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Abstract: Low drug loading and high initial burst release are common drawbacks for most poly-
meric nanocarriers in their biomedical applications. This review emphasizes the use of unconven-
tional carbonaceous nanocomposites as functional carriers to improve the drug loading capacity
and their capability of protecting drugs from the surrounding environment. The unique proper-
ties of typical carbonaceous nanocarriers, including nanotube, graphene/graphite, fullerene, and
nanodiamonds/diamond-like carbon, are presented. Advanced methods for the surface functional-
ization of carbonaceous nanocarriers are described, followed by a summary of the most appealing
demonstrations for their efficient drug loading and sustained release in vitro or in vivo. The funda-
mental drug delivery concepts based on controlling mechanisms, such as targeting and stimulation
with pH, chemical interactions, and photothermal induction, are discussed. Additionally, the chal-
lenges involved in the full utilization of carbonaceous nanocomposites are described, along with the
future perspectives of their use for enhanced drug delivery. Finally, despite its recent emergence
as a drug carrier, carbon-based nanocellulose has been viewed as another promising candidate. Its
structural geometry and unique application in the biomedical field are particularly discussed. This
paper, for the first time, taxonomizes nanocellulose as a carbon-based carrier and compares its drug
delivery capacities with other nanocarbons. The outcome of this review is expected to open up new
horizons of carbonaceous nanocomposites to inspire broader interests across multiple disciplines.

Keywords: carbonaceous nanocomposites; biomedical application; high drug loading; sustained
release; surface functionalization; carbon-based nanocellulose

1. Introduction

Most of the existing polymeric nanocarriers possess low drug loading capacity (gener-
ally less than 10%) towards biomedical applications [1]. This will lead to repeated drug
administration and high treatment costs. Correspondingly, the side effects of the drug
would be multiplied and may cause permanent health damage, or even life-threatening
syndromes. Therefore, drug loading efficiency remains an essential component in the de-
sign of drug carriers. The short circulation half-life of these polymeric nanocarriers causes
their faster elimination via opsonization by phagocytes inside the human body, which
substantially constrains their application for sustained drug delivery [2]. As a solution to
these problems, carbonaceous nanocomposites have emerged as a booming technique in
the biomedical field to enhance the drug loading/release capacity.

Carbonaceous nanocomposites refer to a family of functional composites made up
of carbon nanomaterials, which can be used in a broad range of applications due to their
unique physical–chemical properties. As for the purpose of drug delivery, the internal
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structure, morphology, and surface chemistry of carbon nanoparticles are the key factors
that greatly affect their reaction with drugs. Typical carbonaceous nanocomposites possess a
network structure of ordered nanochannels and high surface area, which allow more drugs
to be loaded with a faster adsorption rate. Numerous works have been documented in the
literature which demonstrate the function of these mesoporous carbonaceous materials in
serving as carriers for sustained and high-loading drug delivery [3–6].

Among all the active carbonaceous carriers, nanotube, graphene/graphite, fullerene,
and nanodiamonds/diamond-like carbon are the most extensively studied for drug deliv-
ery, largely due to their tunable physicochemical properties and facile surface functionaliza-
tion [7]. Shown in Figure 1 are the schematic structures of various carbonaceous derivatives,
which are formulated in different dimensions. More recently, the biomass-based renewable
carbon nanocellulose has also been proposed as an advanced carrier for drug loading due
to its extraordinary geometry and superb biocompatibility. In this review, we present an
overview of recent advances in these carbonaceous nanocomposites for their drug delivery
use. The critical issues that need to be addressed for the full utilization of carbonaceous
nanocomposites in biomedical fields are discussed as well.
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carbonaceous derivatives including diamond [8].
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2. Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) have been widely used as functional carrier vectors with
high loading capacity for sustained drug delivery. CNTs are cylinder-shaped allotropes
of carbon, which can be categorized into two major genres, single-walled carbon nan-
otubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), based on the number
of concentric layers and wrapping mode. SWCNTs are present in stiff, rod-like tubes due
to the increased van der Waals force, resulting from their nano-scaled diameter (internal
diameter of approximately 1 nm) and high surface area (theoretically estimated between
50 and 1315 m2/g), which have enhanced loading capability. A previous study revealed
the poly(ethylene glycol) (PEG) functionalized SWNTs could load as high as 400% of dox-
orubicin (DOX) by weight [9]. In contrast to SWCNTs, MWCNTs have a larger internal
diameter of 5–20 nm with a curly and agglomerated structure. They are partially dispersible
in water, and can form translucent dispersions, whereas SWCNTs are mostly insoluble
and prone to aggregate in an aqueous environment. Both SWCNTs and MWCNTs have
high propensity towards functional modification, which can further strengthen their drug
loading and releasing capability. In general, MWCNTs are relatively superior to SWCNTs,
as MWCNTs are cheaper to produce on a large scale, thus being more financially favorable
for the drug delivery industry.

