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Abstract: Image processing systems can be used to measure the accuracy of 3D-printed objects.
These systems must compare images of the CAD model of the object to be printed with its 3D-
printed counterparts to identify any discrepancies. Consequently, the integrity of the accuracy
measurement process is heavily dependent on the image processing settings chosen. This study
focuses on this issue by developing a customized image processing system. The system generates
binary images of a given CAD model and its 3D-printed counterparts and then compares them
pixel by pixel to determine the accuracy. Users can experiment with various image processing
settings, such as grayscale to binary image conversion threshold, noise reduction parameters, masking
parameters, and pixel-fineness adjustment parameters, to see how they affect accuracy. The study
concludes that the grayscale to binary image conversion threshold has the most significant impact
on accuracy and that the optimal threshold varies depending on the color of the 3D-printed object.
The system can also effectively eliminate noise (filament marks) during image processing, ensuring
accurate measurements. Additionally, the system can measure the accuracy of highly complex porous
structures where the pore size, depth, and distribution are random. The insights gained from this
study can be used to develop intelligent systems for the metrology of additive manufacturing.

Keywords: 3D printing; computer-aided design; metrology; accuracy; image processing; error;
porous structure

1. Introduction

Additive manufacturing, commonly known as 3D printing, fabricates objects by
adding materials layer by layer [1–3]. (The authors use the phrases additive manufacturing
and 3D printing interchangeably in this article.) The remarkable thing is that 3D print-
ing holds great promise in transforming how we design and manufacture products [1,2].
Its unique capabilities provide an array of opportunities to explore innovative design
ideas [1–3]. It has particularly emerged as a highly dependable manufacturing process
for fabricating complex objects, including topologically optimized parts and porous struc-
tures [4–7]. Furthermore, this process has developed a reputation for effectively managing
the production of small-volume, high-variety products. Nevertheless, inaccuracy may
occur in 3D-printed objects due to pre-processing (e.g., file format conversion and slic-
ing), material processing (e.g., shrinkage and temperature variation, filament blockage),
post-processing (e.g., support removal and surface finishing), flaws in the materials (e.g.,
inconsistency in material properties and particle sizes), design issues (e.g., loose shells
and thin walls), and machine structures (e.g., mechanical deformation). Section 2 briefly
describes some relevant studies conducted to manage or eliminate the abovementioned
causes.

The accuracy measurement ecosystem of 3D-printed objects consists of a set of system
components, as schematically illustrated in Figure 1. The description of this ecosystem is
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as follows: First, the CAD model of the object to be printed is sliced using an appropriate
slicing system. This system provides the program to the control system of the 3D printer.
The control system then runs the printer according to the program. Once the printer
completes fabricating the object (printed object in Figure 1) or completes fabricating a
given cross-section, an image acquisition system can be used to obtain the image of the
printed cross-section. The obtained image then undergoes a series of image processing
steps and produces a binary image denoted as a print image. Simultaneously, the target
image generation system operates on the CAD model and produces a binary image of the
desired design cross-section denoted as the target image. Finally, the accuracy elicitation
system compares the print image with the target image pixel by pixel and determines
how much the printed object conforms to the CAD model (see the comparison image in
Figure 1).
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The remarkable thing is that the image processing settings can significantly alter
the print image and, thereby, the measurement results. Consequently, the measurement
integrity relies on whether or not the image processing settings are selected correctly. This
study focuses on this issue using a custom-made image processing system. (See Section 3
for the general description of the system.) The system first produces binary images of
a given CAD model and its 3D-printed counterpart and then compares them pixel by
pixel to quantify the accuracy. While processing the images, a user can select some vital
parameters (e.g., the grayscale to binary image conversion threshold, noise reduction
parameters, masking parameters, and pixel-fineness adjustment parameters). Depending
on the settings of the parameters, the accuracy may vary a lot. Thus, the user must know
which parameter settings alter the accuracy results and to what extent. Finally, the user
can determine the optimal image processing settings, ensuring the integrity of accuracy
measurement.

