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Abstract: The process-induced deformation (PID) during the manufacturing of thermosetting com-
posite materials can significantly compromise manufacturing precision. This paper introduces an
innovative method that combines a finite element analysis (FEA), feature classification algorithms,
and an Artificial Neural Network (ANN) framework to rapidly predict the PID of a typical L-shaped
structure. Initially, a comprehensive range of parameters that influence PID are compiled in this
research, followed by the generation of a dataset through FEA considering viscoelastic constitu-
tive models, validated by experimental results. Influential parameters are classified using Random
Forest and LASSO regression methods, with each parameter rated according to its impact on PID,
delineating their varying degrees of importance. Subsequently, through a hyperparameter analysis,
an ANN framework is developed to rapidly predict the PID, while also refining the assessment of
the parameters’ significance. This innovative approach achieves a computational time reduction of
98% with less than a 5% loss in accuracy, and highlights that under limited computational conditions,
considering only a subset or all of the parameters—the peak temperature, corner angle, coefficient of
chemical shrinkage, coefficient of thermal expansion, curing pressure, and E1—minimizes accuracy
loss. The study demonstrates that machine learning algorithms can effectively address the challenge of
predicting composite material PID, providing valuable insights for practical manufacturing applications.

Keywords: process-induced deformation; finite element analysis; process simulation; ANN framework

1. Introduction

With the increasing application of carbon fiber-reinforced resin matrix composites
(CRFPs) in aerospace, automotive, construction, and energy industries, the challenges of
residual stress and structural deformation in the manufacturing process are growing promi-
nent. This process-induced deformation (PID) can even lead to scrapped parts, resulting in
high production costs. In early studies [1–3], the researchers spent a lot of effort to study
the mechanism of part deformation during the curing process, thereby transforming the
high-cost trial-and-error experiment optimization process into low-cost theoretical and
numerical simulation methods [4,5]. The PIDs of L-shaped composite laminates have been
investigated by numerous scholars [6–8]; introducing PID of structures with curvature
is caused by different curing strains inside and outside the plane and structural design
parameters, such as the curing temperature [9], layup sequence [10], corner angle [11],
thickness [12], and tool–part interaction [13]. Incorporating all relevant parameters in
PID calculations using FEA presents challenges such as extended computation times and
convergence issues [14]. This highlights the inherent limitations of FEA methods in solving
PID problems. A key challenge in engineering practice is selecting which parameter to
prioritize to balance computational cost and accuracy [15]. Therefore, it is essential to rank
the importance of these parameters.
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With the rapid development of computer technology and artificial intelligence, ma-
chine learning (ML) can replace the traditional solution of many scientific research and
engineering problems in an efficient method [16]. In the field of composite materials re-
search, many scholars have successfully used machine learning methods to solve problems.
The PID of asymmetric ply laminates was predicted by ANN, using the dataset calculated
by FEM for training [17]. By using a decision tree regression model, the elastic modulus of
individual fibers can be predicted based on the macroscopic modulus [18]. Recent studies
have shown that smart sampling strategies, such as active learning and intelligent sampling,
can significantly influence the predictive accuracy of machine learning models by efficiently
utilizing data [19,20]. By selecting the most informative data points and applying a random
number generator for each feature, defined by minimum and maximum values and a
specified number of points within the interval or a step size, these strategies can reduce the
required data volume and enhance model performance, which is particularly beneficial
when dealing with limited or costly data acquisition. It is possible to divide the types of
PID results of asymmetric composite laminates with different layup sequences, and realize
the classification of curing results [21]. The potential influencing parameters of PID are
numerous. In traditional analytical or numerical simulation methods, despite attempts to
comprehensively account for all these parameters, there remain inherent limitations that
cannot be entirely mitigated [15]. The feature selection algorithm can quantitatively obtain
each parameter’s influence degree of PID in order to distinguish the main parameters [22].
The directional influence degree and value range of each influencing parameter were
discussed from the perspective of existing research findings and manufacturing experience.

In this paper, the input variables are reasonably selected or established according to
theoretical knowledge, and this work proposes an appropriate machine learning algorithm
to solve the problem of PID prediction. Firstly, all the parameters affecting the PID of an
L-shaped structure are systematically analyzed. A finite element analysis (FEA) model is
established based on summarized parameters. By setting random parameter values, the
corresponding spring-in angle, referring to the geometric distortion that occurs during
the curing process of composite parts particularly in curved sections, is obtained, and the
acquisition of the dataset is completed. Based on the obtained dataset, preliminary feature
selection is proposed through Random Forest Regression (RFR) and LASSO regression (LR),
and the important, moderately important, and unimportant features are divided according
to the relevance. In this study, an ANN framework was constructed, and the associated
hyperparameters were identified and optimized. Training and predictive tasks were
performed, leading to an adjustment of the feature classification outcomes. Furthermore,
the influence of data volume and input characteristics on the predictive efficacy of the ANN
was examined, with findings derived from various training datasets.

2. Analysis of Influential Parameters

This study summarizes and analyzes the parameters involved in the manufacturing
of composite material structures, resulting in a determination of the parameter distribution
range. All composite L-shaped structural influential parameters are shown in Figure 1. It
can be mainly divided into external and internal parameters. External parameters include
tool–part interaction and curing temperature, and internal parameters include L-shaped
structural geometric parameters and material properties.
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Figure 1. Influencing parameters of L-shape structure’s PID.