Since CNTs have a pre-formed supramolecular tube structure, the drugs can be loaded
by CNTs through two approaches. The first approach is the capillarity-induced filling
into the interior of CNTs. This mechanism is simple but the loadable amount of drugs
is relatively low (below 5% (w/w)) [10]. The second approach is direct surface loading of
drugs on CNTs via either possible covalent bonding or noncovalent interactions such as
van der Waals contacts, hydrogen bonding, and π–π staking. However, covalent bonding
is less favorable, since a minor alteration in a drug’s molecular structure may change its
effectiveness. For noncovalent adsorption, the aromatic ring on the surface of CNTs allows
hydrophobic interactions to occur towards various drugs. This would especially favor
most of the small-molecule drugs that contain flat benzene ring structures, and significantly
improve their delivery efficiency. For instance, one investigation demonstrated that the
loading capacity of aspirin could reach high as 48 wt % by suspending the functionalized
MWCNTs in alcohol [11]. On the other hand, for certain drugs with a bulky structure,
e.g., paclitaxel (PTX), their absorption is limited due to the lack of space on the surface of
CNTs. Moreover, the resulting formulation is relatively unstable and the drugs adsorbed
on the exterior of CNTs are more easily detached. One probable solution is to modify the
surface of CNTs by incorporating hydrophilic or amphiphilic polymers to form micelles for
encapsulating the drugs. These pre-functionalized polymer CNTs can provide expanded
surface space, which would facilitate the molecular conjugation with bulk-volumed drugs
and ligands. Shao et al. conjugated SWCNTs with a long-chain lipid docosanol molecule
for the loading of PTX. A significant improvement of drug efficacy was achieved for both
in vitro (78.5% for loaded drug vs. 31.6 for free drug, p < 0.01) and in vivo analysis using a
human breast cancer xenograft mice model [12]. The formulated SWNTs-lipid-PTX was
found to be non-toxic based on the test results of blood sampling and histological evaluation
of major organs, though the raw CNTs have shown evident cytotoxicity. This would not
only improve the biocompatibility of CNTs, but also favor the sustained release of drugs
which are shielded by the three-dimensional polymeric space on the side walls of CNTs.
Furthermore, after conjugating with the targeted drugs, the remaining surface sites of
polymer CNTs are still free for linking to other functionalities, e.g., antibodies, fluorescence
molecules, or even different type of drugs, for the purpose of multifunctional delivery [12].
A typical practice in this regard is to incorporate an additional anchoring moiety onto the
drug-loaded nanoparticles, which can guide and tailor the drugs to a specific lesion [13].

Noticeably, many widely used antineoplastic chemotherapy drugs, such as DOX, cis-
platin, and anthracyclines, require direct transportation into the nucleus. This is due to the
nature of these drugs which are deoxyribonucleic acid (DNA) toxins and can generate free
radicals to initiate apoptosis by inhibiting topoisomerase II. Therefore, a nuclear delivery
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mode should be applied, and CNTs are particularly promising in this aspect because of
their exceptional interaction mechanism with cellular membranes; they can penetrate the
mammalian cell membrane via cytoplasmic translocation. This unique feature would poten-
tially allow CNTs to directly deliver anticancer drugs into the targeted nucleus, instead of
indirectly releasing the drugs in cytoplasm or lysosomes. However, the sidewall of CNTs is
hydrophobic, which usually needs further chemical functionalization to improve the affin-
ity with drugs and increase the in vivo aqueous solubility and biocompatibility of CNTs.
Both covalent and non-covalent approaches have been conducted via the modification of
different surface groups of CNTs, and their schemes are shown in Figure 2 [14].
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As a representative example, Liu et al. conjugated PEG-SWNTs with a cyclic arginine–
glycine–aspartic acid (RGD) peptide. Efficient accumulation of the resulting SWNT compos-
ites at tumors was achieved in mice [15]. Pantarotto et al. studied the nuclear accumulation
behavior of MWCNT nanocomposites, and revealed the ability of peptide-conjugated
MWCNTs to penetrate the nuclear membrane [16]. This gives CNT nanocomposites po-
tential to improve the cancer treatment modalities by minimizing the adverse effects of
their delivered drugs. In fact, many trials have already been successfully conducted on
the uptake of CNT nanocomposites as anticancer therapy. Tsai et al. synthesized a novel
diblock polyglycolic acid (PGA)–co-heparin-conjugated MWCNT for improving the load-
ing of DOX [17]. The hydrophilic heparin was selected not only due to its high nucleus
sensitivity, but also because of its capacity to form an amphiphilic copolymer with PGA
(PGA-Hep) to promote the dispersion of MWCNTs in fluid. This newly generated MWCNT
nanocomposite is able to efficiently encapsulate the hydrophobic drugs via π–π stacking
interactions, followed by targeted drug release into the nucleus of HeLa cells. Heister
et al. also designed a stable drug delivery system based on CNTs-PEG composites for
effectively loading DOX and mitoxantrone, which featured sustained drug release and
high selectivity against cancer cells [18]. After incubation for 72 h, 44% of DOX and 55%
of mitoxantrone were released at pH 5.5, while at pH 7.4, only 7% of DOX and 8% of
mitoxantrone were released.

3. Graphene/Graphite

Graphite is a naturally occurring allotrope of carbon. It can be formed via the reduction
of sedimentary carbon during metamorphism. Graphene, on the other hand, is one single
layer of graphite composed of sp2-hybridized carbon atoms arranged in a honeycomb or
hexagonal lattice. It has a two-dimensional structure with delocalized π electrons on the
aromatic rings, which can load drugs via π–π stacking and electrostatic interactions [19].
Recently, both graphene and its derivatives have been explored as new and competitive
nanocarriers for the delivery of therapeutic agents due to their intriguing physicochemical
properties. Particularly, the excellent bio-functionalizability, selectivity, and solubility have
largely expanded their applications in drug delivery, as well as other biomedical-related
areas, e.g., cell culture and tissue bio-engineering.

As for drug loading and release specifically, the unique structural features, including
surface area, layer number, lateral dimension, and surface chemistry, allow graphene and
its derivatives to significantly improve the drug loading capacity with a tunable delivery
profile. The specific surface area of graphene is around 2630 m2/g, which is four magni-
tudes higher than other drug nanocarriers [20]. Because of its large surface area, graphene
can provide multiple active sites with high drug loading capacity up to 200% (ratio of
loaded drug weight to vehicle) [19]. The monolayer structure of graphene further improves
the drug attachment since every atom could be exposed on surface for the interaction with
drug molecules. As the number of layers of graphene sheets increases, their thickness and
rigidity increase while lowering the surface area, thus negatively affecting the drug loading
performance. The shape is also an important factor for graphene because of its unique
two-dimensional structure with planar morphology, different from carbon nanotubes (tubu-
lar shape) and nanoparticles (spherical shape). In general, lateral dimensions have no
substantial effect on drug loading, but could have size limitations relevant to biological
degradation, cell uptake, renal clearance, and other biological activities dependent on
particle dimensions [21]. Moreover, graphene can load drugs through both covalent bonds
and physical adsorption, being more versatile than CNTs.

