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Abstract: The rising demand for energy storage systems with high power density, rapid charge/
discharge capabilities, and long cycle life has pushed extensive research into advanced materials
for supercapacitor applications. There are several materials under investigation, and among these
materials, conductive polymer composites have emerged as promising candidates due to their unique
combination of electrical conductivity, flexibility, and facile synthesis. This review provides a compre-
hensive analysis of recent advancements in the development and application of conductive polymer
composites for supercapacitor applications. The review begins with an overview of the fundamental
principles governing electrical conductivity mechanism, applications of conductive polymers and
the specific requirements for materials employed for these devices. Subsequently, it delves into
the properties of conductive polymers and the challenges associated with their implementation
for supercapacitors, highlighting the limitations of pristine conductive polymers and the strategies
employed to overcome these drawbacks through composite formation. In this review, conductive
polymer composites and their applications on supercapacitors are explored, and their advantages and
disadvantages are discussed. Finally, the electromechanical properties of each conductive polymer
composite are elaborated.

Keywords: electrically conductive polymers; conductive polymer composite; supercapacitors; energy
harvesting; energy storage

1. Introduction

Polymers are natural or artificial substances that are made up of very large molecules
or macromolecules, which are repetitions of simpler chemical building blocks known as
monomers. Numerous components of living organisms are made of polymers, such as
proteins, cellulose, and nucleic acids. Moreover, they serve as the foundation for products
like concrete, glass, paper, plastic, and rubber, as well as minerals like diamond, quartz, and
feldspar [1]. Polymers can be categorized as being organic, inorganic, synthetic, natural,
thermoplastic, elastomeric, duroplastic, thermosetting, plastic, or fiber. Organic plastics and
organic polymers that conduct electricity are known as conductive polymers or, more accu-
rately, intrinsically conductive polymers (ICPs). While polyacetylene, the first conductive
polymer, was found in the 1970s, conductive polymers, which are relatively new materials,
have undergone extensive research. Conductive polymers (CPs), often known as synthetic
metals, are organic polymers that display highly reversible redox behavior and exhibit
traits shared by plastics and metals. Researchers were interested in them because they
had superior environmental stability compared to standard inorganic materials and had
economic relevance, increased stability, decreased weight, higher workability, resistance to
corrosion, and excellent electrical conductivity [2–6]. These properties lead researchers to
use conductive polymers for supercapacitor applications rather than other applications.

In the pursuit of efficient and sustainable energy storage solutions, supercapacitors
have emerged as promising devices with the ability to deliver high power densities, rapid
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charge/discharge rates, and extended cycle lifespans [7,8]. Among the various materials
explored for supercapacitor electrodes, conductive polymer composites have gained con-
siderable attention due to their unique combination of electrical conductivity, mechanical
flexibility, and facile processability [9]. This review aims to comprehensively survey the re-
cent advancements in the development and application of conductive polymer composites
for supercapacitor technology. Conductive polymers have been used in supercapacitors
due to their unique combination of properties that make them suitable for energy storage
applications. Supercapacitors, also known as ultracapacitors or electrochemical capacitors,
are energy storage devices that store and deliver energy through the electrostatic separation
of charge. Conductive polymers are one of the first choices for supercapacitor applica-
tions due to their high conductivity, large surface area, flexibility and processability, and
pseudocapacitive properties.

2. Electrical Conductivity Mechanism of Conductive Polymers

The electrical conductivity mechanism of conductive polymers (CP) is not the same as
that of conductive material and semi-conductive material due to their electronic properties,
which cannot exhibit a standard band theory. The mechanism of conduction is a very
important parameter for CP application in numerous areas. The mechanism of electrical
conductivity depends on the formation and types of CP. Electrical conductivity could
occur only after thermal or photolytic activation of electrons to give them sufficient energy
to jump the gap and reach a lower level of the conduction band [10]. The conductive
mechanism of conductive polymers involves a unique combination of electronic and ionic
conductivity. Unlike traditional metals, where electrons are the primary charge carriers,
conductive polymers exhibit a dual charge transport mechanism. The backbone of the
polymer chain consists of alternating single and double bonds, allowing for π-electron
delocalization along the conjugated structure. The π-electron delocalization enables the
formation of a highly conductive pathway, facilitating electronic conduction. Additionally,
conductive polymers can undergo reversible redox reactions at the polymer-electrolyte
interface, leading to the movement of ions in and out of the polymer matrix. This process,
known as doping and de-doping, results in changes in the oxidation state of the polymer,
contributing to ionic conductivity.

