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Abstract: Long fiber thermoplastic pellets are pellets containing discontinuous reinforced fibers
and a matrix, offering excellent mechanical properties, good processability, recyclability, and low
cost. Typically, commercial LFTP is manufactured through the hot melt impregnation process,
combining extrusion and pultrusion. Although there is a thermoplastic pultrusion process for LFTP
production, characterized by a simple machine and an easy method, its mechanical properties have
not yet approached those of commercial LFTP. In improving the mechanical characteristics of LFTP
manufactured via thermoplastic pultrusion, this research employed polypropylene-graft-maleic
anhydride as a coupling agent during the injection molding procedure. The LFTP is composed
of polypropylene material reinforced with glass fiber. Mechanical and physical properties of the
LFTP were investigated by introducing PP-g-MAH at concentrations of 4, 8, and 12 wt% through
injection molding. The results revealed that, at a 4 wt% concentration of PP-g-MAH, the LFTP
composites exhibited heightened tensile, flexural and impact strengths. However, these properties
began to decrease upon exceeding 4 wt% PP-g-MAH. The enhanced interfacial adhesion among glass
fibers, induced by PP-g-MAH, contributed to this improvement. Nonetheless, excessive amounts of
PP-g-MAH led to a reduction in molecular weight, subsequently diminishing the impact strength,
tensile modulus, and flexural modulus. In LFTP composites, both tensile and flexural strengths
exhibited a positive correlation with the PP-g-MAH concentration, attributed to improved interfacial
adhesion between glass fibers and polypropylene, coupled with a reduction in fiber pull-out. Based
on morphological analysis by SEM, the incorporation of PP-g-MAH improved interfacial bonding
and decreased fiber pull-out. The presence of maleic anhydride in the LFTPc was confirmed through
the utilization of FTIR spectroscopy. Mechanical properties of LFTP containing 4 wt% PP-g-MAH
were found to be equivalent to or superior to those of commercial LFTP, according to the results of a
comparative analysis.

Keywords: LFTP composite; thermoplastic pultrusion; long glass fiber reinforced polypropylene;
PP-g-MAH

1. Introduction

Long fiber thermoplastic pellets (LFTPs) are plastic pellets composed of reinforced
fibers and thermoplastic. The fibers embedded in the pellets are discontinuous and pos-
sess a length-to-diameter aspect ratio exceeding the critical aspect ratio [1–3]. Normally,
LFTPs are utilized in compression and injection molding processes. Various industries,
including automobile, sports, wind energy, military, aerospace, and electronics [4–6], em-
ploy LFTPs in manufacturing due to their superior mechanical properties, weight sav-
ings, improved damping, good processability, recyclability, corrosion resistance, and low
cost [1,6,7]. Several types of thermoplastic matrices are used in the fabrication of LFTP,
such as polyamide (PA), polymethyl methacrylate (PMMA), polyacrylonitrile–butadiene–
styrene (ABS), and polypropylene (PP), among others [8–11]. These matrices are reinforced
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with glass fiber and carbon fiber [12]. The popular type of LFTP incorporates glass fiber
(GF) reinforcement in polypropylene (PP) due to its low density, low molding tempera-
ture, and cost-effectiveness [13–15]. Glass fiber provides high tensile stress and is also
cost-effective [16,17]. The combination of glass fiber and polypropylene results in a com-
posite with excellent mechanical properties, low density, and cost-effectiveness. The typical
manufacturing process for LFTP involves a hot melt impregnation process, combining
extrusion and pultrusion processes. Continuous reinforced fibers are drawn into the hot
melt impregnation die, where molten thermoplastic from the extruder impregnates the
reinforcing fibers. Subsequently, the material undergoes cooling and is subsequently cut
into the desired length. LFTP products usually demonstrate dimensions of 6 to 25 mm in
length and 2 to 4 mm in diameter [1,18,19].