A wide range of drugs and bioactive compounds can be carried by graphene/graphite
for creating sustained and targeted delivery systems. Table 1 summarizes a cluster of
typical drug molecules which have been successfully loaded onto graphene. As can be
seen, the majority of these drugs feature planar aromatic domains, which are able to form
stable π–π stacking, thus avoiding chemical conjugation.
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Table 1. Drug molecules loaded onto graphene.

Drug Interaction Functionalization Tumor Type
Plasmid DNA Electrostatic PEI (electrostatic) HeLa cervical carcinoma [22]

DOX Hydrophobic F127 (hydrophobic
interactions) MCF-7 breast cancer [23]

DOX and Camptothecin π–π stacking/hydrophobic FA (covalent) MCF-7 breast cancer, A549 human lung
carcinoma [24]

Photosensitizer (Chlorin e6) π–π stacking PEG (covalent) KB nasopharyngeal carcinoma [25]
Ibuprofen and 5-fluorouracil π–π stacking Chitosan (covalent) CEM human lymphoblastic leukemia [26]
siRNA Electrostatic PEG (covalent) HeLa cervical carcinoma [27]

DOX π–π stacking/hydrophobic
interactions PEG (covalent) EMT6 murine tumor (in vivo) [28]

Graphene oxide (GO) and reduced graphene oxide (rGO), as typical graphene deriva-
tives, also offer a variety of functional groups, e.g., hydroxyl and carboxyl groups, for
bioconjugation with drug molecules. The specific surface area of monolayer GO/rGO
ranges from 2 to 1000 m2/g, which is relatively smaller than pristine graphene but still
has potential to enhance the drug loading [20]. Additionally, the photothermal properties
of GO/rGO make it particularly applicable for targeted cancer therapy [29]. However,
the hydrophobic nature and strong van der Waals forces between adjacent sheets make
GO/rGO insoluble in water and difficult to disperse in most polar solvents, hindering its
direct use as a drug adsorbent. In order to obtain a homogenous system, the negatively
charged GO/rGO is usually conjugated with synthetic or naturally occurring polymers
exhibiting positive charges. The generated dispersible complexes can form a stable frame-
work with high porosity and enlarged specific surface area, which will then be able to
adsorb various drugs with high efficiency. A typical configuration of a GO-based complex
is shown in Figure 3, which was simulated by molecular dynamics (MD), representing the
PEG-decorated GO (PEG-GO) loaded with DOX at human body temperature (310 K) and
pH of 7.4 [30].
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As for other trials, Pooresmaeil et al. grafted magnetic GO (MG) with β-cyclodextrin
(β-CD) for the targeted delivery of DOX and methotrexate (MTX) as hydrophobic and
hydrophilic anticancer drugs. High drug loading was achieved with approximate effi-
ciency of 37.4% and 23.4% for DOX and MTX, respectively. The prepared β-CD-MG-drug
nanocomposites exhibited better release behavior in cancer cells than in normal cells [31].
Tiwari et al. used similar functionalization strategies by conjugating polyvinylpyrrolidone
(PVP) with GO (GO-PVP) and formulated a binary drug delivery system for the first time in
cancer treatment. Two anticancer drugs, quercetin and gefitinib, were loaded onto GO-PVP
with high efficiency of 20% for quercetin and 46% for gefitinib, which exhibited significant
cytotoxicity against PA-1 ovarian cancer cells [32]. According to another study, the modified
GO was even proposed as a carrier for quercetin via noncovalent interactions. The pristine
GO was grafted with biocompatible hyperbranched polyglycerol (HPG) through the ring-
opening polymerization of glycidol, which beneficially increased d-spacing between the
basal planes. As a result, the dispersibility of GO was significantly enhanced. The prepared
HPG-GO complex exhibited a high drug loading capacity of up to 185% and encapsulation
efficiency of up to 93% while facilitating a sustained release of quercetin without initial
burst in acidic solution. According to the in vitro release study, only 32.92%, 41.72%, and
49.22% of quercetin was released after 24 h, 48 h, and 72 h, respectively. Moreover, no
evident cytotoxicity of the different concentrations of HPG-GO was observed on the MCF7
cell line during 72 h incubation [33].

Other graphene/graphite analogues, such as graphitic-phase carbon nitride (g-C3N4)
and molybdenum disulfide (MoS2), have been shown to be less toxic than GO and halo-
genated graphene, suggesting that they may be utilized for drug delivery [34,35]. While the
as-prepared g-C3N4 or MoS2 has superior features as a multifunctional nanomaterial, its
low specific surface area largely suppress the drug loading capacity (e.g., the BET surface
area of pristine bulk g-C3N4 was tested as only 56 m2/g) [36]. As is known, the reaction
between the drugs and g-C3N4 or MoS2 initiates on the interface, so the efficiency largely
depends on the specific surface area of g-C3N4 or MoS2 particles. A higher surface area
can provide more active sites to react with drug molecules, as well as improve the reaction
kinetics. It is thus critical to increase the specific surface area of g-C3N4 or MoS2, and a
variety of strategies have been developed in this regard. Among such strategies, surface
modification is considered as one of the most effective and facile approaches. Jiang et al.
modified the g-C3N4 with a biomass-derived bio-oil which contained functional groups
that are of electron-withdrawing character. The BET specific surface area of the modified
g-C3N4 at reaction temperatures of 120 ◦C and 180 ◦C could reach as high as 172 m2/g
and 222 m2/g, respectively. Correspondingly, their pore size (3.4 nm at 120 ◦C; 3.42 nm
at 180 ◦C) and pore volume (0.3 cm3/g at 120 ◦C; 0.34 cm3/g at 180 ◦C) were also higher
than the pristine g-C3N4 (3.05 nm; 0.11 cm3/g). The drug loading amount can thus be
increased, attributed to the synergistic effects of the enlarged specific surface area and
enhanced porosity [36].

