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Abstract: Polymeric nanofibers have emerged as exclusive one-dimensional nanomaterials. Various
polymeric nanofibers and nanocomposite nanofibers have been processed using the thermoplastic,
conducting, and thermoset matrices. This review aims to highlight the worth of electrospinning
technology for the processing of polymer/nanocarbon nanocomposite nanofibers. In this regard,
the design, morphology, physical properties, and applications of the nanofibers were explored. The
electrospun polymer/nanocarbon nanofibers have a large surface area and fine fiber orientation,
alignment, and morphology. The fiber processing technique and parameters were found to affect
the nanofiber morphology, diameter, and essential physical features such as electrical conductiv-
ity, mechanical properties, thermal stability, etc. The polymer nanocomposites with nanocarbon
nanofillers (carbon nanotube, graphene, fullerene, etc.) were processed into high-performance
nanofibers. Successively, the electrospun nanocomposite nanofibers were found to be useful for
photovoltaics, supercapacitors, radiation shielding, and biomedical applications (tissue engineering,
antimicrobials, etc.).

Keywords: electrospinning; nanofiber; nanocarbon; nanocomposite; morphology; supercapacitor;
photovoltaic; tissue engineering

1. Introduction

Polymer nanofibers have been developed as scientifically significant nanostructures [1].
Carbon nanoparticles or nanocarbon nanoparticles have been used as essential nanofillers
for polymers [2]. The fullerene, graphene, carbon nanotube, and other nanofillers have
been ranked as the vital carbon nanoparticles. Consequently, using these nanoparticles,
polymer/nanocarbon nanocomposites and resultant nanofibers have been reported [3,4].
The nanocarbon nanoparticles have played a cooperative role with polymers to enhance the
morphology profiles and physical features of the resulting nanostructure [5]. Subsequently,
the polymer/carbon nanofiller nanofibers have been industrialized using appropriate
techniques [6]. In this concern, electrospinning has been prominently used to form the
polymer or nanocomposite nanofibers [7,8]. This technique demands precise control of the
processing parameters to attain the desired nanofibers.

Numerous polymer/nanocarbon nanocomposite nanofibers have been fabricated and
intended for industrial applications ranging from energy/electronic devices to biomedi-
cal [9,10].

This innovative article unfolds the fundamentals of the electrospinning approach
and design and potential of polymer/nanocarbon nanocomposite nanofibers. Including
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nanocarbon nanofillers in polymers and electrospinning led to the development of high-
performance nanocomposite nanofibers. The nanofiller may develop interfacial interactions
with the matrix to cause synergistic effects on the resultant physical properties. Effects
of matrix–nanofiller interactions and electrospinning processing have been observed in
the form of high-tech solicitations in solar cells, supercapacitors, radiation shielding, and
biomedical sides. To the best of our knowledge, this review is innovative as well as
pioneering to portray the systematic progressions in the arena of polymer/nanocarbon
nanocomposite nanofibers. Accordingly, this review can be very helpful for the researchers
working in the field of nanocomposite nanofibers for future innovations.

