std) 15
Acc (MAX) 99
Acc (Min) 51

R 0.865234
R2 0.582239

MSE 0.0296876
RMSE 0.172301
MAE 0.12742

MAPE 17.9083
SMAPE 17.3525
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