2.1. Tool–Part Interaction 
Tool–part interaction is determined by the thermal properties of the mold and the 

frictional effects. Thermal parameters of the tools refer to the coefficient of thermal expan-
sion of the mold (𝐶𝑇𝐸௧௢௢௟). The materials of tools determine the 𝐶𝑇𝐸௧௢௢௟ and are usually 
an aluminum alloy [7] (23.6 × 10−6), Q235 carbon steel [23] (12 × 10−6), Invar [6] (1.5 × 10−6),
etc. Therefore, the range of 𝐶𝑇𝐸௧௢௢௟ is 1.5 × 10−6~24× 10−6. The tool–part friction coefficient 
is usually obtained by the correction of the experiments and FEA, which cannot be ig-
nored. According to the literature, the value was selected as 0~0.6 [4].

2.2. Curing Process Parameters
Cure pressure (𝑃௖௨௥௜௡௚) causes friction between the mold and the structure. In com-

mon processes, the values of 𝑃௖௨௥௜௡௚ are 0.6 MPa [24], 0.1 MPa [25], 0.689 MPa [26], etc., 
and the value range is set as 0.1~0.7 MPa. The previous research indicates that when the
curing degree of the resin is small, the temperature change has little influence on the final 
curing deformation result [8]. Hence, it is more pertinent to concentrate on the analysis of 
peak temperature (𝑇௠௔௫) in this research context. The common values of 𝑇௠௔௫ are 450 K
[27], 453 K [28], 448 K [24], 363 K [29], 373 K [30], 438 K [31], and 422 K [32], so the value 
range is 350 K~460 K.

2.3. Geometric Parameters
The thickness of the single layer and the number of layers are the parameters that 

determine the thickness of the composite structure, and the thickness will affect the 
spring-in angle, so it needs to be considered. The common thickness of composite material 
structure is about 1~20 mm, so the thickness of the single layer is usually taken as 0.1~0.2
mm, and the number of layers can be taken as 8~100.

The most common ply angle includes [0/90/45/-45] plies. Other angles are rarely used, 
and these four angles are sufficient to cover the possible plies.

The ply ratio and stacking sequence affect the stiffness and residual stress distribu-
tion of the composite structure. The layer ratio is the proportion of each layer, including 
four parameters in total. The stacking sequence is not a continuous variable, so it is 

Figure 1. Influencing parameters of L-shape structure’s PID.

2.1. Tool–Part Interaction

Tool–part interaction is determined by the thermal properties of the mold and the
frictional effects. Thermal parameters of the tools refer to the coefficient of thermal ex-
pansion of the mold (CTEtool). The materials of tools determine the CTEtool and are
usually an aluminum alloy [7] (23.6 × 10−6), Q235 carbon steel [23] (12 × 10−6), Invar [6]
(1.5 × 10−6), etc. Therefore, the range of CTEtool is 1.5 × 10−6~24 × 10−6. The tool–part
friction coefficient is usually obtained by the correction of the experiments and FEA, which
cannot be ignored. According to the literature, the value was selected as 0~0.6 [4].

2.2. Curing Process Parameters

Cure pressure (Pcuring) causes friction between the mold and the structure. In common
processes, the values of Pcuring are 0.6 MPa [24], 0.1 MPa [25], 0.689 MPa [26], etc., and the
value range is set as 0.1~0.7 MPa. The previous research indicates that when the curing
degree of the resin is small, the temperature change has little influence on the final curing
deformation result [8]. Hence, it is more pertinent to concentrate on the analysis of peak
temperature (Tmax) in this research context. The common values of Tmax are 450 K [27],
453 K [28], 448 K [24], 363 K [29], 373 K [30], 438 K [31], and 422 K [32], so the value range
is 350 K~460 K.

2.3. Geometric Parameters

The thickness of the single layer and the number of layers are the parameters that
determine the thickness of the composite structure, and the thickness will affect the
spring-in angle, so it needs to be considered. The common thickness of composite mate-
rial structure is about 1~20 mm, so the thickness of the single layer is usually taken as
0.1~0.2 mm, and the number of layers can be taken as 8~100.

The most common ply angle includes [0/90/45/−45] plies. Other angles are rarely
used, and these four angles are sufficient to cover the possible plies.

The ply ratio and stacking sequence affect the stiffness and residual stress distribution
of the composite structure. The layer ratio is the proportion of each layer, including
four parameters in total. The stacking sequence is not a continuous variable, so it is
necessary to change the stacking sequence information into a continuous variable through
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transformation. This transformation needs to fully reflect the stacking sequence information.
In classical laminate theory, the stress–strain of a laminate is calculated by the laminate
stiffness matrix: [

N
M

]
=

[
A B
B D

][
ε
κ

]
(1)

This total matrix can be calculated using the material stiffness invariant U and 12 lam-
inate parameters [33]:
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The material stiffness invariant U and stiffness property Q are calculated by
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where E11 is the axial modulus of the single-layer plate, E22 is the transverse modulus of the
single-layer plate, G12 is the shear modulus of the single-layer plate, and ν12 is the principal
Poisson’s ratio of the single-layer plate. These 12 laminate parameters are calculated by the
following formula:

ξk
1

ξk
2

ξk
3

ξk
4

 =
∫ h

2

−
h
2

Zk
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cos2θ
cos4θ
sin2θ
sin4θ

dz, k = A, B, D,


ZA = 1/h
ZB = 4 z/h2

ZD = 12 z2/h3
(7)

where θ denotes the ply direction at the z-position of the thickness (the origin of the z-
direction coordinate is the mid-plane). Both the ply ratio and the stacking sequence can be
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automatically calculated from the known plies, so their corresponding input variables are
the specific ply settings.