2. Nanocarbon Nanofillers in Polymeric Nanocomposites

Considerable research attempts have been observed in this field of carbonaceous
nanofillers [11]. Starting from a carbon nanotube, several unique nanostructures like
graphene, fullerene, carbon dots, etc., have been developed. The important carbon
nanofillers used as polymer nanofillers include a carbon nanotube, graphene, graphene
derivatives, fullerene, nanodiamond, graphite, carbon black, etc. The addition of nanocar-
bon nanostructures in polymers may cause a significant change in the resulting physical
properties and performance. The ensuing polymeric nanocomposites, with carbonaceous
nanofillers, have a unique blend of the properties of polymers and nanoparticles [12]. The
carbon nanostructures have distinct shape, dimensions, size, aspect ratio, and physical
aspects. Depending upon the nanoparticle shape, dimensions (one-, two-, or three-), and
inherent properties, the nanocomposite features will be affected [13]. Hence, the estimation
of the nanoparticle structure, dimensions, etc., may reveal beneficial information regard-
ing the final nanocomposite features. Consequently, the superior properties of carbon
nanofillers have led to stimulating prospects of polymer/nanocarbon nanocomposites [14].
Carbon nanofillers have been filled in polymeric matrices through various facile techniques
such as solution mixing, melt blending, and in situ polymerization, as well as sophisticated
techniques like spinning methods [15]. The processing technique obviously determines
the state of nanoparticle dispersion in the polymers. Accordingly, the nanofiller alignment
in the matrices has been identified as an important factor in the nanocomposite forma-
tion. Here, the randomly oriented nanoparticles may negatively influence the electrical,
mechanical, thermal, and other physical characteristics of the nanomaterials [16]. On the
other hand, fine nanofiller dispersion in polymers has revealed superior properties and
performance. To enhance nanoparticle scattering in polymeric matrices, various techniques
have been adopted. A very common way is the stirring or the sonication of the nanoparticle
suspensions. The electric and magnetic field effects may also enhance the nanoparticle
orientation in the polymers [17]. In this regard, epoxy nanocomposites with well-dispersed
nanocarbon nanofillers have been developed using magnetic field effects [18]. Conse-
quently, the alignment and distribution of the nanofiller causes varying nanocomposite
morphologies [19]. Another important method for a superior nanoparticle dispersion is the
spin casting technique [20]. This approach has appropriate spinning steps and setup for
better nanofiller configurations in the matrices [21]. Besides physical methods, nanoparti-
cles have been modified through physical or chemical surface functionalization procedures
prior to inclusion in polymers [22]. Modified nanofillers have developed compatible in-
terfaces, interfacial interactions, and dispersion in polymeric matrices [23]. Interactions
between nanocarbon nanofillers and matrices may involve weak van der Waals forces and
electrostatic interactions [24]. On the other hand, appropriately functionalized nanocarbon
nanofillers may form covalent bonding with polymer matrices [25,26]. Thus, both the
physical or covalent interactions of nanofillers with polymers have been found to enhance
the matrix–nanofiller compatibility. Henceforth, the electrical conductivity, load transfer
properties, mechanical features, thermal constancy, and several other properties of poly-
mer/nanocarbon nanocomposites have been enhanced through adopting the appropriate
processing technique for fine dispersion.
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3. Nanofibers of Polymeric Nanocomposites

Polymeric nanofibers have been developed as nanostructures with a diameter of a
few nanometers and length of quite a few millimeters [27]. Polymer nanofibers rendered
superior structural properties and technical performance [28]. Polymer nanofibers have
been fabricated through effective engineering practices. The ensuing nanofibers may have
hollow, flat, crumpled, or solid structures. The nanofibers have been formed using ther-
mosets, thermoplastics, as well as conducting polymer matrices like epoxy, polyamide,
polyethylene, polystyrene, poly(vinyl alcohol), polyaniline, and countless other matri-
ces [29–31]. A variety of procedures have been applied to form nanofibers such as solution
or melt drawing, template and non-template practices, and spinning systems [32]. The
diameter, surface texture, and morphology of polymer nanofibers have been affected by
the processing technique used and the associated parameters [33]. In addition to a pristine
polymer, reinforced polymers with numerous organic and inorganic nanoparticles have
been processed to form nanocomposite nanofibers [34]. Carbonaceous nanofillers have
been adopted as the essential reinforcements for polymer nanofibers [12]. Specifically,
fullerene, graphene, and a carbon nanotube possess high surface area, structural, and
physical features to enhance the final nanocomposite nanofiber topographies [13]. The
resulting carbon nanoparticle-filled nanofibers revealed potential for wide-ranging fields
from the energy or electronics to the medical sectors [35]. Here, the performance and
properties of these nanofiber nanostructures directly rely on the manufacturing technique
employed [36].

4. Electrospinning Technique for Nanofibers

Spinning methods have been prominently used to fabricate polymer and polymeric
nanocomposite nanofibers [37,38]. Spinning techniques have been varied from the wet
spinning [39] and melt spinning [40] methods to electrostatic spinning practices. Gen-
erally, spinning procedures have manageable process parameters. Here, solution blow
spinning was applied for the polymers and nanocomposite nanofibers. This method
combines the electrospinning and melt blowing approaches together [41]. The solution
blow spinning setup has its own syringe, pumping system, nozzle, gas flow, and col-
lector. The fiber diameter depends upon the variation in the parameters, polymer type,
and matrix concentration [42]. Centrifugal jet spinning has also been used to form micro-
or nanofibers. This setup has a spinning chamber, DC motor, and multiple fiber collec-
tor [43,44]. The electrohydrodynamic direct writing mechano-electrospinning technique
also forms nanofibers on micro- or nanoscales. This technique utilizes electrical as well as
mechanical forces to develop viscous ink, resulting in the nanofibers [45,46]. The related
setup has a variable nozzle-to-substrate distance and adaptable voltage sources [47]. Amid
spinning approaches, the electrospinning technique has attained special attention to form
nanocomposite nanofibers [48]. Polymers and polymer/nanocarbon nanocomposites have
been processed into electrospun nanofibers with superior physio-chemical properties [49].
Electrospinning has been reported as a facile, reasonable, and versatile method to form
nanofibers [50].