Based on the above contemplation, this article is written. For the sake of better
understanding, the rest of this article is organized as follows: Section 2 presents a literature
review on the accuracy-checking of 3D-printed objects. Section 3 presents the custom-
made image processing system for investigating the accuracy measurement integrity of
3D-printed objects. Section 4 presents how to select the optimal image processing settings
for relatively simple objects. Section 5 shows how to apply the system for determining the
accuracy of a highly complex 3D-printed object (a porous structure with randomly sized
and distributed pores). Section 6 presents the concluding remarks of this study.
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2. Related Work

This section briefly describes some selected contributions regarding measuring the
accuracy of 3D-printed objects.

Carew et al. [8] studied the accuracy of 3D modeling and 3D printing in forensic
anthropology evidence reconstruction. They found that 3D printing accuracy is lower
for complex parts, regardless of the printing process used, and printing layer resolution
does not significantly affect accuracy, as modeling data resolution is usually higher. Other
authors found similar results (e.g., Edwards et al. [9]). Lee et al. [10] used two different
additive manufacturing processes to create a tooth replica. Depending on the additive man-
ufacturing process, a replica can either shrink or enlarge, and its surface can become rough.
They also found that the replica can be used in real-life applications despite accuracy prob-
lems because the accuracy remains within the stipulated tolerance limits. Leng et al. [11]
developed a quality assurance framework to systematize the accuracy assessment of 3D-
printed anatomic models. They found that three main areas cause inaccuracy: (1) image
data acquisition, (2) segmentation and processing, and (3) 3D printing and cleaning. Both
qualitative inspection and quantitative measurement are needed to assess the accuracy. The
images of the 3D-printed model obtained by a high-resolution CT scanner can be compared
with the original images to facilitate the quantitative measurement. George et al. [12] found
that validated workflows improve 3D printing accuracy. However, software performance
and manual adjustments can cause inaccuracies, impacting reproducibility. Any modifi-
cation in workflows must be stepwise, with the help of STL dataset comparison metrics.
New measurement methods are needed to achieve better results in evaluating the accuracy
of 3D-printed medical models. Bortolotto et al. [13] employed a low-budget workflow
consisting of 64-slice computed tomography (CT), three pieces of free and open-source
software, and a commercially available 3D printer. They measured 3D-printed replicas
and original objects using high-precision digital calipers and found that the dimensional
inaccuracy is about 0.23 mm (0.055%), which is acceptable for medical applications. Herpel
et al. [14] fabricated try-in dentures using milling (a subtractive manufacturing process)
and 3D printing. The 3D printing was carried out at five facilities. Though the 3D-printed
try-in dentures qualify for real-life application, they are less accurate than those produced
by milling. Cai et al. [15] introduced the concept of residual STL volume as a metric to
evaluate the accuracy and reproducibility of 3D-printed anatomic models. They applied
the evaluation to maxillofacial bone and enhanced the accuracy of the 3D-printed structure.
Kim et al. [16] studied the accuracy of a simplified 3D-printed implant for surgical guidance.
They printed the same implant using three different additive manufacturing processes,
namely photopolymer jetting (PolyJet), stereolithography apparatus (SLA), and multi-jet
printing (MJP). They found that PolyJet and SLA can meet the required accuracy for clinical
applications. Kwon et al. [17] studied the accuracy of a 3D-printed patient-specific implant.
The shape datasets were extracted from CT images. The implants were fabricated using a
3D printer that uses photo-resin (curable under ultraviolet rays) with 0.032 mm resolution.
In order to evaluate the accuracy, the implants were scanned using a micro-CT scanner, and
the length and depth of the press-compressed and decompressed implants were compared
using a Bland–Altman plot. The average differences in length were 0.67 mm ± 0.38 mm,
0.63 mm ± 0.28 mm, and 0.10 mm ± 0.10 mm. The average differences in depth were
0.64 mm ± 0.37 mm, 1.22 mm ± 0.56 mm, and 0.57 mm ± 0.23 mm, respectively. Yuan
et al. [18] also obtained a similar degree of accuracy for the 3D-printed dental implants.
Borgue et al. [19] considered that imperfections in material properties can lead to errors in
3D printing. They developed a fuzzy-logic-based approach for design for AM to manage
uncertainties in material properties while meeting the quality standards of 3D-printed
objects. Holzmond and Li [20] developed a system that detects two common 3D printing
errors: filament blockages and low flow. They used a digital image correlation system
to compare the point cloud captured from the printer-head movement program (g-code)
and the point cloud of a printed surface in real time. Li et al. [21] considered that machine
structure is the main cause of the error and developed an analytical model of the structure
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of a given 3D printer to elucidate the printing error. Yu et al. [22] developed an image-
processing-based approach to enhance the accuracy of 3D-printed microchannels. Using
laser curing technology, they successfully modulated the optical proximity effect of curing
light transmission and eliminated channel blockage and shape distortion while printing
small-diameter channels. They used the local greyscale of the projection image as the 3D
printing continued. Montgomery et al. [23] studied pixel-level grayscale manipulation to
improve the accuracy of 3D printing based on digital light processing. They first printed an
object according to the 2D binary image of the object. The grayscale image of the printed
object was processed to create printing data (a relatively smooth contour). The processed
information was used to print the same object with high accuracy. The method developed
provided pixel-level grayscale control to create smooth features from sharp pixels. Ma
et al. [24] developed an image-processing-based method for measuring the accuracy of
layer-wise 3D food printing and identified the bottleneck (under- or over-extrusion). They
first took a top-view image of the printed object (cookie), projected it on a vertical plane,
and cropped it before it was segmented from its background using Ostu’s automatic thresh-
olding method [25]. They also converted the printer-head paths of each layer into a binary
image. The image produced from printer-head paths and the image of the printed object
were compared to quantify the accuracy. Vidakis et al. [26] developed a method that uses
micro-computed tomography (micro-CT) images of 3D-printed objects to elucidate the
dimensional and shape accuracies. They, however, did not show how the images were
processed and compared. Eltes et al. [27] developed an image-processing-based accuracy-
checking method for 3D-printed biomedical objects. They created surface meshes of the
3D-printed object using 3D scanning and compared them with the targeted surface meshes
from CT scan images. The comparison was conducted using Hausdorff Distance (HD).
Nguyen et al. [28] and others, e.g., see reference [29], developed a method to generate a
model of a biomedical object processing sliced images from CT-scan data. The model was
fabricated using 3D printers, and the CT-scan data of the printed object were obtained to
check the accuracy. The details of the comparison mechanism that quantifies the accuracy
were not presented. Xia et al. [30] developed an image acquisition and processing tech-
nique using a flatbed scanner to evaluate the shape accuracy of 3D-printed objects. The
algorithms were formulated to extract useful shape information from the scanned images
without human intervention. The centroid distance function and a root mean square error
color map were used to visualize the inaccuracy effectively.