The corner angle and corner radius are both geometrical parameters of composite
structures, and previous studies have demonstrated that the corner angle has a certain
influence on PID, while the corner radius has little effect [23,34]. Therefore, the value range
of the corner angle is 10~170 degrees, and the influence of the corner radius is ignored.

2.4. Material Properties

The thermal parameters for a single layer in the curing process include CTE and the
coefficient of chemical shrinkage (CCS). The CTE can be considered constant throughout the
curing process [8,35]. Based on commonly used composite laminate parameters, the CTE
of a single layer ranges from α1 = −1 × 10−6~1 × 10−5, α2 = 1 × 10−6~1 × 10−4 [17].
The CCS is also an important parameter to consider, and previous studies have ob-
tained values of the single-layer chemical shrinkage as β1 = −167, β2 = −8810 [27]; and
β1 = −800, β2 = −16,000 [36]. In this study, the range of the single-layer CCS is taken as
(β1 = −800~−100, β2 = −20,000~−5000).

The mechanical parameters of a single layer after curing primarily have a significant
impact during the cooling stage. There are five independent parameters, values ranging from
E1 = 10~260 GPa, E2 = 1~20 GPa, G12 = 1~10 GPa, G23 = 1~10 GPa, and ν12 = 0.3~0.4 [17].

The selection of the mechanical constitutive relationship of a single-layer plate can im-
pact the accuracy of the calculations. In accordance with prior research results, a simplified
viscoelastic constitutive model considering stress relaxation was selected [37], where the
viscoelastic parameters are based on epoxy resin system 3501-6 as a reference.

In conclusion, the ANN model in this study encompasses 29 input parameters with
their respective ranges as partly indicated in Table 1. The broad ranges of the input variables
increase the diversity of the training data, which helps the ANN model to generalize better
and make accurate predictions across different conditions. However, it also requires the
model to capture more complex relationships between variables, which we addressed by
optimizing the network architecture and training parameters.

Table 1. Ranges of Input Parameters.

Parameters Minimum Maximum

CTEtool 1.5 × 10−6 24 × 10−6

Tool–part interaction 0 0.6
Pcuring 0.1 MPa 0.7 MPa
Tmax 350 K 460 K

Single-layer thickness 0.1 mm 0.2 mm
Number of plies 8 100

Ply angle 0/90/±45
Corner angle 10◦ 170◦

Single layer

CCS1 −800 −100
CCS2 −20,000 −5000

E1 10 GPa 260 GPa
E2 1 GPa 20 GPa

G12 1 GPa 10 GPa
G23 1 GPa 10 GPa
ν12 0.3 0.4

CTE1 −1 × 10−6 1 × 10−6

CTE2 1 × 10−6 1 × 10−6

3. Dataset Based on FE Simulation

This study utilizes ABAQUS 6.13 software to simulate the residual stress and PID of
an L-shaped structure. Due to the limitations of shell elements in capturing the material
behavior in the thickness direction, three-dimensional solid elements are adopted to model
and calculate the PID of composite laminates [4]. In this study, the composite structure is
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simulated using C3D20R second-order reduced-integration 3D solid elements, while the
mold elements are modeled using C3D8R first-order linear reduced-integration 3D solid
elements. The analysis step is a “Static, general” step, and after curing, the tool is removed
using the “Model Change” feature to complete the demolding process. The material
properties are implemented through user-defined subroutines UMAT and UEXPAN. The
FEA model, as shown in Figure 2, is thus established.
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Figure 3 illustrates the modeling process, specifying the relevant modeling content for the 
random input parameters. A total of 11,000 data samples were generated for the purpose 
of facilitating subsequent discussions.

Figure 2. L-shape structure FE model.

The input parameters are randomly generated according to a uniform distribution.
Owing to the significant number of iterations involved in FEA and the requirement for
remeshing the model with newly generated random input parameters, a Python script
was devised to automate the procedure of input parameter generation and simulation.
Figure 3 illustrates the modeling process, specifying the relevant modeling content for the
random input parameters. A total of 11,000 data samples were generated for the purpose
of facilitating subsequent discussions.

The dimensions of the FEA model established in this study are consistent with the
experimental setup described in the literature [38]. Furthermore, the FEA model used in
this study was validated in a previously published paper [38] by other researchers from
our research group.