In the electrospinning method, the polymer solution or melt form is converted to the
charged filaments in the presence of an electric field [51]. The general electrospinning setup
comprises a syringe, the solution or melt pumping arrangement, a high voltage supply,
and a collector for the nanofibers. As the polymer solution evicts from the syringe needle,
it is converted to a charged strand under the effect of the applied voltage [52]. Owing to
the electrostatic effects, the polymer strand elongates to form a nanofiber. The charged
nanofiber continues to move towards the collector [53]. The process parameters such as
the polymer type, amount of the nanofiller, melt or solution form, pumping or flow rate,
voltage used, and several other electrospinning factors affect the nanofiber texture, diameter,
and length. The electrospinning setup has been reported with perpendicular as well as
horizontal arrangements. The final nanofiber form demands the control and monitoring
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of facile electrospinning parameters. Both the polymer matrices and the nanocomposites
have been processed, using the electrospinning technique, to form the nanofibers [54].

Coaxial and emulsion electrospinning techniques have been frequently employed for
multifaceted applications. The coaxial electrospinning method involves two electrospinning
tips and two solutions [55]. This technique has been used to produce core-sheath fibers
through physical separation. Here, it is important to control the solution and processing
parameters such as the solution flow rates, viscosities, and electrical conductivity. Coaxial
electrospinning has been found to be successful for developing complex drug delivery
systems. In a drug delivery application, varying core and sheath configurations have been
utilized for better cell attachment and strength features of nanofibers [56]. A fine example
can be nanofibers with a polyurethane core and collagen sheath [57]. Lee et al. [58] formed
coaxial electrospun core-shell and hollow nanofibers of poly(styrene-co-acrylonitrile) (inner
core) and poly(acrylonitrile) (outer sheath). Figure 1 depicts a coaxial electrospinning setup
having a coaxial nozzle with two concentric cylinders. This system allows the formation of
core-shell nanofibers. The inner and outer diameter of the core-shell nanofibers were also
measured. Solution features like the concentration, flow rate, etc., have been found to affect
the wall thickness and inner and outer diameter of the nanofibers. Field emission scanning
electron microscopy and transmission scanning electron microscopy techniques were used
to analyze the nanofiber morphology (Figure 2). The nanofibers have a perfectly uniform
and hollow morphology. The micrographs have an outer smooth surface and elliptical cross-
sectional shape, showing the effectiveness of this technique. Khalf et al. [59] developed
core-sheath and hollow nanofibers of cellulose acetate. The coaxial electrospinning setup
employs two syringes with acetone and dioxan solvents. The pumps were used to move
the shell and core solutions for the formation of core-sheath nanofibers (Figure 3). From
the obtained nanofibers, the core was detached through immersing the nanofibers in an
octane solvent. Scanning electron microscopy revealed a uniform non-beaded nanofiber
formation and fine fiber distribution. The perfect morphology depicted the effectiveness of
the coaxial electrospinning technique applied.
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Figure 3. Core-shell fiber formation: (a) schematic of coaxial electrospinning setup; (b) diagram of
fiber core extrication; and (c) fiber size distributions of solid electrospun and hollow fibers. Reprinted
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Emulsion electrospinning depends upon the chemical ways of separating an emulsion
using surfactants [60]. The resulting nanofiber usually develops into the distinct phases
upon solvent evaporation. This technique has also been used for a drug encapsulating
application. Emulsion electrospinning has the advantage of using water (solvent) despite
of harmful chemicals. On the other hand, coaxial electrospinning definitely varies from the
emulsion-based method as it produces higher-mechanical-strength fibers. In tissue engi-
neering, coaxial-produced nanofibers revealed better cell attachment and proliferation due
to a core-sheath nanostructure [61]. However, both coaxial and emulsion electrospinning
form nanofibers having an outer sheath and inner core. Gosh et al. [3] applied the emulsion
electrospinning method to form poly(ε-caprolactone) nanofibers. For emulsion formation,
two immiscible liquids were used. These solvents were stirred with a stabilizer. Figure 4
illustrates the setup and process for the formation of emulsion electrospun nanofibers. The
stabilizer was used to stabilize the emulsion through reducing the surface tension between
two phases. Moreover, mechanical stirring also prevented the droplet coalescence through
reducing the barrier between two phases.
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The design principles of electrospun scaffolds can be easily controlled using the coaxial
electrospinning method through the facile processing, controlled porosity, solution used,
and environmental parameters. The literature has revealed the importance of polymer-
solvent-processing relations to produce electrospun nanofibers for delicate scaffolds aiming
for a controlled drug delivery and tissue formation [55]. Here, process parameters like the
solution feed rates for the core and shell, applied voltage, tip to collector distance, and
collector revolving speed have been found to be important for the desired end material.
Then, solution parameters including the concentration, viscosity, conductivity, etc., matter
for the formation of the required scaffold. Moreover, environmental parameters such as
the temperature and humidity need to be controlled for a drug delivery application. All
these factors affect the nanofiber structure, morphologies, and physical properties. In
drug delivery, coaxial nanofibers have been found to be efficient to encapsulate various
biomolecules, relative to emulsion nanofibers, due to a better core-sheath nanostructural
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design [56]. However, a high drug release at the beginning occurs and so a long-term drug
release has been found to be difficult. This initial drug release may result in lessening the
effect of the drug dose; therefore, it is found as unsuitable for pharmaceutical applications.
Here, managing the process parameters can limit in the desired drug release duration to
enhance the effectiveness of the electrospinning technique.