In synopsis, inaccuracy may occur in 3D-printed objects due to pre-processing (e.g.,
file format conversion and slicing), material processing (e.g., shrinkage and temperature
variation, filament blockage), post-processing (e.g., support removal and surface finishing),
flaws in the materials (e.g., inconsistency in material properties and particle sizes), design
issues (e.g., loose shells and thin walls), and machine structures (e.g., mechanical deforma-
tion). Irrespective of the causes of inaccuracy, image processing is an effective means to
measure the inaccuracy.

3. Proposed Image Processing System

As described in the previous section, the image of the target (or design) object and
the image of the printed object are two valuable pieces of information by which one
can guarantee whether or not the 3D-printed object is reliable. The real-time or offline
comparison of these two types of images can provide valuable insights into the underlying
manufacturing process and how to improve it. On the one hand, the target or design image
can be created from the CAD model in STL format [3–5]. On the other hand, the image
of the printed object can be created by applying some image processing techniques (e.g.,
converting a raw image to a grayscale image, converting a grayscale image to a binary
image, removing noises from an image, masking and rescaling an image). To ensure the
integrity of the accurate measurement results, it would be beneficial to develop a specialized
image processing system that can examine how different image processing settings impact
accuracy. This system could provide valuable insights into the extent of these effects and
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help improve the accuracy of measurements in various applications. This section presents
a custom-made image processing system that can fulfill the abovementioned measurement
needs. In particular, this section presents the working principle, user interfaces, and
performances of the proposed custom-made image processing system. The previous
versions of the system can be found in references [31,32].