The dimensions of the FEA and experimental models are shown in Figure 4. After
comparing with other researchers’ experimental results [6,39], apart from the [90]24, where
the actual spring-in deformation is minimal, making the error appear less precise, the
deviation between the FEA data and experimental data is less than 10%, demonstrating
that the dataset generated by the FEM is viable. The data are presented in Table 2. “Error”
in Table 2 refers to the error compared to the experiment. For details regarding the input–
output ranges and related discussion, please refer to Appendix A.
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Figure 4. The dimensions of the FEA and experimental models.

Table 2. Comparison of curing spring-in angles between FEA and Experimental Data.

Part 
Number Layup

Thickness
(mm)

Corner 
Angle ሺ°ሻ ∆𝜽 ሺ°ሻ

ErrorExp FEA CHILE Model
[39]

1 [0]24 3 60 1.37 1.29 1.71 5.84%
2 [90]24 3 60 0.23 0.08 0.08 65.2%
3 [45/90/-45/0]2s 2 60 1.84 2.08 2.40 7.61%
4 [45/90/-45/0]3s 3 60 1.81 1.68 2.03 7.18%
5 [45/90/-45/0]3s 3 90 1.32 1.39 1.64 5.30%

4. ANN Dataset Preprocessing
4.1. Data Normalization

Data normalization is necessary to eliminate the influence of dimensions between 
features before importing into an ANN. For the input parameters, the features have var-
ying dimensions, which can affect their comparability. To mitigate this issue and ensure 
the consistency of the data, the input features are normalized to eliminate the influence of 
differing dimensions. As the output data consist solely of spring-in angles, which are di-
rectly comparable, normalization is applied exclusively to the input features. Commonly 
used normalization techniques include the min–max normalization method and the 
standardization method [21]. In this study, we employed the min–max normalization 
method for data preprocessing. Since our feature data were generated using Monte Carlo 
simulation with a uniform distribution, this method is appropriate for scaling the data 
effectively without being influenced by noise or outliers.

4.2. Feature Selection
Prior to training ANN, feature selection is beneficial in simplifying the model, reduc-

ing computational costs, and decreasing the risk of overfitting [18]. In this study, feature 
selection was performed to categorize numerous influencing parameters into important, 
moderately important, and unimportant features. The impact of these three types of fea-
tures on model accuracy was investigated to obtain the optimal training scheme for com-
paring the number of input parameter types, input data quantity, and prediction accuracy. 
In machine learning, commonly used selection techniques include RFR and LASSO algo-
rithms.

4.2.1. Regression Feature Selection of Random Forest
To investigate the influence of data quantity on RFR, different volumes of datasets
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Table 2. Comparison of curing spring-in angles between FEA and Experimental Data.

Part Number Layup Thickness (mm) Corner Angle (◦)
∆θ (◦)

Error
Exp FEA CHILE Model [39]

1 [0]24 3 60 1.37 1.29 1.71 5.84%
2 [90]24 3 60 0.23 0.08 0.08 65.2%
3 [45/90/−45/0]2s 2 60 1.84 2.08 2.40 7.61%
4 [45/90/−45/0]3s 3 60 1.81 1.68 2.03 7.18%
5 [45/90/−45/0]3s 3 90 1.32 1.39 1.64 5.30%

4. ANN Dataset Preprocessing
4.1. Data Normalization

Data normalization is necessary to eliminate the influence of dimensions between
features before importing into an ANN. For the input parameters, the features have varying
dimensions, which can affect their comparability. To mitigate this issue and ensure the
consistency of the data, the input features are normalized to eliminate the influence of dif-
fering dimensions. As the output data consist solely of spring-in angles, which are directly
comparable, normalization is applied exclusively to the input features. Commonly used
normalization techniques include the min–max normalization method and the standardiza-
tion method [21]. In this study, we employed the min–max normalization method for data
preprocessing. Since our feature data were generated using Monte Carlo simulation with a
uniform distribution, this method is appropriate for scaling the data effectively without
being influenced by noise or outliers.

4.2. Feature Selection

Prior to training ANN, feature selection is beneficial in simplifying the model, reducing
computational costs, and decreasing the risk of overfitting [18]. In this study, feature
selection was performed to categorize numerous influencing parameters into important,
moderately important, and unimportant features. The impact of these three types of
features on model accuracy was investigated to obtain the optimal training scheme for
comparing the number of input parameter types, input data quantity, and prediction
accuracy. In machine learning, commonly used selection techniques include RFR and
LASSO algorithms.

4.2.1. Regression Feature Selection of Random Forest

To investigate the influence of data quantity on RFR, different volumes of datasets
were used as input data to complete selection, with the range of data group numbers from
1000 to 11,000. The process of RFR is shown in Figure 5. The data were randomly divided
into a 70% training dataset and 30% testing dataset for training.

The results are further presented in a dot plot in Figure 6 to provide a more intuitive
visualization of the feature importance. Several features, such as Tmax, the corner angle,
CCS2, CTE2, Pcuring, and E1, demonstrated large importance indicators, and were identified
as important features in this study.