For MoS2, Ferreira-Neto et al. prepared a new type of MoS2 self-supported hybrid aerogel
via assembling with bacterial nanocellulose (BC)-based organic macro/mesoporous scaffolds. The
controlled and precise tuning of the synthetic parameters yielded a highly porous nanostructure
with pore volume of 0.28–0.36 cm3/g and interlayer distances of 0.62–1.05 nm. Together with its
high surface area (97–137 m2/g), these unique characteristics of the formulated BC/MoS2 aerogel
contributed to its exceptional adsorption capability [37]. In another study, a smart MoS2-based
nanoplatform was constructed for targeted drug delivery to human breast cancer cells. As shown
in Figure 4, the poly(ethylene imine) and alpha-lipoic acid dispersed MoS2 (PEI-LA-MoS2) was
functionalized with folic acid-grafted bovine serum albumin (FA-BSA), and then modified by
PEG to enhance the dispersibility and colloidal stability. Its enriched loading of DOX could form
a pH-sensitive system for shielding DOX in endosomes and releasing it to the cytoplasm in a
controlled manner [38].
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In addition, the combination of g-C3N4 and MoS2 in their improvement of drug ad-
sorption has also been investigated. Nouri et al. loaded FA and DOX into the g-C3N4/MoS2
incorporated-chitosan/ethyl cellulose nanofibers for the targeted drug delivery against
HeLa and MCF-7 cancer cell lines. The pharmacokinetic studies of this novel g-C3N4/MoS2-
based carrier revealed its linear and sustained release of FA and DOX with non-Fickian
diffusion. High anticancer activity against HeLa and MCF-7 was achieved with in vitro cell
death ratios of 85% and 89%, respectively, after 7 days of the treatment period [39].

4. Fullerene

Fullerene has been shown to be potentially useful as a drug absorbent due to its
intrinsic apolar character. It is a unique class of carbon allotropes with a representative
molecular structure of C60, and individual carbon atoms are connected with one another
by two types of C-C bonds: one shared by two neighboring hexagons (R66), and the other
by a hexagon and pentagon (R65) [40]. The optimized R66 and R65 bond distances in the
fullerene structure are 1.40 Å and 1.45 Å, respectively, which differ from the C-C bond
distance in pristine graphene of about 1.42 Å [41]. This unique chemical configuration
structured a fullerene-based composite with a highly porous architecture, which is able to
remarkably enhance its drug delivery profile.

Since its discovery, fullerene has been widely explored in the pharmaceutical field due
to its intrinsically appealing electrochemical and physical properties. However, similar to
graphene, the direct use of virgin fullerene in drug delivery is limited because of its poor
solubility. In general, this issue can be addressed by a suitable chemical modification, but
with the risk of damaging the intrinsic physiochemical properties of fullerene. Alternatively,
the complexing of fullerene with polymers was found to be more practical, and is thus being
widely explored. The resulting fullerene nanocomposites can function as efficient vehicles
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for drug delivery with high loading capacity. Shi et al. encapsulated polyethylenimine-
derivatized fullerene (PEI-fullerene) with FA for the conjugation of docetaxel (DTX). The
resulting PEI-fullerene-FA/DTX showed an increased in vitro antitumor efficacy with a
7.5-fold higher DTX uptake in cultured PC3 cells compared with free DTX [42]. In addition,
considering that PEI is cytotoxic at low to medium molecular weight owing to its cationic
nature and non-cleavable molecular structure, the combination of PEI’s amino groups
with polymeric moieties, such as fullerene-FA, could also alleviate its toxicity to normal
organs. This is in agreement with the findings reported by Uritu et al., which showed
non-cytotoxicity of the linear or branched PEI-fullerene-polyethylene glycol dendrimeric
structures [43].

Recently, the biopolymer-based fullerene nanocomposites are attracting intensive
attention for delivering drugs owing to their unique eco-friendliness and biocompatibil-
ity [44]. These nanocomposites can combine the advantages of both components (fullerene
and biopolymer) and show some new and synergistic capability to be used as nanocarriers.
Tan et al. prepared the amphiphilic block copolymer/fullerene (C60) micelles for the deliv-
ery of DOX, by incorporating fullerene into the hydrophobic core of methoxy polyethylene
glycol-poly(d,l-lactic acid) (MPEG-PDLLA). It was found that the incorporation of the intact
spherical fullerene with MPEG-PDLLA favored the dispersion of fullerene in physiological
media and increased the molecular chain space of PDLLA segments in the vicinity of
fullerene. This could provide a larger cargo space for enhancing the drug entrapment [45].

Another concern regarding the application of fullerene is that though its electronic
charges are uniformly distributed within the entire symmetry structure, the density func-
tional theory (DFT) calculations revealed that the above of the center of pentagon and
hexagon rings are the most active adsorbing sites [46]. Various strategies have been ex-
plored in modifying its adsorption homogeneity, and manipulating fullerene with dopants
is one of the most effective approaches [47]. The doping of additives/impurities can offer
additional sites for fullerene to interact with drugs via noncovalent binding. For example,
a recent quantum mechanics study revealed that doping fullerene with a B atom can trans-
form this inert material into an active nanocarrier for the delivery of aspirin [48]. Srinivasu
et al. prepared a porous fullerene, C24N24, by truncated doping of 24 carbon atoms with
24 nitrogen atoms. The six generated N4 cavities showed high binding energies with
transition metal atoms, including Sc, Ti, and V (nearly double that of the corresponding
metal cohesive energies). A high adsorption capacity of molecular hydrogen was achieved
with the calculated adsorption energies of −9.0 to −3.0 kcal/mol [49].