First, consider the working principle of the image processing system, as schematically
illustrated in Figure 2. The left-hand side illustrations in Figure 2 show how the image
processing system interacts with the data acquisition and CAD systems. The other side
shows how the system processes images for the sake of comparison.
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As seen in Figure 2, a 3D printer operates using the STL data collected from a CAD
model. After the printing operation, the printed object is collected. An imaging system (e.g.,
a microscope) can collect the image of the cross-section of the printed object. The image
processing system acknowledges the raw image of the printed object as the original image.
The system also acknowledges the STL data of the CAD model. The system generates the
binary image of a given cross-section using the CAD model, denoted as the design image.
The system processes the original image and produces a grayscale image using the user-
defined values of RGB. The system then converts the grayscale image into a binary image
using the user-defined threshold value. Afterward, the system removes the noise from the
binary image using the user-defined values of the noise parameters and produces a noise-
removed image. The system then applies a user-defined masking operation and produces
the masked image. Finally, the design image is compared with the masked image, resulting
in a comparison image. The comparison image is represented by pixels of four colors: black,
white, violet, and yellow. Note that processes of obtaining a binary image, noise-removed
image, and masked image can be reshuffled. For example, one can produce the masked
image first before producing a noise-removed image. In that case, the noise-removed image
is compared with the design image. For the sake of comparison, the resolution of the design
image can be adjusted to the resolution of the masked, noise-removed, or binary image.

Let B, W, V, and Y denote black, white, violet, and yellow pixels, respectively. Let
PD(i,j), PM(i,j), and PC(i,j), i = 1, 2, . . ., N, j = 1, 2, . . ., M, denote arbitrary pixels in the design
image, masked/noise-removed/binary image, and comparison image, respectively. As
such, PD(i,j) ∈ {B, W}, PM(i,j) ∈ {B, W}, and PC(i,j) ∈ {B, W, V, Y}. The following rules are
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maintained while generating a comparison image by comparing a design image with the
masked, noise-removed, or binary image:

(PD(i, j) = PM(i, j) = B) → PC(i, j) = B (1)

(PD(i, j) = PM(i, j) = W) → PC(i, j) = W (2)(
(PD(i, j) = B)

∧
(PM(i, j) = W)

)
→ PC(i, j) = Y (3)(

(PD(i, j) = W)
∧
(PM(i, j) = B)

)
→ PC(i, j) = V (4)

Thus, violet or yellow pixels represent errors in a printing process, and minimizing
the number of such pixels can lead to better quality outcomes. Consequently, printing error
denoted as E can be expressed as follows:

E =

(
YN + VN

TN

)
100% (5)

In Equation (5), YN and VN denote the numbers of yellow and violet pixels in the
comparison image, respectively, and TN denotes the total number of pixels in the same
image.

User Interfaces

Based on the image processing system’s outline described above, a system is devel-
oped. This sub-section presents the user interfaces of the developed systems. The system
consists of five independent components denoted as follows: (1) grayscale–binary interface,
(2) noise-removal interface, (3) masking–scaling interface, (4) target interface, and (5) com-
parison interface. The grayscale–binary interface, as shown in Figure 3, lets a user input an
original image of a cross-section of a 3D-printed object. The user then sets the R, G, and B
weights to convert the original image to a grayscale image. The user subsequently sets a
value of the threshold (an integer in the interval (0, 255)) to obtain a binary image from the
grayscale image. The interface displays the results. The user can save the grayscale and
binary images in a preferred directory.
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Using the noise-removal interface, as shown in Figure 4, a user can remove noises
from a given binary image. The sources of noise are mostly the marks of the filaments and
other irregularities on a given cross-section of the printed object. There are four parameters
that help remove noises. The first two parameters are denoted as θmin and θmax (i.e., angles
in degrees). They collectively set the orientation of the noises (i.e., the slopes of the noises)
on the binary image. The other two parameters are critical spot size (pc) and critical spot
length (wc). The units of these two parameters are pixels. The arbitrary case shown in
Figure 4 corresponds to θmin = 0◦ and θmax = 50◦, pc = 300 pixels, and wc = 100 pixels. As
such, the system removes black spots whose size is less than or equal to 300 pixels, whose
length is less than or equal to 100 pixels, and whose slope, in terms of an angle measured
in degrees in the anticlockwise direction of the length, belongs to the angular range of
[0◦, 50◦]. Note that the user can select black or white sports as noises. In the case shown
in Figure 4, the user selects black spots as noises, which is the obvious thing to do. The
interface displays the images before and after noise removal operations. The user can save
the images in a preferred directory.
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As shown in Figure 5, the masking–scaling interface is used to mask the unnecessary
segment of a given binary image, preferably after removing the noises. In this interface, the
size of the masked image is rescaled so that the pixel size of the design image (described
below) matches that of the masked image. The case shown in Figure 5 presents a user
cropping an image using a rectangular boundary so that it takes the size of the design
image and the scale of the pixel matches that of the design image. The interface displays
the images before and after masking and scaling operations. The user can save the images
in a preferred directory.