Although the importance values of certain features are relatively small, they still
exhibit some degree of influence. For a dataset size of 11,000, we define features with
importance values greater than or equal to 0.004 among the remaining features as ‘mod-
erately important features’. These include the CTEtool , tool–part interaction, single-layer
thickness, number of plies, 90◦ ply ratio, laminate parameter B2, CCS1, E2, ν12, G12, G23,
and CTE1. Features with minimal importance scores, which contribute negligibly to the
prediction outcomes, are considered ‘unimportant features’. These include the 0/45/−45
ply ratio and laminate parameters A1, A2, A3, B1, B3, C1, C2, and C3. Overall, the feature
selection analysis provided valuable insights into the relative importance of the features
for predicting the target variable, and the results can guide the further optimization of the
predictive models in this domain.
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4.2.2. Lasso Regression Feature Selection

The Lasso (Least Absolute Shrinkage and Selection Operator) method is a compression
estimation technique that operates on the principle of reducing the dataset (dimensionality
reduction). It introduces an L1-norm penalty term in the loss function to prevent the
coefficients of the feature variables from being too large and causing overfitting. The loss
function of Lasso regression is given by

min
1

2n

n

∑
i=1

(ŷi − yi)
2 + λ

k

∑
j=1

∣∣wj
∣∣ (8)

In the given equations, n denotes the number of samples, ŷi represents the predicted
value of the i-th sample, y denotes the true value of the sample, k is the number of features,
and wj represents the coefficient of j. The parameter λ controls the degree of regularization
in the loss function. It is essential to note that the sparsity matrix property resulting
from L1-norm regularization allows for selection, which is a widely used technique in
machine learning.

In order to investigate the impact of the amount of data on feature selection in LASSO,
the dataset consisting of 1000–11,000 groups of input data was utilized. The process of
LASSO is illustrated in Figure 7. The λ was selected and used for training to obtain the
coefficients of each feature. For each λ, the dataset was randomly partitioned and trained
five times, and the average value was taken as the feature coefficient result.
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After calculation, the feature classification results for different data volumes are shown
in Table 3, where A represents important features, B represents moderately important
features, and C represents unimportant features. The specific numerical values of the
coefficients for each feature are affected by different data volumes, and the results tend to
stabilize as the data volume increases. We take the result of the selection using LASSO with
a data volume of 11,000 as a reference.

Table 3. Results of LASSO selection.

Parameters
Dataset Volume

1000 3000 5000 7000 9000 11,000

CTEtool B B B C C B
Tool–part interaction B B C C C C

Pcuring A A A A A A
Tmax A A A A A A

Ply thickness B B B B C B
Ply number B B B B B B

0◦ proportion B C B B C C
90◦ proportion C C C C B B
45◦ proportion C C C C C C
−45◦ proportion C B C C C C

Parameter A1 C C B B B B
Parameter A2 C C C C C C
Parameter A3 B B C C C C
Parameter B1 B B C C C C
Parameter B2 B C B C B B
Parameter B3 C C C C C C
Parameter C1 B C C C C C
Parameter C2 B B B B B B
Parameter C3 C C C C C C
Corner angle A A A A A A

CCS1 B B B B B B
CCS2 A A A A A A

E1 A B B B B B
E2 B B B B B B
v12 B C B C C B
G12 B B B B B B
G23 A B B B B B

CTE1 B B B B B B
CTE2 A A A A A A

4.2.3. Feature Classification Results

Both the RFR algorithm and LASSO algorithm can obtain the importance indicators
of features, and have certain dependencies on data volume. The results of RFR and
LASSO algorithms are mostly consistent, with some differences in the classification of
certain features. Combining with a theoretical analysis, a reasonable classification is finally
determined. The results obtained in this study are consistent with those derived from
theoretical and experimental methods reported in the literature [40].

For important features, the common results of the two algorithms are Tmax, the corner
angle, CCS2, CTE2, and Pcuring. In the RFR algorithm, E1 is considered to have a greater
importance. Theoretically, E1 mainly determines the bending stiffness of the L-shaped
structure. As analyzed in the previous text, when considering the frictional effect, the
structural bending stiffness will affect the final rebound deformation result. Therefore, E1
should be regarded as an important parameter. The Tmax dictates the magnitude of cooling,
which directly influences the thermal stress during the curing process and consequently
contributes to deformation. The corner angle significantly affects the initial geometric
configuration and is a critical factor in determining the curing spring-in behavior; for
instance, if the angle increases to 180 degrees, the structure transforms into a flat plate,
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and no internal stress would develop in symmetrically balanced laminates. The CCS2 and
CTE2 govern the differential shrinkage between the in-plane and out-of-plane surfaces
of the L-shaped structure, serving as the primary drivers of PID. Additionally, the Pcuring
determines the extent of interaction between the tool and the L-shaped structure, intro-
ducing shear effects that influence the magnitude of the spring-in angle. These factors,
from a theoretical standpoint, represent the key influences on the spring-in deformation in
L-shaped structures.

For moderately important features, the common results of the two algorithms are
CTEtool , single layer thickness, the number of layers, B2 of layer composite board param-
eters, CCS1, E2, v12, G12, G23, and CTE1. LASSO considers 90-degree layer proportion,
A1 of layer composite board parameters, and C2 of layer composite board parameters
as moderately important features. All these are considered as moderately important in
this paper.

For unimportant features, their impact on PID can be neglected. That is, most of the
layer proportion information and layer sequence information have little impact on PID. In
summary, the classification results are shown in Table 4.

Table 4. Results of feature classification.