Currently, achievements have been made in producing LFTP using the thermoplastic
pultrusion process [20,21]. This method demonstrates comparable mechanical proper-
ties to the conventional process but incurs lower costs due to the absence of an extruder
requirement in the machinery setup. Generally, pultrusion processes are used for the
fabrication of constant cross-section and continuous composites. The advantages of this
process include high mechanical properties of products, a high production rate, and low
cost [22]. Pultrusion processes can fabricate both thermoplastic and thermoset compos-
ites [23]. Thermoplastics are gaining interest due to their recyclability, contributing to
the reduction in environmental pollution problems [24]. Thermoplastic composites are
highly ductile, tough to break, impact resistant, recyclable, and quickly processed [25,26].
Therefore, the thermoplastic pultrusion process is interesting to develop for adding new
products, with the capability of fabricating LFTP through this method. In the process of
manufacturing LFTP through thermoplastic pultrusion, continuous thermoplastic fibers
and continuous fibers are drawn into the heated die. The thermoplastic fibers undergo melt-
ing at elevated temperatures, impregnating the fibers, followed by cooling and subsequent
cutting into the required length [21,23]. Although LFTP is fabricated using thermoplastic
pultrusion, which imparts good mechanical properties, its mechanical characteristics may
not be sufficient when compared to some commercial LFTP products. Surface treatment
is one among numerous techniques that can be implemented to boost the mechanical
properties of composites. Interfacial adhesion is improved as a result of surface treatment
of the fiber, which in turn leads to improvements in mechanical properties [27]. Using a
coupling agent [28,29] is a popular method for surface treatment. GF and PP are treated
with polypropylene-graft-maleic anhydride (PP-g-MAH), one such agent [30]. The incor-
poration of PP-g-MAH improves the mechanical properties of the GF/PP composite by
enhancing interfacial adhesion [31,32].

The aim of this study is to improve the interfacial adhesion between GF and PP in
the LFTP composite (LFTPc) by utilizing PP-g-MAH as a coupling agent. The preparation
of LFTPc, which is made up of GF/PP, was carried out through the use of the injection
molding process, alongside the incorporation of PP-g-MAH into this process. The LFTP
was produced through the thermoplastic pultrusion process. The literature review indicates
that PP-g-MAH has been widely used as a coupling agent to enhance interfacial adhesion,
leading to a notable growth of mechanical properties by 10–40% [27,30,33–35]. In the
literature review of PP composites reinforced with long glass fiber (LGF), GF is typically
used at a volume fraction of 10–40 wt% in the composite [1,35,36], with most LFTPs in the
literature being fabricated using the hot melt impregnation process. Therefore, this work
differs in the manufacturing process of LFTP, which is fabricated using the thermoplastic
pultrusion process: a method known for its cost-effectiveness and high productivity.
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2. Materials and Methods
2.1. Materials

The thermoplastic pultrusion method was utilized to produce LFTP in this study. PP
yarn with a density of 0.946 g/cm3 (133 tex or 1200 denier) was purchased from Praditkorn
Co., Ltd., Bangkok, Thailand, and GF yarn with a density of 2.620 g/cm3 (EDR171200386)
was purchased from China Jushi Co., Ltd., Tongxiang, China. The diameter and length of
the LFTP are 3 mm and 10–12 mm, respectively. For injection, LFTP was combined with PP
pellets (POLIMAXX 1100NK) that were purchased from Irpc Polyol Co., Ltd. in Bangkok,
Thailand. As a coupling agent, PP-g-MAH was purchased from Merick Polymer Co., Ltd.,
Bangkok, Thailand.

2.2. Methods

The thermoplastic pultrusion technique was employed in this experiment for manu-
facturing LFTP, with the molding temperature ranging from 160 to 230 ◦C and the pulling
speed set at 10 cm/min. In the process of manufacturing LFTP through thermoplastic
pultrusion, continuous PP fibers and continuous glass fibers are drawn into the heated die.
The PP fibers undergo melting at elevated temperatures, impregnating the glass fibers. This
is followed by fan cooling and subsequent cutting into the required length using a plastic
pellet cutting machine. The preheat die and heating die for the lab-scale thermoplastic
pultrusion machine employed for manufacturing LFTP are both 645 mm in length. The
cross-sectional length of both dies is 300 mm, while their taper length is 345 mm and their
radius is 1 degree. A characteristic of the pultrusion die is its 3 mm diameter.

The LFTP consists of a combination of PP and GF with volume fractions of 87.03 and
12.97%, respectively. The determination of the volume fraction of LFTP employed the
filling ratio equation outlined in the literature [20,21]. LFTP, characterized by a specified
diameter of 3 mm and length ranging from 10 to 12 mm, as indicated in the literature [18]
and aligned with commercial LFTP standards, was utilized. LFTP and virgin PP were
mixed together in dry mixer, with a volume fraction of 15% by weight of GF. Subsequently,
PP-g-MAH was added at weight concentrations of 4%, 8%, and 12% during the injection
molding process. Intermediate materials were subjected to overnight drying at 100 ◦C
in an oven before injection to eliminate moisture from PP-g-MAH, given that MAH is
hygroscopic. The injection molding machine (LG model LGH-50N) was used to prepare
LFTPc specimens for property testing. Molding temperature ranges were set between 170
and 190 ◦C, with an injection speed set at 100 mm/sec, injection pressure at 90 MPa, and
holding pressure at 30 MPa. These parameters were adjusted according to the datasheet of
virgin PP. Figure 1 displays the schematic of the experiment. Specimens were evaluated for
their mechanical and physical properties.