As shown in Figure 6, the target interface creates a binary image of a given cross-
section of the design. For this, the interface allows a user to input the STL data of the 3D
CAD model (the design) of the object to be fabricated using a 3D printer. The user then
inputs the height of the cross-section to produce the binary image. The interface displays
the image. The user can save the image in a preferred directory.
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Finally, Figure 7 shows the comparison interface. In this interface, the user inputs
the design image (i.e., the image created by the target interface, as shown in Figure 6)
and the binary/noise-removed/masked image for comparison. The interface displays
the comparison image with the four-color scheme described above. The interface helps
the user save the comparison image in a preferred directory. The interface also displays
error-related datasets (YN, VN, TN, and other relevant statistics).
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Figure 7. Comparison interface.

As mentioned earlier, the comparison image displays the errors in the 3D-printed
object. Since it is produced by comparing it with a binary, noise-removed, or masked
image, careful consideration is required when setting the parameters relevant to binary,
noise-removed, and masked images. In particular, the settings of the threshold related to
the binary image production process and the four parameters related to the noise removal
process need careful consideration. See the arbitrary cases shown in Figures 8 and 9 for
a better understanding. Figure 8 shows the original images of two objects printed in two
different colors, green (a relatively dark color) and orange color (a relatively bright color).
Both objects are printed using the same design (CAD model). The printing conditions for
both objects are shown in Table 1.
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Table 1. Printing conditions.

Items Descriptions

Material Thermoplastic Filament Made of Poly-Lactic Acid
(PLA)

Printing technology Fused Filament Fabrication (FFF)

Extrusion width [mm] 0.4

Extruder temperature [◦C] 205

Printing speed [mm/s] 50.0

Infill speed [mm/s] 80.0

Layer height [mm] 0.25

Infill density [%] 15

Infill pattern Grid

Infill angles [◦] 45, 135

Printer Raise3D Pro2™ (Irvine, CA, USA)

From the greyscale images (not shown in Figure 8) of the original images, binary
images are produced with the thresholds set at 100 and 150, respectively. For the orange
object, both thresholds keep the information of the object. On the other hand, for the green
image, both thresholds almost destroy the information of the object, with 150 being the
worst. Consequently, a smaller threshold is preferable for dark colors, whereas a higher
threshold is better for bright colors.

Figure 9 shows the effect of the settings of the parameters related to noise removal, i.e.,
two angles (θmin and θmax) and two sizes (pc and wc). As described before, the two angles
collectively set the range of slopes within which the noises should be removed. Meanwhile,
pc and wc set the critical spot (i.e., noise) size and length in terms of number of pixels. If
the number of pixels of a spot is greater than pc, this spot will not be removed during the
noise removal process. The same argument is true for wc. Figure 9 shows four different
settings of θmin, θmax, pc, and wc, denoted as P1, P2, P3, and P4. The settings denoted as P1
remove a noise that consists of 200 pixels or less, has a length of 100 pixels or less, and can
be oriented in any direction. Compared to P1, P2 puts a tight restriction on the orientation
of a spot. Compared to P1, P3 puts less restriction on the sizes of a spot. Compared to P1,
P4 puts a tight restriction on both the orientation and size. Comparing the images after
applying the noise removal process, as shown in Figure 9, reveals that a less restrictive
orientation of noise and a moderate noise size (corresponding to P1) can effectively remove
noise, while other settings (P2, P3, and P4) may not yield the desired results.
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4. Accuracy of a Simple 3D-Printed Object

This section presents a case study where the accuracy is estimated by comparing the
design shown in Figure 6 with its 3D-printed counterparts shown in Figure 8. For better
understanding, the first half of this section presents the results related to thresholds, and
the other half presents results related to noise removal.