Other spinning methods have also been employed for a polymer and nanocomposite
nanofibers in the literature. The solution blow spinning practice has been employed us-
ing both melt blowing and electrospinning [62,63]. This procedure produces non-woven
micro- and nanofibers [64]. In this method, the fiber production rate was found to be
high; however, it has been considered as an expensive and complicated method compared
with electrospinning. The centrifugal jet spinning method may help to form low-cost
and high-throughput micro- or nanofibers [65]. However, the disadvantages relative to
electrospinning involve the lack of controlled centrifugal forces, less managed solution
viscosity, and mass transfer [66]. Moreover, it cannot be used for melt-processed nanofibers.
Electrohydrodynamic direct spinning has been adopted for the programmable direct writ-
ing of nanofibers through combined effects of electrical and mechanical forces [67]. This
method has benefits of a large-scale nanofiber production. However, electrospinning has
more easily controllable processing conditions than electrohydrodynamic direct spinning.
Therefore, the electrospinning technique has been favored in the literature for the majority
of nanofiber designs.

5. Design and Characteristics of Electrospun Polymer/Nanocarbon
Nanocomposite Nanofibers

Nanocomposite nanofibers own high surface area, alignment, and remarkable physical
features [68]. Among nanocarbon nanostructures, fullerene molecules gained an essential
stance [69]. Consequently, the fullerene exposed notable applications ranging from elec-
tronics/energy to biomedical fields [70,71]. Insuasty et al. [72] studied polymer/fullerene
nanofibers having π–π stacking interactions. Conducting polymer matrices have been
applied to form nanofibers with a fullerene nanofiller [73,74]. Pierini and researchers [75]
developed poly[3-dodecylthiophene-co-3-(6-fullerenylhexyl)thiophene]- (a polythiophene
copolymer with fullerene functionalities) and poly(ethylene oxide)-based electrospun
nanofibers. According to an atomic force microscopy study of poly[3-dodecylthiophene-
co-3-(6-fullerenylhexyl)thiophene]/poly(ethylene oxide) nanofibers, the nanofibers had a
distinct nanostructure; however, it was slightly uneven after etching. Similarly, a scanning
electron microscopy analysis revealed the uniform and textured surface of the electrospun
nanofibers, even after etching. In addition, the nanofibers had a dimeter of ~0.9 µm and
considerably high elastic modulus in the range of 1.6–2.5 GPa. Owing to the donor-acceptor
behavior of the conjugated polymer and fullerene molecules in the nanofibers, the nanocom-
posite nanofibers owned the photovoltaic efficiency of ~5.6%. Solanki and co-workers [76]
used the electrospinning method to form poly(3-hexylthiophene-2,5-diyl):phenyl-C61-
butyric acid methyl ester-ensuing nanofibers. Fibrous nanocomposite structures own an
improved photovoltaic performance and so the power conversion efficiency was found as
2.16%. Jiang et al. [77] studied epoxy- and fullerene-based nanocomposite-coated carbon
fibers. The inclusion of fullerene molecules upgraded the interface formation and matrix–
fiber interactions of the epoxy resin and carbon fibers. The transverse fiber bundle tension
test of the nanocomposites was performed to analyze the interface bond strength. The
addition of fullerene up to 3 wt.% remarkably improved the transverse fiber bundle tension
strength by 42%. The enhancement was accredited to fine matrix–fiber bonding tendencies
due to the presence of fullerene.