2.3. Characterization and Measurement
2.3.1. Mechanical Properties

Mechanical testing, including impact, flexural, and tensile tests, was conducted to
investigate the properties of LFTPc. A tensile test was performed in accordance with ASTM
D638 [37] standards using a Hounsfield universal testing machine (Load 25 kN) at a testing
speed of 50 mm/min. The dog bone type I structure was used for fabricating the tensile
specimens. A flexural test was carried out, corresponding with the standards of ASTM
D790 [38]. A Hounsfield universal testing machine was utilized, which consisted of a
three-point bending model (load of 25 kN), a test speed of 1.30 mm/min, and a span length
of 48 mm. The head speed was set according to ASTM D790 [38] standards. The impact
properties of LFTPc were carried out using an impact Izod tester fitted with a 2J hammer in
accordance with ASTM D256 [39] guidelines.
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2.3.2. Fiber Length Measurement

The fiber length of LFTPc was measured using specimens from injection molding.
These specimens were placed on the black substrate of ceramic tiles and burned at a
temperature of 500 ◦C for 2 h using a Nabertherm furnace. The decomposition of PP in
LFTPc occurred due to the higher degradation temperature of PP, leaving only GF and
ash. The GF was distributed, and the fiber length was measured using a microscope (Motic
model SMZ-171) at 10× magnification. At least 1000 fibers were sampled and measured
using the ImageJ program. The fiber count results were calculated by determining the
number of fibers in each range of fiber length per total number of fibers. Figure 2 illustrates
the fiber length measuring process of LFTPc.
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2.3.3. FTIR Spectroscopy

The LFTPc specimens were examined for chemical composition using Fourier trans-
form infrared spectroscopy (FTIR) measurement (using the Thermo Scientific Nicolet iS5,
Waltham, MA, USA) to characterize their functional groups. The specimens were analyzed
over a range of 4000 to 400 cm−1.

2.3.4. Morphology

The surface morphology of LFTPc specimens was examined utilizing a scanning
electron microscope (SEM), examining both the fiber pullout from the specimens and the
interfacial adhesion between GF and PP (using the JEOL model JSM-5410LV, Tokyo, Japan).
Specimens after the impact test were examined at 50× and 500× magnifications.