Categorization Features Amount

Important Tmax, corner angle, CCS2, CTE2, Pcuring, E1 6

Moderately Important

CTEtool , tool–part interaction,
single-layer thickness, number of plies,

90◦ ply ratio, laminate parameter A1, B2,
C2, CCS1, E2, ν12, G12, G23, CTE1

14

Unimportant 0/45/−45 ply ratio, laminate parameter
A2, A3, B1, B3, C1, C3 9

5. ANN Framework

The ANN mainly refers to several parameters. In this study, the key parameters of
the ANN were determined by referring to the research results of other scholars [17] and by
using the method of controlling variables. This study employed a neural network with a
dropout rate of 0.5, which effectively alleviates overfitting and enhances model robustness,
and also explored other techniques, such as a weight penalty and batch normalization, but
found dropout to be the most effective.

In this study, the loss function was chosen as Mean Squared Error (MSE), with mean
absolute error (MAE) and r2 used as evaluation metrics.

5.1. Hidden Layer

Initially, we compared the results of a single hidden layer and a two-hidden-layer
network, each with 100 fully connected neurons per layer, using the most important and
second most important features as input. The dataset consisted of 7000 samples, and the
results are shown in Figure 8. It can be seen that for our research case, the two-hidden-layer
network is still too complex, resulting in severe overfitting and lower accuracy compared
to the single-hidden-layer network. Therefore, we chose the single-hidden-layer network
as our research model. The remaining overfitting phenomenon will be further addressed
later in the paper.
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Figure 8. Results of different hidden layers. (a) Single hidden layer; (b) 2 hidden layers.

5.2. Number of Neurons

To select an appropriate number of neurons, a single-layer ANN model with a neuron
range of 5–75 was established, with the same settings as above. The results are shown
in Figure 9, the line refers to r2. It can be seen that due to the simplicity of the data, the
most suitable number of neurons is around 10. When the number of neurons is larger, the
complexity of the model increases, leading to overfitting and a decrease in accuracy. When
the number of neurons is smaller, the overfitting phenomenon is almost non-existent, but
the predictive ability of the model is low, resulting in decreased accuracy. Therefore, this
study selected 10 neurons as the ANN model parameter.

J. Compos. Sci. 2024, 8, 455 14 of 23 
 

 

To select an appropriate number of neurons, a single-layer ANN model with a neu-
ron range of 5–75 was established, with the same settings as above. The results are shown 
in Figure 9, the line refers to 𝑟ଶ. It can be seen that due to the simplicity of the data, the 
most suitable number of neurons is around 10. When the number of neurons is larger, the 
complexity of the model increases, leading to overfitting and a decrease in accuracy. When 
the number of neurons is smaller, the overfitting phenomenon is almost non-existent, but 
the predictive ability of the model is low, resulting in decreased accuracy. Therefore, this 
study selected 10 neurons as the ANN model parameter. 

 
Figure 9. Results of the number of different neurons. 

5.3. Activation Function and Optimizer 
In this study, the linear activation function was chosen for the output layer, while the 

hidden layer was selected from the four types mentioned above. The calculation results 
are shown in Figure 10. It can be seen that except for the linear activation function, the 
other three activation functions have little effect on the results. Based on the results, this 
study selected ReLU as the activation function for the ANN model. 

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

30 neurons 75 neurons

10 neurons

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

Epoch

 Train
 Validation

r2=0.919

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

Epoch

 Train
 Validation

r2=0.926

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

Epoch

 Train
 Validation

r2=0.857

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

Epoch

 Train
 Validation

r2=0.904

r2

Number of neurons

5 neurons

Figure 9. Results of the number of different neurons.

5.3. Activation Function and Optimizer

In this study, the linear activation function was chosen for the output layer, while the
hidden layer was selected from the four types mentioned above. The calculation results are
shown in Figure 10. It can be seen that except for the linear activation function, the other
three activation functions have little effect on the results. Based on the results, this study
selected ReLU as the activation function for the ANN model.
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Considering the complexity and generalization requirements of the model in this
study, using the controlled variable method, the most suitable optimizer was selected from
the above optimizers. The compared results of optimizers are shown in Figure 11. Based
on the results, this study selected Adam as the ANN model optimizer.
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The final ANN consists of one hidden layer with 10 neurons. ReLU was selected as
the activation function for the hidden layer and the linear activation function was selected
for the output layer. The Adam optimizer was chosen as the optimization algorithm for the
model. The schematic diagram of the ANN architecture is illustrated in Figure 12.
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6. Results and Discussion
6.1. Feature Analysis

In the previous section, feature selection was performed to classify all input features
into three categories. However, the classification of some of the less important features was
not entirely accurate. To further classify useful and useless features within the moderately
important features, this study employed the previously optimized architecture to ensure
accuracy. A model was trained and tested using only the important features as a benchmark.
Subsequently, each moderately important feature was added to the important features
as a shared input, and the accuracy of the training and prediction for each combination
was evaluated. The results of this analysis, based on a data volume of 5000, are shown in
Figure 13. The prediction accuracy using only the important features was 0.968. However,
the inclusion of the 90◦ layup ratio, laminate parameter C2, and material property parameter
E2 significantly improved the accuracy of the results and reduced the random fluctuations
in the results. Therefore, these three features were retained as moderately important
features. The introduction of other features decreased the accuracy of the results and was
considered as noise. In this section, the importance of individual features was assessed by
incrementally combining each feature with feature A, resulting in the formation of new
feature groups. The impact of different groupings (A/A + B/A + B + C) on prediction
accuracy will be discussed in detail in Section 6.2.1.
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In summary, only the 90◦ ply angle ratio, the C2 laminate parameter, and the E2 were
classified as moderately important. The reclassified features are shown in Table 5. When
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the data volume was 5000, the accuracy increased to 0.979 when using important features
with moderately important features.