Graphene is a unique two-dimensional one-atom-thick nanostructure made up of sp2

hybridized carbon atoms [78]. It has large surface area and exclusive physical characteristics
appropriate for constructing high-efficiency nanomaterials [79,80]. Polyamides or nylons
have been adopted as important polymer matrices for nanocarbon-based nanofibers [81].
Lee et al. [82] manufactured nylon 6- and graphene flake-derived nanofibers. Leyva-
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Porras and colleagues [83] industrialized electrospun nanofibers of nylon 6 and nitroxide-
functional graphene oxide. Scanning transmission electron microscopy images of the
functional graphene oxide as well as the nanocomposite nanofibers are given in Figure 5.
The functional graphene oxide nanosheets seemed to be embedded in the nanocomposite
nanofiber due to interactions with the matrix. Maccaferri et al. [84] reported nylon 6,6-
and graphene-derived nanocomposite nanofibers through the electrospinning technique.
Figure 6 displays the transmission electron microscopy images of the nanocomposite
nanofibers. The nanofibers having 5 and 15 wt.% graphene loading levels revealed the
diameter of 200 to 300 nm. The disposition of graphene nanosheets has been observed
along the nanofiber surface. However, the graphene aggregation caused the bulging of the
nanofiber surface.
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Moreover, Weise et al. [85] formed nylon 6 and nylon 6/graphene nanocomposite
nanofibers. The nanofibers were fabricated with 3–5 wt.% graphene loading. The nanofibers
had a length-to-diameter ratio around ~2.0. Figure 7 depicts the differential scanning
calorimeteric curves for the pristine nylon 6 and 3 as well as 5 wt.% nanofiller-loaded
nanofibers. In the case of the nanocomposite nanofiber, only an alpha crystalline peak
appeared, while the gamma peak disappeared due to a change in the nanostructure upon
the graphene addition. Actually, the inclusion of graphene decreased the distinction of the
gamma peak. The higher concentration of the nanofiller caused more peak destruction. The
result suggested that the graphene inclusion shifted the gamma phase towards the alpha
phase. On the other hand, the unfilled polymer revealed two gamma and alpha peaks
(~200 ◦C). The crystallization curves of neat nylon 6 and nylon 6/graphene nanocompos-
ites were also studied. It was observed that the graphene nanofiller inclusion affected
the crystallization behavior of the matrix, leading to a progressive enhancement in the
crystallization peak. A high electron conduction of ~10 µSm−1 has been perceived for
nanocomposite nanofibers. Poly(vinyl alcohol) and poly(vinyl acetate) have also been
applied as important matrices for a graphene nanofiller [86,87]. Consequently, electrospun
nanofibers of poly(vinyl alcohol)/graphene and poly(vinyl acetate)/graphene nanocom-
posites have been reported [88,89]. The inclusion of graphene in the matrix has been found
to enhance the optical, conducting, specific capacitance, and heat stability properties of the
resulting nanofibers.
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Like fullerene and graphene, a carbon nanotube has been found as a unique one-
dimensional nanocarbon nano-allotrope [90]. It has sp2 hybridized carbon atoms and a
hollow cylindrical nanostructure [91,92]. The unique nanostructure leads to marvelous
properties and potential [93]. A carbon nanotube forms electrospun nanofibers with various
polymers such as poly(ethylene glycol) and polyamide [94,95]. Electrospun poly(ethylene
glycol)/carbon nanotube nanofibers have been reported with a fine morphology and high-
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power density of 156 mWcm−2 [96,97]. Kaynan et al. [98] designed pol(vinyl butyral)-
and carbon nanotube-derived nanocomposite nanofibers. They explored the mean frac-
ture energies of the pol(vinyl butyral) nanofibers with 0.5 to 5 wt.% nanofiller loadings
(Figure 8). The mean values of the total fracture energy as the function of the delamination
length have been studied. The fracture energy was calculated through monitoring the crack
propagation and tracked load data. Consequently, the crack length of 24 mm was observed.
According to the results, a crack growth resistance was found in reinforced nanocompos-
ites. Thus, adding higher carbon nanotube contents to the matrix led to a considerable
increase in the crack growth resistance of the nanomaterials. Polyaniline has also been
used as an effective matrix for nanocarbon-based nanocomposite nanofibers [99,100]. In
these nanofibers, remarkable properties of polyaniline have been combined with carbon
nanoparticles to reveal superior properties and high performance [101]. In these nanofibers,
the dispersion of nanocarbon nanofillers may alter the texture and features of these nanos-
tructures [102]. Liao et al. [103] primed polyaniline/carbon nanotube nanofibers. Adding
a carbon nanotube caused a high electrical conductivity of up to 102 Scm−1, due to the
formation of a percolation network in the nanofibers.
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6. Significance of Electrospun Polymer/Nanocarbon Nanocomposite Nanofibers