First, consider the results related to thresholds. In this case, binary images are pro-
duced for thresholds 10, 20, . . ., 250 for both orange and green objects (Figure 8). Afterward,
noises are removed using the same settings (θmin = 0◦, θmax = 180◦, pc = 200, and wc = 100).
The noise-removed images are then processed as described in Section 3 to produce the
masked images. The masked images are then compared with the design image (Figure 6)
to produce the comparison images. Figure 10 shows four selected screen-prints of the
comparison interface. As seen in Figure 10, the corresponding design image (see Figure 6)
is compared with the masked images of the orange and green objects. The left-hand-side
masked images correspond to threshold 40, whereas the right-hand-side images correspond
to threshold 100.
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However, Figure 11 shows the images of the orange object to be compared with the
design image for thresholds 10, 20, . . ., 250. As shown in Figure 11, for the thresholds 10
and 20, the images consist of white pixels only. With the increase in the threshold, the black
pixels increase, and for thresholds 210 and above, the images consist of black pixels only.
Figure 12 shows the comparison images corresponding to the images in Figure 11. As seen
in Figure 12, yellow pixels decrease with the increase in the threshold, and violet pixels
increase with the increase in the threshold.

On the other hand, Figure 13 shows the images of the green object to be compared with
the design image for thresholds 10, 20, . . ., 250. As shown in Figure 13, from threshold 70,
black pixels start to dominate the images, and at threshold 130 and above, the images
consist of black pixels only. Figure 14 shows the comparison images corresponding to the
images in Figure 13. As seen in Figure 14, yellow pixels are rare, and the violet pixels
increase with the increase in the threshold.
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The errors are calculated by Equation (5) using the comparison images shown in
Figures 12 and 14. The results are plotted in Figure 15. Figure 15a slows the overall trend
in error, and Figure 15b shows the error trend for some selected thresholds. The green
object’s error is calculated for thresholds 70, 75, . . ., 95, whereas the orange object’s error is
calculated for thresholds 140, 145, . . ., 165. The comparison images for thresholds 75, 85, 95,
145, 155, and 165 are not shown in Figures 12 and 14, though others are shown. As seen
in Figure 15, the orange object’s error starts to decrease from threshold 30 and becomes
minimal at around threshold 160. The minimal error is 2.161%. On the other hand, the
error slowly decreases for the green object starting from threshold 10. This decreasing trend
continues up to threshold 85. Afterward, the error increases sharply with the increase in
the threshold. The minimal error here is slightly less than that of the orange object, which
is 1.953%. Both objects exhibit the same error (around 50%) for very high thresholds. When
the comparison image is either fully white or black, the expected error is about 50% because
the design image consists of almost the same amount of black and white pixels. The plot
in Figure 15a also exhibits the same result; for the white images (the first two images in
Figure 12), the error is about 50%; for the fully black images (the last few images in both
Figures 12 and 14), the error is about 50%. Thus, the image processing system presented in
this study produces reliable results.
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What if the noise removal conditions are varied at the optimal threshold? In order
to answer this question, nine sets of noise removal conditions denoted as 1, . . ., 9 are
considered for each object, as shown in Table 2. The conditions consider a constant threshold
equal to the optimal threshold for each object (green or orange). The results are summarized
in a plot, as shown in Figure 16. As seen in Figure 16, the error increases slightly when the
noise orientation parameters are kept somewhat tight. When noise orientation parameters
are kept wider, the error remains minimal and is not affected by parameters of noise size
shown in see Table 2.
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for selected thresholds.
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Table 2. Nine sets of conditions for the error analysis.

Conditions θmin
[◦]

θmax
[◦]

pc
[Pixels]

wc
[Pixels] Thresholds

1

0

45
100 50

For the orange object
160

For the green object
85

2 200 100

3 500 250

4
90

100 50

5 200 100

6 500 250

7
180

100 50

8 200 100

9 500 250

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 15 of 22 
 

 

  
(a) (b) 

Figure 15. Error estimation for the orange and green objects. (a) Overall error trend. (b) Error trend 
for selected thresholds. 

What if the noise removal conditions are varied at the optimal threshold? In order to 
answer this question, nine sets of noise removal conditions denoted as 1, …, 9 are consid-
ered for each object, as shown in Table 2. The conditions consider a constant threshold 
equal to the optimal threshold for each object (green or orange). The results are summa-
rized in a plot, as shown in Figure 16. As seen in Figure 16, the error increases slightly 
when the noise orientation parameters are kept somewhat tight. When noise orientation 
parameters are kept wider, the error remains minimal and is not affected by parameters 
of noise size shown in see Table 2. 