The direct doping of transition metals has also been investigated to trigger and regu-
late the adsorption behavior of fullerene. Alipour et al. studied the interaction between
porphyrin-like metal-doped fullerenes with a non-steroidal anti-inflammatory drug, ibupro-
fen (Ibp). As shown in Figure 5, the doped fullerene with transition metals (TMN4C55,
TM = Fe, Co, and Ni) possessed higher adsorption energies and shorter interaction dis-
tances with Ibp compared with pristine fullerene (C60) (Eads =−13.14 kcal/mol, d1 = 3.24 Å,
d2 = 2.67 Å), which indicated the enhanced chemisorption between Ibp and TMN4C55.
Among all the dopants, Ni exhibited the highest adsorption energy due to its shortest inter-
action distance with the O atom from Ibp (Eads = −23.11 kcal/mol, d1 = 1.96 Å), and thus
was considered as the most favorable loading site for Ibp [40]. More interestingly, instead
of using transition metals, Esrafili et al. decorated fullerene with alkali metals (AM = Li, Na,
and K) for the first time in the delivery of 5-fluorouracil (5FU). The water-soluble 5FU is an
antimetabolite chemotherapeutic drug which has been widely used in cancer treatment,
but with the drawback of poor bioavailability. By adsorbing onto the fullerene/AM system,
its therapeutic efficacy was significantly improved through boosting the cellular uptake,
with minimized adverse effects. The adsorption energies of 5FU with fullerene/AM were
−19.33, −16.58, and −14.07 kcal/mol for Li, Na, and K, respectively, which means up to
twelve Li atoms, six Na atoms, or one K atom could be anchored onto fullerene’s surface.
Simultaneously, each of these AM atoms could carry one 5FU molecule. In addition to the
multiplied loading capacity, the fullerene/AM system could easily release 5FU molecules
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when it reaches the targeted cancerous tissues, due to the moderate adsorption energies
and charge transfer values between 5FU and fullerene/AM [46].
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Figure 5. Molecular configurations of the adsorbed Ibp on the surface of doped fullerenes [40].

For cancer treatment, fullerene is particularly promising due to its unique spherical
structure, a truncated icosahedron, along with non-dipole character. A wide range of
anticancer therapeutics from antibodies, proteins, and genes to small drug molecules can
be carried by fullerene for creating sustainable and targeted delivery systems. Since most
of anticancer drugs have low solubility in an aqueous environment, the functionalized
fullerene has excellent water dispersibility to stabilize these hydrophobic drugs, without
requiring surfactants or additional oxidation, as seen for other graphene-based nanoma-
terials. Maleki et al. investigated the interactions between functionalized fullerene and
DOX/Paclitaxed (PAX) by molecular dynamics (MD) simulations. The results showed that
functionalizing fullerene with carboxyl groups could enhance its loading and releasing
capacity for both DOX and PAX. However, DOX exhibited a better interaction than PAX,
based on the results of electrostatic and Van der Waals interactions analysis. The latter could
be improved by grafting the trimethyl chitosan (TMC) polymer with fullerene, attributed
to the significantly increased number of hydrogen bonds between PAX and fullerene at
neutral pH [50].

5. Nanodiamonds/Diamond-like Carbon (NDs/DLC)

Over the past decade, nanodiamonds (NDs) and diamond-like carbon (DLC) have at-
tracted tremendous interest in the biomedical field for high-loading drug delivery. NDs
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refer to the type of diamond particles with sizes from a few to nearly 100 nanometers, and
shown in Figure 6 is a representative ultrasmall 5 nm detonation ND and [1(2,3)4]pentaman-
tane, C26H32, in comparison with one of the largest synthesized molecules, 7.7 nm diame-
ter tetracosakis([2-hydroxy-5-(octyloxy)-1,3-phenylene]dimethylidene)dodecakis(5,10,15,20-
tetrakis(4-aminophenyl)porphyrin), C912H841N96O48, in an atomistic scale [51]. NDs are known
as ultradisperse crystals with exclusive properties of chemical inert core (sp3 carbon atoms)
and an amorphous shell with hanging bonds ended of functional groups for the interaction
with therapeutic drugs [52]. These groups can also be easily derivatized with secondary func-
tionalities, and the resulting ND derivatives provide a versatile platform for conjugation with
an even broader range of drugs [53].
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To take further advantage of NDs’ potential in drug delivery, recent focus has also
been laid on their purity and other factors which may directly or indirectly affect the drug
adsorption and release in the biological environment. In general, the purified NDs would
have an almost perfect crystalline structure centered with naturally occurring nitrogen
vacancy (N-V) or nitrogen impurities, which can form complexes such as peptides or
amines [53,54]. This would allow them to act as a flexible template around the curved
surface where electrons are unstable, and the formulated truncated octahedral architecture
is able to further enable the potent drug loading [55].

Diamond-like carbon (DLC) is a type of amorphous carbonaceous material with a
hybrid formation of graphite (sp2-bonded carbon) and diamond (sp3-bonded carbon) in
their overall structure. Its physiochemical properties are mainly determined by the ratio
of sp2/sp3, along with the surface functionalities. This distinctive nature has branded
DLC as an efficient nanocarrier for the conjugation of active drug molecules. In particular,
its large surface area and unique diamond-like structure can provide more binding sites,
thus fundamentally improving drug loading. The formulated DLC–drug complex can
be presented in many forms, e.g., a thin DLC film which interacts with a drug in two
dimensions, or a spontaneous DLC–drug complex hydrogel with low free energy [56].
Apart from loading hydrophilic drugs, DLC has also emerged as an efficient dispersibility-
enhancing agent for poorly water-soluble drugs [57]. This characteristic is attributed
to DLC’s capability of adsorbing drugs on surfaces while maintaining their therapeutic
effectiveness. Its abundant surface groups, e.g., phenols, pyrones, and sulfonic acid groups,
are able to stabilize DLC in its suspension form, which allows bulky attaching of water-
insoluble drugs such as the anti-inflammatory drug dexamethasone, or anticancer drug
4-hydroxytamoxifen (for breast cancer) [54]. Moreover, for the majority of protein drugs,
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DLC is able to immobilize them with less distortion of their conformation, and allows better
binding of antibodies to create a stronger immune response [58].