Polymeric nanofibers own remarkable features of a light weight [104], resilience [105],
strength [106], toughness [107], and chemical constancy [108]. Polymer fibers have been
applied in useful industrial materials such as coatings, membranes, textiles, packaging, and
biomedical arenas [109–111]. In addition, including nanofillers in polymeric nanofibers has
led to a rise in important physical characteristics and applications [112].

Carbon fillers or nanofillers having different dimensions and structural/physical as-
pects influence the final material properties. In a study by Kasgoz et al. [113], various carbon
fillers like graphite, expanded graphite, carbon black, and carbon fiber were introduced
to a cycloolefin copolymer matrix. Comparative effects were observed on the morphol-
ogy, mechanical, and rheological features of the resulting composites. The difference in
properties was attributed to the variance in size and physical aspects of the carbon fillers.
Chen et al. [114] explored the comparative effect of carbon nanofillers (carbon nanotube,
graphene oxide, graphite nanoplatelets, and carbon black) on the thermal conductivity of



J. Compos. Sci. 2023, 7, 290 11 of 21

epoxy matrix nanocomposites. Figure 9 shows the efficacy of various carbon nanofillers on
the thermal conductivity of epoxy matrix nanocomposites. Pristine epoxy depicted a low
thermal conductivity. Consistent with the results, graphene-based nanofillers were found
to be more effective in enhancing the thermal transport properties of the epoxy matrix
than other nanofillers like a carbon nanotube, carbon black, and a graphite nanoplatelet.
The reason seemed to be the higher aspect ratio of a graphene nanofiller as compared to
other carbon nanofillers used. Moreover, the epoxy/graphene nanocomposite had a higher
interfacial thermal resistance in epoxy–graphene, leading to a high thermal conductivity.
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The imperative principles to choose a nanofiller for designing polymeric nanocom-
posites include [115] (i) the aspect ratio, size, and dimensions according to the desired
end application; (ii) inherent structural properties and physical aspects of the nanofiller;
(iii) the price of the nanofiller; (iv) the facile preparation process; and (v) functionalization
and property enhancement capability. According to the end use, the nanofiller dimen-
sions and inherent properties must be considered to minimize agglomeration with the
increasing nanofiller loading. This will also promote a better compatibility between the
matrix and nanofiller. For example, a selected non-modified one-dimensional nanofiller
can be more easily aggregated than a better dispersed and functionalized two-dimensional
or zero-dimensional nanofiller. In other words, the aspect ratio, size, and dimensions of
the nanofiller must be considered, because changing these factors significantly affects the
surface interactions with the matrix, interface formation, dispersion, etc. Therefore, an ap-
propriate choice of nanofiller may help to reduce aggregation problems and achieve a safe
percolation threshold value at low nanofiller loading. The selection of a particular polymer
for nanofiber formation mainly depends upon its cost and controllable properties [116].
There are various types of polymers available under the categories of thermoplastic and
thermosets. While selecting a polymer, factors like the molecular weight, surface to volume
proportion, elasticity, porosity, wettability, and surface charge of the resulting nanofiber are
usually considered.

Various application areas have been identified for polymer/nanocarbon nanocompos-
ite nanofibers [117]. Importantly, these nanocomposite nanofibers have been applied in or-
ganic photovoltaic devices [118,119]. In bulk heterojunction, poly(3-hexylthiophene):phenyl-
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C61-butyric acid methyl ester-derived nanofibers were applied and led to an impressive
power conversion efficiency of >5% [120]. The high photovoltaic performance was ac-
credited to the formation of a donor–acceptor interface along with a penetrating charge
transportation network in the nanofibers [121,122]. Kurniawan and co-researchers [123]
developed nanofibers of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester. Both
thermally annealed and non-annealed nanofibers were prepared. Figure 10 illustrates cur-
rent density–voltage (J-V) features of the thermally annealed and non-annealed nanofibers.
The photovoltaic properties of the thermally annealed and non-annealed nanofibers were
studied and compared. Accordingly, the short circuit current density of the non-annealed
sample was found to be lower around ~4.56 mA/cm2, which was increased to 8.57 mA/cm2