 
Figure 16. Variability in the error due to different noise removal settings. 

Table 2. Nine sets of conditions for the error analysis. 

Conditions 
θmin 

[°] 
θmax 
[°] 

pc 
[pixels] 

wc 
[pixels] Thresholds 

1 

0 

45 

100 50 

For the orange object 
160 

For the green object 
85 

2 200 100 

3 500 250 

4 
90 

100 50 

5 200 100 

Thresholds
E 

[%
]

0 50 100 150 200 250
0

10

20
30

40

50
60

70

Bright(Orange)
Dark(Green)

Thresholds

E 
[%

]

70 90 110 130 150 170
0

1

2

3

4

5
Bright(Orange)
Dark(Green)

Conditions

E 
[%

]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Orange
Green

Figure 16. Variability in the error due to different noise removal settings.

In synopsis, if the underlying 3D printing operations remain normal, then approx-
imately 3% error can be expected from the proposed image-processing-based accuracy
measurement method, provided that the optimal threshold for the given color, wider noise
orientation, and moderate noise sizes are selected. The threshold significantly impacts the
error estimation process compared to other parameters.

5. Accuracy of a 3D-Printed Porous Structure (Complex Object)

As mentioned before, 3D printing has revolutionized the process of fabricating com-
plex objects such as topologically optimized structures and porous structures, paving the
way for innovative solutions in various fields and industries [4–7]. Unlike simple objects,
complex objects may consist of loose shells, thin walls, and other difficult-to-fabricate
features, resulting in sustainable inaccuracy [31,32]. Thus, measuring the accuracy of 3D-
printed complex objects has become a critical issue. This section uses the presented image
processing system to determine the accuracy of a complex object, i.e., a porous structure
consisting of randomly sized and distributed pores.

Figure 17 shows the CAD model and 3D-printed counterpart of the porous specimen
used in this study. In particular, Figure 17a shows a triangulation view of the CAD model
of the porous specimen. Figure 17b shows an orthogonal view of a CAD model of the
porous specimen. Figure 17c shows a picture of a 3D-printed counterpart of the porous
specimen. As seen in Figure 17, the specimen is a rectangular prism with randomly sized
and distributed pores. It is designed using the system shown in [5]. The outer dimensions
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of the structure are 30 mm × 30 mm × 30 mm. It is printed using the specifications shown
in Table 1, except for the infill-related parameters. This time, the infill rate is kept at 100%.
As a result, the infill pattern and infill angle are not relevant here. The filament color is
orange. The printing process is interrupted at heights 1 mm, 5 mm, 10 mm, 15 mm, 20 mm,
and 25 mm to take images of the cross-section of the printed object at 1 mm, 5 mm, 10 mm,
15 mm, 20 mm, and 25 mm. The images are shown in Figure 18. As seen in Figure 18, the
structure exhibits highly complex pores at each height, and complexity differs from one
height to another. The images shown in Figure 18 are processed to measure the accuracy
of the porous specimen. The results are summarized in Figure 19. Figure 19a shows the
original images of the specimen at heights 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, and
25 mm, which are already shown in Figure 18. These images are processed using the
presented system. The optimal image processing settings for an orange-colored object
described in the previous section are used to obtain the binary images for comparison. The
resulting images of the printed specimen for comparison are shown in Figure 19b. The
CAD model (Figure 17) of the specimen is processed at heights 1 mm, 5 mm, 10 mm, 15 mm,
20 mm, and 25 mm to produce the design images for comparison, as shown in Figure 19c.
The respective comparison images are shown in Figure 19d. The errors exhibited by the
comparison images are summarized in Table 3. This time, the minimal error is 3.85%, which
corresponds to a height of 1 mm. The maximum error is 10.89%, which corresponds to
a height of 10 mm. The average error is 8.695%, and the standard deviation is 2.803%. It
means that the printing error increased three times due to the complexity of the design
compared to that of the simple design. Note that for heights 10 mm, 15 mm, and 20 mm,
the noises on the boundaries could not be removed properly. These remaining noises are
the cause of the high values of noise for these heights. The error could have been much
smaller if the noise had been removed properly.
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device? Exploring this possibility is a valid option. Therefore, the following case study is
conducted.
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Figure 20a shows images of the cross-sections on the planes x-y, y-z, and z-x of the
CAD model of the specimen. The image of the cross-sections on the x-y plane corresponds
to z = 15 mm. On the other hand, Figure 20b shows images of the cross-section on the
planes x-y, y-z, and z-x of the printed specimen (Figure 17c). The cross-section image
on the x-y plane corresponds to z = 15 mm. The images are obtained using a micro-CT
scanning device. The presented image processing system can process micro-CT scans of
specimen cross-sections. Accordingly, Figure 21 shows the results. Figure 21a shows the
images of the specimen at heights 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, and 25 mm. The
images are obtained by scanning the specimen (Figure 17c) using a micro-CT scanning
device. These images are processed using the presented system. Since color is not an issue
here, the images are processed using the presented image processing devices where the
settings are as follows: threshold = 100, θmin = 0◦, θmax = 180◦, pc = 40, and wc = 20. The
resulting images of the printed specimen for comparison are shown in Figure 21b. The CAD
model (Figure 17a,b) of the specimen is processed at heights 1 mm, 5 mm, 10 mm, 15 mm,
20 mm, and 25 mm to produce the design images, as shown in Figure 21c. The respective
comparison images are shown in Figure 21d. The errors exhibited by the comparison
images are summarized in Table 4. This time, the minimal, maximal, and average errors
are 2.18%, 4.06%, and 3.22%, respectively, and the standard deviation is 0.655%. This time,
the noise removal process works properly for all cross-section images, resulting in smaller
errors.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 19 of 22 
 