NDs/DLC can be easily complexed with drug compounds, and their properties
of high colloidal stability in aqueous and non-aqueous solution allow NDs/DLC to be
efficiently used in drug loading [59]. Various studies have been carried out in this regard to
address the delivery of drugs to biological targets both in vitro and in vivo. Enomoto et al.
reported a drug eluting stent (DES) system by coating the biocompatible polymers with
micro-patterned lattice-like DLC. This newly designed DES system possessed sufficient
antithrombogenicity and could inhibit the initial drug burst release, thus being considered
as a competent candidate for the treatment of patients with obstructive coronary artery
disease. By further manipulating the coating area of DLS on the polymer surface, the drug
eluting profiles could be effectively controlled, creating potential for the new generation of
DES with a possible complete prevention of late thrombosis [60]. In the field of ocular drug
delivery, NDs have been successfully used for the treatment of glaucoma. The diamond
particles were first coated by polyethyleneimine (PEI), and then cross-linked with chitosan
to form ND nanogels for the loading of timolol maleate (TM). These ND nanogels were
cast into contact lenses after their embedding within the poly-2-hydroxyethyl methacrylate
(poly-HEMA) matrix. Effective complexation and release of the drug was achieved [61].

Moreover, NDs/DLC have the potential to deliver drugs into a specific single cell,
and thus are suitable for cancer treatment, which usually requires targeted drug delivery
to cancer cells [62]. In fact, an ND/DLC-based delivery system against cancers has been
developed as one of its most promising biomedical applications. Plus, certain distinctive
types of diamond nanoparticles can be uptaken by living cells via the mechanism of clathrin-
dependent endocytosis; interestingly, the amount of nanodiamonds uptaken by cancer
cells quantitatively exceeds that uptaken by non-cancer cells, which can further promote
the use of nanodiamonds in anticancer therapy. Thus far, a series of studies have been
documented regarding the use of drug-loaded NDs/DLC in cancer treatment. Toh et al.
synthesized an ND–mitoxantrone (MTX) complex, which exhibited a marked improvement
in its therapeutic efficacy against cancer cells [63]. The hitherto findings indicate that
ND/DLC-mediated drug delivery is able to serve as a powerful system to overcome the
chemoresistance in cancer stem cells and significantly increase the treatment efficiency.

Another investigated approach for improving the drug loading efficacy was to re-
versibly bind NDs/DLC to therapeutic drugs via ionic interactions. This type of pseudo-
coating mechanism was able to prevent the leaching of toxic ions from certain drugs into
the body, thus minimizing the drug toxicity. Huang et al. formulated an ND–doxorubicin
hydrochloride (DOX·HCl) cluster through the interaction between hydroxylic/carboxylic
groups of DLC and amine groups of DOX·HCl. The resulting NDs-DOX·HCl cluster
comprised a loose structure, which could provide additional spaces for DOX·HCl to be
adsorbed both on the ND surface and in the fissures of the cluster. This unique hybrid
formulation exhibited lower cytotoxicity than free DOX·HCl, because the clusters of NDs
surrounding the drugs made them unapproachable by healthy cells, and they remained
intact until they reached the targets. Therefore, it enabled most of the DOX·HCl drugs to
release at the designated single cell or lesion sites. The lowered cytotoxicity was confirmed
by the results of cytotoxic studies on mouse macrophages and human colorectal cancer
cells [64]. Upon completion of treatment, the residual diamond nanoparticles can be easily
excreted from the body by the kidneys without blocking blood vessels, which is beneficial
in further diminishing the adverse effects of the NDs/DLC–drug cluster [65]. However,
there is a common concern regarding the inconstant stability of the aforementioned clus-
ters/complexes, since it is dependent on the bonding of NDs/DLC with respective drugs.
In general, a cluster/complex generated by covalent bonds is favorable, since it is more
stable than the one formulated by non-specific absorption [66].
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6. Challenges towards Carbonaceous Nanocomposites: Toxicity

Despite their superb performance in enhancing drug delivery, carbonaceous nanocom-
posites also have certain limitations in their biomedical applications, among which toxicity
remains the major one. (1) During the manufacturing process, the low-density carbonaceous
powder may spread into the air and cause pulmonary toxicity through respiration [54].
(2) Due to the ultrasmall size of carbonaceous carriers, an expensive radionuclide tracer
technique is usually applied to detect these nanoparticles [67]. This type of technique is
able to accurately evaluate the distribution of nanoparticles, however, it involves the use of
radioactive substances, which can lead to toxicity. (3) Cytotoxicity due to the aggregation
or flocculation of carbonaceous carriers on cell membranes in the body is another limitation
of carbonaceous nanocomposites.

In general, the interactions between carbon particles with cells/macrophages depend
on several factors, including the lateral dimensions, shape, and surface chemistry, which
could have a significant impact on toxicity. Rigidity is another important parameter in
maintaining the structural integrity of carbonaceous nanocarriers, but could also cause
cell damage if their structure is too rigid. It thus requires an optimized level of rigidity
of carbonaceous nanocomposites, which creates another obstacle for their drug delivery
application [21].