Table 5. Recategorization of Feature Parameters.

Categorization Features Amount

Important Tmax, corner angle, CCS2, CTE2, Pcuring, E1 6
Moderately Important 90◦ ply ratio, laminate parameter C2, E2 3

Unimportant

CTEtool , tool–part friction, single-layer
thickness, number of plies, 0/45/−45
ply ratio, laminate parameter A1, B2,

A2, A3, B1, B3, C1, C3,
ν12, G12, G23, CTE1, CCS1

20

6.2. Influence of Data Volume and Input Features of ANN

Based on the redefined feature categories, the influence of data volume and input
features on the accuracy of the ANN model’s prediction results was studied. Training was
conducted using three different input features, namely, A, A + B, and A + B + C, at different
data volumes ranging from 200 to 8000 input data values. During training, 60% of the data
were used for training, 20% for validation, and 20% for testing. To avoid the impact of
randomness, each training was conducted five times, and the average value was taken as
the final result. The analysis was conducted from three aspects, namely prediction accuracy,
learning curves, and computational time.

6.2.1. Predictive Accuracy

The average predictive accuracy and fluctuation of further partitioning of the sec-
ondary features across different data volumes and input characteristics are depicted in
Figure 14.
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When the input feature is A (important), the model’s prediction accuracy can reach a
relatively high level with a small amount of data, indicating that the selected important
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feature is indeed the main information determining the L-shaped structure rebound de-
formation. Additionally, with fewer inputs, the required training data are also relatively
small. The accuracy stabilizes above 0.90 when the data volume reaches around 1000,
and eventually stabilizes at around 0.96. This suggests that accurate models can be ob-
tained with relatively small amounts of data when there are a small number of important
input features.

When the input features are A + B (important and moderately important features),
compared with the case where the input is only A, the dependence on the data volume
increases due to the addition of more input. The prediction accuracy is lower than that
of the case where the input feature is only A when the data volume is less than 1000.
However, as the data volume continues to increase, its accuracy gradually increases, and
eventually exceeds that of the case where the input is only A, stabilizing at around 0.97.
The introduction of the secondary important feature improves the model’s accuracy, but in
this case, the data volume requirement is higher.

When the input features are A + B + C (important, moderately important, and unim-
portant features), compared with the previous two cases, an irrelevant feature is introduced,
which not only increases the dependence on the data volume but also reduces the model’s
prediction accuracy, stabilizing at around 0.94 even with a large amount of data. This
suggests that introducing irrelevant features may decrease the model’s prediction accuracy
and increase its fluctuation.

Overall, in terms of data volume, the results show that the accuracy of the model’s
prediction results continues to improve as the input data volume increases, and the fluc-
tuation gradually decreases, particularly when the data volume is small. The accuracy
improvement is not significant when the data volume is large, and the accuracy stabilizes at
a certain value. Regarding the input, important features can already achieve high prediction
accuracy, and the addition of moderately important features can further improve accuracy,
although the improvement is small. However, introducing irrelevant features can reduce
the accuracy of the model’s prediction results and increase its fluctuation.

6.2.2. Learning Curves

The learning curves for different data volumes and input features are shown in
Figure 15. The figure illustrates the training and validation mean absolute error (MAE)
curves for the cases where the input is A, A + B, and A + B + C, respectively, and the
corresponding data volumes are 200, 1000, and 5000, respectively. The iteration number for
all cases is set to 5000. It can be observed that for all three cases, the training and validation
curves diverge significantly when the data volume is small, indicating the occurrence of
prediction errors, which becomes more severe as the number of inputs increases. This is
because the ANN model has poor self-correcting ability during training when the data
volume is small, i.e., the amount of information provided by the data is insufficient. When
the data volume becomes sufficiently large, the model contains enough data information
and the two curves tend to converge. Moreover, the comparison of different input features
reveals that the model always converges faster when the number of inputs is small, which
indicates that a smaller number of input features requires fewer iterations.



J. Compos. Sci. 2024, 8, 455 18 of 22J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 19 of 23 
 

 

 

Figure 15. Learning curves for different data volumes and input characteristics. 

6.2.3. Computation Time 

The average computation time for each model, based on different data volumes and 

input features, is shown in Figure 16, using an i5-7200U CPU with 16 GB of memory, and 

simultaneously using an NVIDIA 2060s GPU with 8 GB of memory for accelerated 

training. The results indicate that computation time increases almost linearly with data 

volume. Additionally, increasing the number of input features also leads to longer 

computation times, but the increase is relatively small. Therefore, the primary parameter 

affecting computation time is the data volume. 