after annealing. The annealed nanofiber-based device had higher J-V characteristics, due to
a superior charge transportation. The results led to a higher power conversion efficiency of
the annealed nanofiber-based solar cell (~3.57%), relative to the non-annealed one (~1.08%).
Hence, the solar cell features of the thermally annealed nanofibers were found to be visibly
increased, due to better molecular ordering and a high crystallinity attained after annealing,
relative to non-annealed nanofibers.
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Figure 10. The current density–voltage (J-V) characteristics of devices fabricated with thermally
annealed and non-annealed P3HT:PCBM and P3HT-NF:PCBM materials. P3HT:PCBM = poly(3-
hexylthiophene):phenyl-C61-butyric acid methyl ester; P3HT-NF:PCBM = poly(3-hexylthiophene)-
nanofiber:phenyl-C61-butyric acid methyl ester. NA = non-annealed; TA = thermally annealed.
Reprinted with permission from [123]. 2012, ACS.

Another important application of polymer/nanocarbon nanocomposites has been
identified for energy storage devices, especially efficient supercapacitors having high
charge storage capacities [124,125]. Carbon nanoparticles have been used as significant
constituents in supercapacitor electrodes [126]. The resulting electrodes may have a high
electron conduction, optimal porosity, and mechanical and chemical robustness. Almost all
exclusive nanocarbons (graphene, carbon nanotube, etc.) have been encompassed to form
supercapacitor components [127–129]. In this concern, numerous polymer/nanocarbon
combinations have been considered to form nanocomposite electrodes [130]. Subsequently,
Rose et al. [131] studied the polyaniline/poly(vinyl alcohol) matrix and graphene oxide-
derived nanocomposite nanofibers for supercapacitor electrodes. These nanocomposite
electrodes possess a high surface area, charge mobility, and high capacitance. Zhou and
co-workers [132] made electrospun graphene-wrapped polyaniline nanofibers. They also
formed neat polyaniline nanofibers for comparison. Figure 11 shows the specific capaci-
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tance of polyaniline and graphene-wrapped polyaniline nanofibers vs. current densities.
According to the results, the graphene-wrapped polyaniline nanofibers exposed a higher
specific capacitance of the nanocomposite nanofibers (250 Fg−1). On the other hand, the
neat nanofibers revealed a lower specific capacitance of ~175 Fg−1. It was suggested that
the synergistic effects between graphene-wrapped polyaniline significantly improved the
electron transportation through the nanocomposite system, thus increasing the capacitance
performance. In addition, the visibly higher capacitance values of the polymer/graphene
nanomaterials pointed to a better polymer–matrix compatibility and the effectiveness of
the spinning technique [133]. Nevertheless, comprehensive future surveys must be carried
out to form advanced polymer/nanocarbon-derived nanofibers aiming for supercapacitor
electrodes.
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Some further applications of polymer/carbon nanoparticle nanocomposite-resultant
nanofibers include electronics, radiation shielding, and biomedical arenas [134]. In the
field of electronics, nanocomposite materials have found wide potential [135]. However,
the functioning of electronic devices may hinder other devices, humans, and the environ-
ment due to the generation of harmful electromagnetic radiations [136]. Therefore, the
applications of nanocomposites have also been extended to shield the harmful electromag-
netic interference (EMI) radiations [137,138]. In this regard, conjugated polymers such as
polyaniline-derived nanofibers have been applied to shield the EMI radiations [139,140].
Predominantly, polyaniline/carbon nanoparticle-based nanocomposite nanofibers revealed
an application to develop the EMI shields [141–143]. A design of polyaniline/graphene
nanocomposite nanofibers has been reported using the electrospinning method [144]. The
polyaniline/graphene nanofibers depicted high conductivity, high strength (179 MPa),
and considerably elevated EMI shielding effectiveness (30 dB) features. Nonetheless,
more research attempts have been found to be desirable for efficient-radiation-shielding
polymer/nanocarbon nanofibers [145,146].