There are three cases for a conductive polymer to be an electrical conductor. First, the
molecule must initially have a linear backbone. Contiguous sp2 hybridized carbon centers
make up the backbone of conductive polymers, which is what this signifies. Each center has
a single valence electron that is in an orthogonal pz orbital to the other three sigma-bonds.
A molecule-wide delocalized collection of orbitals is created by the combination of all pz
orbits, and the electrons in these delocalized orbitals have high mobility [11]. The second
need is that the molecule has extended conjugation. A continuous array of “p” orbitals that
can align to provide a bonding overlap over the entire system is needed for a conjugated
system. The condition arises when two systems are “linked together”, such as double
bonds, and improves the extension of the chemical reactivity that results in an increase in
the conductivity of the electrons [12]. Thirdly, the introduction of dopants or charge carriers
(either charge carrier’s holes or charge carrier electrons) is of great importance. Since
the charge created by the dopant is what gives conductive polymers their conductivity,
increasing the doping level causes more charges to be created in the polymer, which results
in a higher conductivity by reducing inter-particle gaps using metallic fillers for making
highly conductive polymer composites. Because the molecules get further apart as the
temperature rises, conductive polymer conductivity is also temperature-dependent [13].

Conductive polymers, also known as intrinsically conductive polymers (ICPs), are
a class of organic polymers that exhibit electrical conductivity. The electrical conduc-
tivity in these polymers arises from the delocalization of π-electrons over the polymer
backbone. The most common conductive polymers include but are not limited to poly (3,4-
ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), polyaniline, polypyrrole,
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and polythiophene. The electrical conductivity mechanism of conductive polymers can be
explained through various concepts:

Doping and De-doping: Conductive polymers typically undergo a process known as
doping, where an electron acceptor (dopant) donates electrons to the polymer chain. This
introduces charge carriers (positive holes or polarons) into the polymer structure, leading
to electrical conductivity. Conversely, de-doping involves the removal of dopant species,
resulting in a decrease in conductivity. For example, ethylene glycol can be introduced as a
doping element to remove the insulative part of the PEDOT-PSS so that conductivity can
be enhanced [14].

π-Electron Delocalization: The backbone structure of conductive polymers contains
alternating single and double bonds, which is called conjugation. This conjugation allows
for the delocalization of π-electrons along the polymer chain. The delocalized π-electrons
can move freely through the polymer structure, thus contributing to the electrical conduc-
tivity [15].

Charge Carriers: The charge carriers in conductive polymers are typically polarons
or bipolarons, which are charge carriers created through the doping process. Polaron
formation involves the movement of electrons within the π-conjugated system, leading to a
distortion of the polymer chain and the creation of a charged site [16].

Band Structure: The electronic band structure of conductive polymers plays an impor-
tant role in their electrical conductivity. The π-conjugated system forms the band structure
like semiconductors. The highest embedded molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) entailed in the conduction process [17].

Redox Reactions: Conductive polymers can undergo redox reactions, where the
polymer chain itself acts as a redox-active material [18]. In these reactions, electrons are
transferred between the polymer and the dopant, leading to changes in the oxidation state
of the polymer and, consequently, its electrical conductivity.

Dopant Influence: The choice of dopant significantly influences the electrical con-
ductivity of conductive polymers. Doping introduces charge carriers into the polymer
structure, and the type and concentration of dopant can affect the conductivity. Different
dopants can lead to p-type or n-type conductivity [19].

Doping induces a change in the morphology of the polymer chain, leading to chain
swelling [20]. The increased separation between polymer chains facilitates charge carrier
movement and enhances electrical conductivity.

It is important to note that the electrical conductivity of conductive polymers can
be tuned by adjusting various factors such as the doping level, type of dopant, polymer
morphology, and environmental conditions. This tunability makes conductive polymers
attractive for a wide range of applications, including organic electronics, sensors, and
energy storage devices.

3. Applications of Conductive Polymers

Conductive polymers are a class of organic materials with unique electrical properties,
blending the mechanical flexibility of polymers with the electrical conductivity of metals.
Unlike traditional insulating polymers, conductive polymers can conduct electricity due
to their conjugated molecular structures, allowing for the delocalization of π-electrons
along the polymer backbone. This π-electron delocalization creates a pathway for charge
carriers, enabling electronic conduction. Moreover, many conductive polymers exhibit
intriguing properties like reversible redox reactions, facilitating ionic conductivity. These
characteristics make conductive polymers valuable in a range of applications, including
flexible electronics, sensors, actuators, and energy storage devices such as supercapacitors.
Ongoing research focuses on enhancing the performance and expanding the versatility of
conductive polymers for emerging technological advancements.