One intensively reported method of alleviating the toxicity of carbonaceous nanocom-
posites was to modify their surface chemistry, with the aim to improve their biocompati-
bility with cells. However, there are some concerns regarding the involved modification
process, such as the complicated multi-step procedure, high temperature above 100 ◦C, and
time consumption. Moreover, the synthesis of carbonaceous nanocarriers with active moi-
eties by covalent bonding usually uses a corrosive solution, which may lead to additional
toxicity [19]. Therefore, this issue remains relevant to the development of carbonaceous
drug nanocarriers moving forward.

7. Carbon-Based Nanocellulose

In order to address the aforementioned technical challenges, pioneering research
has been focused on biomass-based carbonaceous nanocomposites. As is known, nature-
resourced materials often possess a hierarchically organized structure with a certain peri-
odic pattern, exhibiting potential to be converted into advanced carbon derivatives with
desired properties for engineering composites. Nanocellulose, as one typical carbon-based
material, can be considered as an ideal carrier for drug delivery, with the aim of minimizing
the side effects due to its known non-immunogenicity [68,69]. Moreover, the high surface-
to-volume ratio, superior thermal stability, and facile functionalization give nanocellulose
the potential to enhance its drug delivery capacity [70–72].

The basic structure of nanocellulose consists of repeating anhydro-D-glucopyranose
units (AGU) bonded by β(1→4) glycosidic linkages. Each AGU contains three hydroxyl
groups (Figure 7a) [73], which possess superior affinity towards various drugs. Other
basic functionalities such as carboxyl groups can provide additional control of drug release
in the intestinal environment. Meanwhile, the negatively charged sulfate groups allow
an isotropic and stable distribution of drug-loaded nanocellulose in the solvent medium.
Regarding the factor of morphology, rod-like nanocellulose favors adsorption of drugs by
intermolecular interaction with the drug surface. Shown in Figure 7b is the TEM image
of nanocellulose particles with width of 3–10 nm and length of 50–165 nm [74]. The small
size of these nanoparticles would allow them to move more easily in the body than larger
materials, and thus may avoid the burst local release of drugs.



J. Compos. Sci. 2022, 6, 379 14 of 19J. Compos. Sci. 2022, 6, x FOR PEER REVIEW  14  of  19 
 

 

 

(a)                                                             (b)                                                        (c) 

Figure 7. Molecular structure of nanocellulose macromolecule (a); TEM image of nanocellulose (b); 

nanocellulose–SO compound (c) [75,76]. 

Nanocellulose has the capacity to attach different molecules through electrostatic in‐

teractions. Shown in Figure 7c are the nanoparticles of Spirooxazine (SO)‐loaded nanocel‐

lulose, which exert higher photochromic efficiency as well as improved color stability and 

fatigue resistance [75,76]. As for therapeutic drug delivery, various water‐soluble drugs 

can bind and  release  from nanocellulose owing  to  its abundant surface  functionalities. 

Their capacity for further modification can largely broaden the spectrum of drugs, e.g., 

hydrophobic drugs, capable of binding to nanocellulose. The final product can be fabri‐

cated in the form of capsules, films, microparticles, and gels for topical, oral, and trans‐

dermal administration [68]. For instance, Thomas et al. successfully designed an oral for‐

mulation of alginate–nanocellulose hybrid (ALG‐CNC) for the controlled delivery of ri‐

fampicin (RIF). A high drug entrapment efficiency of 69.73% was achieved, attributed to 

the small average size of synthesized ALG‐CNC (70 nm). The addition of nanocellulose 

can overcome the  limitations of ALG, e.g.,  low mechanical strength and poor porosity, 

without disturbing  its  inherent network  structure. The ALG‐CNC hybrid  showed  im‐

proved stability with low swelling at pH 1.2, which could prevent the burst drug release 

in harsh gastric conditions [77]. As for topical use, one of the representative examples was 

reported by Sun et al., who showcased an innovative hand sanitizer formulated with an‐

timicrobial intensively loaded nanocellulose (Figure 8) [78–80]. The well‐distributed drug 

particles  (modified  triclosan)  on  the  surface  of  nanocellulose  exhibited  enhanced  effi‐

ciency of germ killing, which has been playing an important role in tackling COVID‐19. 

This newly developed alcohol‐free disinfectant product can provide persistent protection 

without causing skin dehydration. Moreover, nanocellulose exhibits no photo‐catalytic 

activity, and thus can prevent the generation of reactive oxygen species (ROS) in causing 

sun damage of skin. Plus, the nanocellulose in its film form can scatter UV light, which 

can shield the skin from UV‐B radiation. Uniquely, as one typical example of exploring 

the synergistic effect between different carbonaceous nanocarriers, nanocellulose was also 

applied to attach CNTs for facilitating their even distribution [81,82]. The electron micros‐

copy analysis revealed that nanocellulose particles could be well anchored onto the tips 

of CNTs, thus orienting the nanotubes in the same direction. The improved distribution 

can potentially increase the drug loading efficiency via the superimposed functioning of 

nanocellulose and CNTs. 

Figure 7. Molecular structure of nanocellulose macromolecule (a); TEM image of nanocellulose
(b); nanocellulose–SO compound (c) [75,76].