3. Results
3.1. The Influence of the Coupling Agent on the Mechanical Properties of the LFTPc

Both tensile modulus and tensile strength values are determined through tensile
tests. The tensile modulus of LFTPc is illustrated in Figure 3 at varying concentrations of
PP-g-MAH. Additionally, the characteristics of specimens during testing are depicted. It
was found that the tensile modulus increased while the PP-g-MAH concentration was at
4 wt%, but it decreased when the PP-g-MAH concentration grew higher. For PP-g-MAH
concentrations of 0, 4, 8, and 12 wt%, the tensile modulus values for the LFTPc were
2710, 3183, 2954, and 2830 MPa, respectively. The LFTPc, containing 4 wt% PP-g-MAH,
exhibited a tensile modulus approximately 17.45% higher than that of the LFTPc devoid
of PP-g-MAH, reaching its maximum tensile strength. Despite the decrease in tensile
modulus beyond 4 wt% PP-g-MAH, these values remained greater than those of LFTP
lacking PP-g-MAH.
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Figure 4, which exhibits the results of employing various concentrations of PP-g-MAH,
depicts the tensile strength of LFTPc. The results indicate that an increase in the amount
of PP-g-MAH correlates with a related increase in the tensile strength. At PP-g-MAH
concentrations of 0, 4, 8, and 12 wt%, the tensile strength values for the LFTPc were 38.92,
55.37, 59.84, and 61.98 MPa, respectively. The LFTPc with a 12 wt% PP-g-MAH component
exhibited a tensile strength increase of approximately 59.24% compared to LFTPc devoid of
PP-g-MAH.
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The results of testing specimens and the flexural modulus of the LFTPc with vary-
ing concentrations of PP-g-MAH are shown in Figure 5. Similar to the tensile modulus,
the results indicate that the flexural modulus increased at a PP-g-MAH concentration of
4 wt% and reduced when the concentrations of PP-g-MAH surpassed 4 wt%. The flexural
modulus values of LFTPc, with concentrations of PP-g-MAH at 0, 4, 8, and 12 wt%, were
1968, 2376, 2244, and 2146 MPa, respectively. The LFTPc containing a concentration of
4 wt% PP-g-MAH exhibited the greatest flexural modulus, showing an increase of ap-
proximately 20.73% compared to the LFTPc devoid of PP-g-MAH. In the same way that
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the flexural modulus values exhibited a reduction when the concentrations of PP-g-MAH
surpassed 4 wt%, they consistently remained at levels superior to those of the LFTPc devoid
of PP-g-MAH.
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Figure 6 presents an illustration of the flexural strength values of the LFTPc using vari-
ous concentrations of PP-g-MAH. The results indicate that the flexural strength exhibited
an increase in correlation with the concentration of PP-g-MAH. The respective flexural
strengths of the LFTPc were obtained at 47.27, 68.16, 77.35 and 80.02 MPa, when the concen-
trations of PP-g-MAH were 0, 4, 8, and 12 wt%. The LFTPc containing 12 wt% PP-g-MAH
demonstrated the maximum flexural strength values, an increase of approximately 69.66%
in comparison to the LFTPc devoid of PP-g-MAH.
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Figure 7 shows the impact strength of the LFTPc with varying concentrations of PP-g-
MAH, along with features of the test specimens. Similar trends were observed in the impact
strength data and the tensile and flexural modulus values. The impact strength increased at
a concentration of 4 wt% PP-g-MAH and decreased beyond that point. The LFTPc exhibited
impact strength values of 54.92, 82.57, 67.43, and 64.90 J/m, respectively, when PP-g-MAH
was present in concentrations of 0, 4, 8, and 12 wt%. The LFTPc that incorporated 4 wt%
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PP-g-MAH demonstrated the most significant increase in impact strength, approximately
50.34%, in comparison to the LFTPc that did not contain PP-g-MAH. While the impact
property decreased with the concentration of PP-g-MAH surpassing 4 wt%, it continued to
surpass that of the LFTPc devoid of PP-g-MAH. These differences corresponded with the
tensile and flexural modulus values.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 8 of 16 
 

 

Figure 7 shows the impact strength of the LFTPc with varying concentrations of PP-
g-MAH, along with features of the test specimens. Similar trends were observed in the 
impact strength data and the tensile and flexural modulus values. The impact strength 
increased at a concentration of 4 wt% PP-g-MAH and decreased beyond that point. The 
LFTPc exhibited impact strength values of 54.92, 82.57, 67.43, and 64.90 J/m, respectively, 
when PP-g-MAH was present in concentrations of 0, 4, 8, and 12 wt%. The LFTPc that 
incorporated 4 wt% PP-g-MAH demonstrated the most significant increase in impact 
strength, approximately 50.34%, in comparison to the LFTPc that did not contain PP-g-
MAH. While the impact property decreased with the concentration of PP-g-MAH surpas-
sing 4 wt%, it continued to surpass that of the LFTPc devoid of PP-g-MAH. These differ-
ences corresponded with the tensile and flexural modulus values. 

  
(a) (b) 

Figure 7. Correlation between (a) impact strength and the concentration of PP-g-MAH in LFTPc and 
(b) testing specimens. 

The mechanical properties of the LFTPc were enhanced by the improved contact ad-
hesion between PP and GF, which was caused by the incorporation of PP-g-MAH. Lin et 
al. and Fu et al. [27,36] elucidated the interaction between the hydroxyl groups of GF and 
the maleic anhydride of PP-g-MAH. The results align with the literature review 
[27,35,36,40], confirming the increased tensile modulus of the LFTPc when incorporated 
with PP-g-MAH. 

The tensile modulus, flexural modulus, and impact strength values of the LFTPc, 
however, decreased at concentrations of PP-g-MAH beyond 4 wt% because, as explained 
by Lin et al. [27], PP-g-MAH can only enhance the interfacial adhesion between GF and 
PP; it cannot increase deformation resistance. Furthermore, a rise in the PP-g-MAH con-
centration results in a reduction in molecular weight [28]. The decrease in molecular 
weight affected the tensile strength and flexural strength, causing them to remain constant 
or decrease. In accordance with the literature, the elongation at break exhibited a rise as 
the molecular weight decreased [41]. Thus, when the amount of PP-g-MAH exceeded 4 
wt%, the tensile and flexural modulus values decreased. Gumus [34] described the nega-
tive effects of PP-g-MAH on notched impact properties when the LFTPc incorporated a 
concentration of PP-g-MAH exceeding 4 wt%, resulting in decreased impact properties. 
In addition, the impact strength has a result in accordance with another study in the liter-
ature [36]. 
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(b) testing specimens.