Biomedical fields define other significant application areas of polymer nanofibers [147].
Various polymer and carbon nanoparticle-derived nanofibers have been produced for this
purpose [148–150]. Electrospun poly(vinyl alcohol))/graphene nanocomposite
nanofibers [151,152] and poly(D, L-lactic-co-glycolic acid)/graphene oxide nanocomposite
nanofibers have been observed for the fabrication of tissue engineering scaffolds [153,154].
However, this field demands the explorations of more innovative design combinations
of biodegradable polymers and nanocarbon nanoparticles [155,156]. The anti-microbial
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features of electrospun chitosan/nanocarbon nanocomposite nanofibers have been ob-
served [157,158]. These nanocomposite nanofibers need to be further explored in this area
to reveal the technical biomedical potential [159].

Nanofiber-based materials have a number of advantages as compared to the polymeric
or composite material in a film, precipitate, or other forms. Most importantly, nanofibers
have high surface area, formability, and porosity properties. Consequently, spinning tech-
niques may produce nanofibrous structures having various sizes and shapes to attain
specific designs and functions, which have not been observed in nonfibrous polymeric
materials. Electrospun as well as non-electrospun nanofibers have been utilized in wa-
ter treatment technology due to a multitude of stimulating features like a high specific
surface area, precise porosity, mechanical strength, functionalization aptitude, cost effec-
tiveness, and energy reserves [160]. The surface engineering of nanofibrous membranes
may further enhance the performance towards water purification. In addition, nanofibers
possess multiscale topography, penetrability, and mechanical properties suitable for techni-
cal applications like tissue engineering scaffold formation [161,162]. Well-aligned nanofiber
arrangement can effectively progress the strength and elasticity properties of the nanoma-
terial. Similarly, small-sized pores along with high surface area and surface properties of
nanofibers led to an application in wound healing. Here, finely porous nanofibers allow for
the water/oxygen exchange, hinder the infiltration of microorganisms, as well as eliminate
metabolic wastes. Fine examples can be observed in the form of polymer nanofibers with
silver and gold nanoparticles [163,164]. The application of optimally permeable nanocom-
posite nanofibers has also been observed in packaging applications especially for food and
pharmaceuticals [165].

7. Future and Conclusions

In this state-of-the-art overview, the electrospinning approach has been well thought out
as a major technique to form polymer and nanocarbon-derived nanocomposite nanofibers.
Among various spinning and non-spinning nanocomposite and nanofiber formation tech-
niques, electrospinning has been considered as the most efficient method to form well-
aligned, homogeneously dispersed, and high-efficiency nanostructures for practical appli-
cations. In this regard, various combinations of the polymer and nanocarbon nanofillers
processed using electrospinning have been surveyed. Electrospinning has been used to
form nanofibers from a solution or melt precursors. Here, nanoparticle dispersion in the
nanofibers defines the microstructure, homogeneity, scattering, and surface features. The
nanofiller dispersion as well as electrospinning parameters (polymer solution concentration,
flow rate, voltage, etc.) must be controlled to attain the desired properties of the nanocom-
posite nanofibers. The ensuing technical areas of the polymer and carbon nanoparticles have
been recognized for supercapacitors, radiation shielding, and biomedical applications. The
enhanced electron and charge transportation has been looked at for both energy storage and
EMI shield-based devices. In this regard, the nanofiller network formation in the nanofiber
matrix was found to support charge transportation features. Here, the formation and use
of functional nanocarbon nanoparticles for supercapacitor electrodes may expose high spe-
cific capacitance values. Similarly, the functional nanocarbon in nanofibers may lead to a
high electron conductivity to better interact with incoming EMI radiations for absorption
or dissipation. Parenthetically, future attempts are desirable to develop novel advanced
materials in the field of supercapacitors and radiation shields. In biomedical applications,
few suitable polymer/nanocarbon designs have been observed for tissue engineering and
antimicrobial materials. Above and beyond, several technical areas remain uncharted
for polymer/nanocarbon nanocomposite nanofibers including space, auto, engineering,
smart textiles, and so on. Here, major encounters have been found to be connected to the
nanocarbon dispersal, functionalization, and controlling of electrospinning parameters.

Henceforth, this article offers a technical outlook on electrospun polymer/nanocarbon
nanocomposite nanofibers. In this concern, the electrospinning approach as well as the
design, microstructure, and physical properties of nanocomposite nanofibers were dis-
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cussed. The major applications of polymer/nanocarbon nanocomposite nanofibers were
found in the sectors of energy storage, radiation shielding, and biomedical. Despite of
the progress in this field so far, polymer/nanocarbon nanocomposite nanofibers must be
further explored for optimum manufacturing parameters and new design possibilities to
overwhelm the associated challenges.
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