 

  

(a) (b) 

Figure 20. Images of the porous structure on different orthogonal planes. (a) Cross-sections of the 
CAD model of the specimen. (b) Cross-sections of the printed specimen obtained by micro-CT scan. 

Heights [mm] 
1 5 10 15 20 25 

      
(a) 

      
(b) 

      
(c) 

      
(d) 

Figure 21. Accuracy assessment using micro-CT-scan-driven images of the specimen. (a) Micro-CT 
scan-driven images of the specimen at different heights. (b) Processed images of the specimen for 
comparison. (c) Design images. (d) Comparison images. 
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Table 4. Micro-CT-driven accuracy estimation at different layers of the porous structure.

Height [mm] 1 5 10 15 20 25

E [%] 2.86 3.55 4.06 3.55 2.18 3.12

In synopsis, images obtained from micro-CT scans provide more realistic results for
complex structures. For micro-CT scans, the color of the printed image is not a problem;
the same optimal image processing settings can be used for different colors of the printed
objects.
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Figure 21. Accuracy assessment using micro-CT-scan-driven images of the specimen. (a) Micro-CT
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6. Concluding Remarks

This article presents a custom-made image processing system. The system can generate
binary images of a given CAD model. In addition, it can generate images of the CAD
model’s 3D-printed counterparts. Moreover, it can compare these two types of images pixel
by pixel to confirm whether or not the 3D-printed objects comply with the CAD model.

Using the system, a user can see how the accuracy varies due to the image process-
ing settings such as the grayscale to binary image conversion threshold, noise reduction
parameters, masking parameters, and pixel-fineness adjustment parameters.

It is found that the grayscale to binary image conversion threshold affects the accuracy
most. In addition, the optimal threshold depends on the color of the 3D-printed object.
Control over noise elimination during image processing (e.g., removing marks of the
filaments on a given cross-section of a 3D-printed object) makes accuracy-checking more
reliable.

The presented system can reliably measure the accuracy of not only 3D-printed ob-
jects with simple geometry but also 3D-printed objects with complex geometry (porous
structures with random pore size, distribution, and depth). This was confirmed by the
performance of case studies.

A simple object can exhibit an error of approximately 3%, even though visual inspec-
tion reveals that there is apparently no error in the 3D-printed object compared to its CAD
model. A complex object can exhibit an error of approximately 10%, even though visual
inspection reveals that the 3D-printed object has slight or no error compared to its CAD
model; the error can decrease to approximately 2% when the presented system processes
micro-CT scans and compares them with the images of the CAD model.
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By leveraging the outcomes of this study, more pragmatic systems for the metrology
of additive manufacturing can be developed.
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