The mechanical properties of the LFTPc were enhanced by the improved contact adhe-
sion between PP and GF, which was caused by the incorporation of PP-g-MAH. Lin et al.
and Fu et al. [27,36] elucidated the interaction between the hydroxyl groups of GF and the
maleic anhydride of PP-g-MAH. The results align with the literature review [27,35,36,40],
confirming the increased tensile modulus of the LFTPc when incorporated with PP-g-MAH.

The tensile modulus, flexural modulus, and impact strength values of the LFTPc,
however, decreased at concentrations of PP-g-MAH beyond 4 wt% because, as explained by
Lin et al. [27], PP-g-MAH can only enhance the interfacial adhesion between GF and PP; it
cannot increase deformation resistance. Furthermore, a rise in the PP-g-MAH concentration
results in a reduction in molecular weight [28]. The decrease in molecular weight affected
the tensile strength and flexural strength, causing them to remain constant or decrease. In
accordance with the literature, the elongation at break exhibited a rise as the molecular
weight decreased [41]. Thus, when the amount of PP-g-MAH exceeded 4 wt%, the tensile
and flexural modulus values decreased. Gumus [34] described the negative effects of
PP-g-MAH on notched impact properties when the LFTPc incorporated a concentration
of PP-g-MAH exceeding 4 wt%, resulting in decreased impact properties. In addition, the
impact strength has a result in accordance with another study in the literature [36].

3.2. Fiber Length of LFTPc

The fiber length of GF decreased during the injection molding process due to the screw,
cylinder, nozzle, and runner [35]. Figure 8 shows the residual fiber length of LFTPc with
varying concentrations of PP-g-MAH. The results indicate that the fiber length of GF is
distributed across the entire range, from 0.1 to 12 mm. The fiber length ranging from 0 to
2 mm exhibited the highest values, while the range of fiber length from 3 to 4 mm showed
a decrease of only 5–15%. This finding suggests that LFTPc is reinforced by long fibers.
Additionally, the percentage of fiber length in the range of 5 to 6 mm was 9–18%, providing
clear evidence of reinforcement by long fibers. This is supported by the fact that short
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fiber-reinforced composites typically have fiber lengths in the range of 0.1–0.5 mm. [18].
This evidence confirms the reinforcement by long fibers.
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3.3. The Influence of the Coupling Agent on the Morphology of the LFTPc

Specimens were examined using SEM after the Izod impact test to investigate the
surface morphology of the LFTPc with varying concentrations of PP-g-MAH, and the
findings are shown in Figure 9. It was evident that the LFTPc’s pull-out of GF and the
spaces between them and PP was improved by the incorporation of PP-g-MAH. Figure 9b–e
illustrates that the pull-out of fibers decreased as the concentration of PP-g-MAH increased.
Consequently, the fiber pull-out and the interface between GF and PP were effectively
improved by PP-g-MAH. Additionally, SEM images of the LFTPc containing varying
concentrations of PP-g-MAH are displayed in Figure 10 at a 500× magnification. It was
evident that as the amount of PP-g-MAH increased, the interstices between the GF and PP
decreased. Furthermore, the incorporation of PP-g-MAH to the GF surface of the LFTPc
resulted in an appearance of cohesive resin, which indicated a great interface between
the GF and resin. Consequently, an improvement in the GF-PP interface and pull-out of
fibers leads to an increase in mechanical characteristics. The images of the LFTPc with
varying concentrations of PP-g-MAH corresponded with the literature review [27,36,40]. It
effectively communicates that the mechanical properties of LFTPc were enhanced through
the enhancement of interfacial adhesion between GF and PP, a result of the incorporation
of PP-g-MAH.