Nanocellulose has the capacity to attach different molecules through electrostatic
interactions. Shown in Figure 7c are the nanoparticles of Spirooxazine (SO)-loaded nanocel-
lulose, which exert higher photochromic efficiency as well as improved color stability and
fatigue resistance [75,76]. As for therapeutic drug delivery, various water-soluble drugs
can bind and release from nanocellulose owing to its abundant surface functionalities.
Their capacity for further modification can largely broaden the spectrum of drugs, e.g., hy-
drophobic drugs, capable of binding to nanocellulose. The final product can be fabricated
in the form of capsules, films, microparticles, and gels for topical, oral, and transdermal
administration [68]. For instance, Thomas et al. successfully designed an oral formulation
of alginate–nanocellulose hybrid (ALG-CNC) for the controlled delivery of rifampicin (RIF).
A high drug entrapment efficiency of 69.73% was achieved, attributed to the small average
size of synthesized ALG-CNC (70 nm). The addition of nanocellulose can overcome the
limitations of ALG, e.g., low mechanical strength and poor porosity, without disturbing
its inherent network structure. The ALG-CNC hybrid showed improved stability with
low swelling at pH 1.2, which could prevent the burst drug release in harsh gastric condi-
tions [77]. As for topical use, one of the representative examples was reported by Sun et al.,
who showcased an innovative hand sanitizer formulated with antimicrobial intensively
loaded nanocellulose (Figure 8) [78–80]. The well-distributed drug particles (modified
triclosan) on the surface of nanocellulose exhibited enhanced efficiency of germ killing,
which has been playing an important role in tackling COVID-19. This newly developed
alcohol-free disinfectant product can provide persistent protection without causing skin
dehydration. Moreover, nanocellulose exhibits no photo-catalytic activity, and thus can
prevent the generation of reactive oxygen species (ROS) in causing sun damage of skin.
Plus, the nanocellulose in its film form can scatter UV light, which can shield the skin from
UV-B radiation. Uniquely, as one typical example of exploring the synergistic effect between
different carbonaceous nanocarriers, nanocellulose was also applied to attach CNTs for
facilitating their even distribution [81,82]. The electron microscopy analysis revealed that
nanocellulose particles could be well anchored onto the tips of CNTs, thus orienting the
nanotubes in the same direction. The improved distribution can potentially increase the
drug loading efficiency via the superimposed functioning of nanocellulose and CNTs.
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Other types of nanocellulose, e.g., cellulose nanofibers (CNFs) or bacterial cellulose
(BC), have also shown potential as carriers for drug delivery [83]. In 2019, Plappert et al.
developed a transdermal drug delivery patch by assembling CNFs into anisotropic-layer
membrane for the delivery of piroxicam. The high surface area and tunable carboxylate
content of the CNF membrane significantly increased its adsorptive affinity with piroxicam
and enhanced the drug solubility. A prolonged in vitro release of piroxicam was realized
under the simulated human skin conditions [84]. Moreover, electrospun nanofibers, with
tailorable properties by easily controlling the process parameters, have recently been ap-
plied for improving drug loading. The treatment of disease and infections with electrospun
nanofiber–drug complex has the benefit of increasing the drug concentrations at local sites,
thus minimizing the drug’s adverse effects. In previous studies, DOX-loaded electrospun
nanofibers were used for drug delivery, which exhibited high efficiency against cancer
cells. Similar results were reported with other drugs, such as paclitaxel, cisplatin, and
dichloroacetate, in improving their anticancer capacity [85].

As for bacterial cellulose (BC), it can be mixed with other pharmaceutical excipients,
and the addition of BC offers several benefits, such as increased dissolution rate, the
potential of gastroretentive delivery due to the induction of positive buoyancy, and the
sustained drug release in fasted state-simulated stomach. Uniquely, the similarity in the
nanostructure and collagen morphology makes BC especially suitable as a drug carrier
for cell immobilization and cancer therapy [86]. One previous trial using BC in localized
cancer treatment for controlled release of DOX was reported by Cacicedo et al. The purpose
of their study was to maximize the drug accumulation at tumor sites and to eradicate the
side effects of administered DOX. Two sets of formulations, nanostructured lipid carriers
(NLCs) containing cationic DOX (NLCs-H) and neutral DOX (NLCs-N), were encapsulated
into a BC matrix (BC-NLCs-NH). A higher encapsulation efficiency (97%) and sustained
drug release were reported with NLCs-H, and the synthesized BC-NLC-NH composites
could significantly decrease the tumor-to-control (T/C) ratio of ex vivo tumor volume
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(53%) and tumor weight (62%). No evident side effects, such as edema, inflammation,
or necrosis, were observed, which demonstrated the suitable biocompatibility of the BC
delivery system [87].

To date, the development of high-performance drug nanocarriers derived from nanocel-
lulose composites has been considered as a focal point in the modern biomedical field.
However, there are also several concerns regarding the adverse effects from the possible
over-accumulated nanocellulose particles for in vivo applications [86,88]. Therefore, an in-
depth understanding of how nanocellulose’s nature may affect the living cells is necessary.

8. Conclusions

Carbonaceous nanocomposite-mediated drug delivery has drawn significant attention
for the reliable transportation of active pharmaceutical ingredients in biomedical applica-
tions. Their tunable structural properties and facile chemical modification can significantly
boost drug loading and enable sustained release in living systems. The accompanied ad-
vantages upon utilizing carbonaceous nanocomposites include increasing the drug stability,
controlling the drug dissolution rate, extending the cycle duration, and minimizing the
adverse effects, all of which can improve the drug administration safety and efficacy. This
has led to a rapid development of chemotherapeutics therapies in promoting the use of
carbonaceous nanocomposites. Still, many challenges such as the undesired toxicity remain
issues of high concern. As a result, advanced knowledge regarding the structure and sur-
face chemistry of carbonaceous nanocomposites has been continuously explored to better
control their properties to meet the demands from consumers for green and healthy living.
Particularly, the carbon-based nanocellulose possesses unusual and desirable properties,
such as higher biocompatibility, uniform nanorod shape, and unique liquid crystalline
character, in comparison to other carbon bulk materials, which have promoted its increased
use in newly developed drug nanocarrier systems. However, there is a possibility that
nanocellulose might over-accumulate in the body. Therefore, nanocellulose designated for
drug delivery must be thoroughly assessed for potential health risks before further recom-
mendations can be made on its large-scale application, especially related to transdermal
and oral administration.
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