 

Figure 16. Computation time for different data volumes and input features. 

7. Conclusions 

In this paper, an ANN is constructed to predict the spring-in deformation of L-

shaped composite structures. Utilizing a finite element analysis that incorporates a 

viscoelastic constitutive model, the dataset is generated, and an initial classification of 

features is carried out using RFR and LASSO algorithms. Subsequently, the ANN 

framework is employed to finalize the feature classification. The study also examines the 

Figure 15. Learning curves for different data volumes and input characteristics.

6.2.3. Computation Time

The average computation time for each model, based on different data volumes and
input features, is shown in Figure 16, using an i5-7200U CPU with 16 GB of memory, and
simultaneously using an NVIDIA 2060s GPU with 8 GB of memory for accelerated training.
The results indicate that computation time increases almost linearly with data volume.
Additionally, increasing the number of input features also leads to longer computation
times, but the increase is relatively small. Therefore, the primary parameter affecting
computation time is the data volume.
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7. Conclusions

In this paper, an ANN is constructed to predict the spring-in deformation of L-shaped
composite structures. Utilizing a finite element analysis that incorporates a viscoelastic
constitutive model, the dataset is generated, and an initial classification of features is carried
out using RFR and LASSO algorithms. Subsequently, the ANN framework is employed to
finalize the feature classification. The study also examines the effects of data volume and
input features on the predictive accuracy of the ANN. The main conclusions of the study
are detailed as follows:
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• Using FEA and script generation, a dataset of spring-in deformation for an L-shaped
structure was obtained, accounting for various parameters. Through the application
of classification algorithms, it was determined that the parameters with the most
significant impact on the PID analysis are Tmax, the corner angle, CCS2, CTE2, Pcuring,
and E1. Therefore, prioritizing these parameters in the analysis is crucial.

• A fundamental ANN framework, comprising a single hidden layer with 10 neurons,
achieves a predictive accuracy of at least 95% in forecasting the PID of L-shaped struc-
tures. This performance suggests that the underlying dynamics of each influencing
parameter are relatively straightforward. Moreover, as the volume of data increases,
the predictive accuracy of the model correspondingly rises while variance diminishes.
This enhancement is particularly notable in smaller datasets and tends to stabilize
once the dataset size reaches a critical threshold.

• Given the constraint of limited input parameters, utilizing only the important features
identified in the previous analysis ensures that the predictive model achieves the
highest possible accuracy. This strategy helps maintain model precision while reducing
the risk of accuracy loss associated with a smaller feature set.

• The primary parameter affecting computation time is data volume. With an increase
in data volume, the computation time almost exhibits a linear growth trend. Moreover,
an increase in input features also leads to an increase in computation time, albeit to a
lesser extent.

• Machine learning methods can be effectively applied to simulate the PID of compos-
ite structures, thereby reducing the reliance on multi-physics coupling processes in
FEA. This approach not only conserves significant computational resources but also
enhances the efficiency of the analysis. The method we have validated is expected to
be applicable to a broader range of resin formulations and composite materials.
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Appendix A

The input–output ranges are presented as shown in Table A1. By using a uniform
distribution for generating the input parameters within their specified ranges, we ensured
an even and unbiased sampling across the entire parameter space. This approach allows the
ANN model to learn from a comprehensive dataset that represents all possible combinations
within the practical limits of the variables. The ranges were selected based on industry
standards and the relevant literature to encompass the typical operating conditions for the
resins and composites studied.
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Table A1. Input–output Ranges.

Max Min

E1 259,994 10,018
E2 19,999 1007
ν12 0.393 0.3
G12 10,000 1001
G23 9998 1000

CTE1 1.00 × 10−5 −1.00 × 10−6

CTE2 1.00 × 10−4 1.01 × 10−6

CCS1 −102 −799
CCS2 −4997 −19,998

0◦ ply percent 0.965304 2.54 × 10−5

45◦ ply percent 0.98 1.13 × 10−4

90◦ ply percent 0.98 2.24 × 10−4

Tmax 459.9 350.9
Corner angle 169.9 10

Thickness 0.19 0.11
∆θ (◦) 1.65 −1.3

Below are some examples of resin formulations with glass transition temperatures
(Tg) ranging between 350 K (77 ◦C) and 460 K (187 ◦C):

1. Epoxy Resins: By modifying standard epoxy systems with additives such as butyl
glycidyl ether, the Tg can be reduced. For example, adding this modifier in various
weight percentages (up to 20 wt%) to a diglycidyl ether of bisphenol A (DGEBA)
and methylene dianiline (MDA) resin system resulted in a significant decrease in Tg,
making it more suitable for applications requiring lower-temperature flexibility [41].

2. Bio-Based Epoxy Resins: Research has developed bio-based epoxy resins that utilize
l-arginine as a curing agent. These formulations, such as Argopox-1 and Argopox-2.5,
have demonstrated a Tg around 100 ◦C. The formulations are designed for applica-
tions in fiber-reinforced composites, where low viscosity and latency are crucial for
processing [42].

3. Polyester and Polyurethane Resins: These resins can have Tg values ranging from
30 ◦C to 80 ◦C. They are suitable for adhesives and coating materials, offering good
moldability and phase separation characteristics [43].
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