3.4. FTIR Characterization

The spectra of virgin PP and the LFTPc with a varying PP-g-MAH content were exam-
ined at wave numbers ranging between 4000 and 400 cm−1; these spectra are displayed in
Figure 11. The FTIR spectra exhibit consistent peaks at 2949 and 2915 cm−1, corresponding
to aliphatic C-H stretching, and at 1457 and 1375 cm−1, indicating C-H bending, which,
respectively, demonstrate the presence of PP in the LFTPc [34,42–44]. The carbonyl group
(C=O) of the anhydride and the acid groups, respectively, is represented by peaks at 1740
and 1714 cm−1 in the FTIR spectra of the LFTPc with varying concentrations of PP-g-
MAH [44–46]. It is confirmed that maleic anhydride is present in the LFTPc containing
PP-g-MAH. Therefore, the presence of PP-g-MAH in LFTPc improved interfacial adhesion,
as observed in SEM micrographs. This effect was explained by Tselios et al. [47], with
the reaction of MAH groups of PP-g-MAH with the hydroxyl groups of GF. The generated
carboxylic groups have the ability to form hydrogen bonds with the hydroxyl groups on GF.
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of 12 wt%.
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3.5. A Comparison of Properties between LFTPc and Commercial LFT

The mechanical properties were conducted to compare with commercial LFTP at the
same volume fraction of GF, which is 15 wt%, as depicted in Figure 12. The results clearly
demonstrate that the mechanical properties of the LFTPc were better with the addition of PP-
g-MAH. There was an approximate increase of 4.44–17.44% in the tensile modulus values,
42.25–59.26% in the tensile strength values, 9.07–20.72% in the flexural modulus values,
44.19–69.29% in the flexural strength values, and 18.16–50.33% in the impact property
data. While the addition of PP-g-MAH into LFTP led to positive mechanical properties,
exceeding the limit of PP-g-MAH addition will result in a reduction in impact strength,
tensile modulus, and flexural modulus. Furthermore, the cost of PP-g-MAH incorporation
into LFTPcs is taken into consideration. In comparison to the commercial LFTP product,
the mechanical properties of the LFTPc devoid of PP-g-MAH have been found to be inferior.
All mechanical property values in the LFTPc increased to levels that were comparable
to commercial LFTP after PP-g-MAH was incorporated. The LFTPc containing filled PP-
g-MAH component had a slightly greater tensile modulus, tensile strength, and flexural
modulus values than commercial LFTP, by approximately 1–16.76%. The flexural strength
values of the LFTPc incorporating PP-g-MAH content of 8 and 12 wt% were slightly higher
than those of commercial LFTP, by approximately 7.17–10.87%. The impact strength values
of the LFTPc containing a 4 wt% PP-g-MAH content were slightly greater compared to
those of commercial LFTP by approximately 12.36%. Therefore, the LFTPc incorporated
with a concentration of 4 wt% PP-g-MAH was considered optimal for manufacturing LFTP,
as it exhibits nearly equivalent or higher mechanical properties compared to commercial
LFTP. Although the flexural strength value was lower than those of commercial LFTP, it
was only 5.57%.
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4. Conclusions

This study involved the incorporation of PP and GF into LFTP, a material produced
using the thermoplastic pultrusion process. LFTP was incorporated with a varying PP-g-
MAH content through injection molding for the preparation of specimens. The mechanical
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properties of injection specimens were investigated, including tensile, flexural, and impact
tests. The fiber length of LFTPc was measured to confirm the long fiber reinforcement. The
morphology was examined to analyze the interfacial interaction between GF and PP, while
FTIR was employed to study the differences in the chemical structure after incorporating
PP-g-MAH into LFTPc. The study can be summarized as follows:

• Significant improvements were observed in the tensile modulus, flexural modulus, and
impact strength of the LFTPc when an amount of 4 wt% PP-g-MAH was incorporated.
Nevertheless, with the PP-g-MAH concentration exceeding 4 wt%, a decline in these
properties was observed.

• The amount of PP-g-MAH added to LFTPc resulted in increases in both tensile and
flexural strength. The enhanced interfacial bonding between GF and PP, along with
the reduction in fiber pull-out, is the reason for this improvement. Therefore, the
optimal concentration of PP-g-MAH for the LFTPc was found to be 4 wt%. This choice
resulted in mechanical properties nearly equivalent to those of commercial products.

• The fiber length results indicate long fiber reinforcement, as there is a significant
amount of fiber in the range of 3 to 6 mm of fiber length.

This research is significant because it contributes to the advancement of LFTP product
development employing the thermoplastic pultrusion technique. It presents an alternative
approach distinguished by affordable machinery costs and a straightforward process for
LFTP production. In addition, the mechanical properties of LFTP from thermoplastic
pultrusion are nearly equivalent to or higher than those of commercial LFTP. Thermoplastic
pultrusion is an advanced process that should be further developed. In future research,
thermoplastic pultrusion will be used for manufacturing hybrid long fiber pellets to enhance
mechanical properties and improve product performance.
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