In recent years, research based on conductive polymers has played a significant role in
advanced applications ranging from optoelectronics to material science. For all intents and
purposes, conductive polymers can be described as Nobel Prize-winning materials that
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were awarded the Nobel Prize in Chemistry in 2000 [21]. These enhancements have allowed
CPs to have practical applications in various fields, including industrial (electromagnetic
shielding) EMI shielding, microwave tempering, and the dissipation of static charge [22–24]
and biomedical, which enhance the stability, speed, and sensitivity of various biomedical
devices [25].

In addition, CPs use a wide range of molecules that can be applied or used as dopants
for the application of electromagnetic shielding and microwave absorption, [26,27] static
electricity dissipation, heating with high thermal conductivity using conductive polymer
composites (CPCs) containing carbon or metallic particles, and [28–32] membrane and
biosensor materials [33–36]. Conducting redox polymers such as polypyrrole or polyaniline
are actually used for intelligent corrosion protection [37–39].Furthermore, conductive poly-
mers such as polyaniline (PANI), polypyrrole (PPy), and poly (3,4-ethylenedioxythiophene
or PEDOT), and polythiophene (PTh) derivatives were used in textile sensors and actuators
for various areas namely in medical textiles, protective clothing, touchscreen displays,
flexible fabric keyboards, as well as biosensors [40–43].

4. Types of Conductive Polymers

Conductive polymers (CPs) frequently have a linear backbone made up of conjugated
monomers that repeat as their basic structural element. Examples of CPs include polyacety-
lene (PAC), polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) [44]. There
are two main categories of conductive polymers, which are described below.

The first type of conductive polymer is known as intrinsically conductive polymers
(ICPs), and the second type is called extrinsically conductive polymers (ECPs). ICPs consist
of electroactive long-range conjugated polymers, including polyanilines, polypyrrole, and
polythiophenes and their conjugation [45–47]. These conjugated polymers are composite
materials with dimensions in the nanometer range, in which a polymer binds metallic flakes
that resemble a conductive filler [48]. The intrinsically conductive polymers were further
divided into two types: conjugated conductive polymers such as PEDOT, polyacetylene,
polyaniline, and polypyrrole and doped conductive polymers. Partial oxidation (p-doping)
may provide the necessary charge carriers because the majority of organic polymers lack
inherent charge carriers. Polythiophene and polyaniline falls in this category of doping
conductive polymers. To further enhance the conductivity of the conductive polymers,
conductive materials such as carbon black, carbon fibers, aluminum flakes, stainless steel
fibers, metal-coated fillers, and metal particles can be incorporated to the conductive poly-
mers. Conjugated polymers, oligomers, and a variety of metals can all be used to create
carbon nano composite (CNCs). The second classification of CPs consists of extrinsically
conductive polymers, also referred to as polymers with conductive components. These
conductive polymers ingredients are a collection of polymers whose backbones naturally
transfer charge, making the polymer itself conductive [49]. The chemical bonds that form
an unpaired electron per carbon atom in the polymer’s backbone are what cause the conduc-
tivity. The orbits of subsequent carbon atoms overlap in the sp2pz hybridized state, where
the carbon atoms are bonded, allowing for the delocalization of the electrons throughout
the polymer chain [50]. Figure 1 depicts the classification of conductive polymers.

4.1. Intrinsically Conductive Polymer

An intrinsically conductive polymer (ICP) refers to a type of polymer that inher-
ently exhibits electrical conductivity without the need for external doping or treatment.
These polymers are unique in that they possess inherent electronic properties due to their
specific chemical structure, which allows for the movement of charge carriers along the
polymer backbone. The most common types of intrinsically conductive polymers include
polyaniline, polypyrrole, and polythiophene. Intrinsically conductive polymers are ex-
citing materials since they combine the advantages of both plastics and metals; however,
due to their electrical characteristics, stability, and process ability, their applicability is
limited [51,52]. Intrinsically conductive polymers have the potential to be used in a wide
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range of unique applications, combining the benefits of both polymers and metals. They
are synthetic polymers made of common substances, including C, S, N, O, and H. They
have low density and high mechanical characteristics like other polymers, and they are
conductive like metals. Additionally, it is feasible to modify the electrical structure and
properties of conductive polymers by altering the synthesis conditions, the doping species
and degree, and the chemical structure of the conjugated polymer chains. They display
remarkable electrochemical behavior as well. The transparent electrodes of optoelectronic
devices, such as light-emitting diodes (LEDs), solar cells, and detectors, can be made of
intrinsically conductive polymer films. Due to the presence of a conjugated π-electron back-
bone, these polymers exhibit electronic properties such as low-energy optical transmission,
low ionization potential, and high electron affinities. These unique properties make these
materials suitable for applications such as thin transistors, organic light-emitting diodes,
sensors, supercapacitors, organic solar cells, and electrochromic displays [53].
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Key characteristics and features of intrinsically conductive polymers include:
Conjugated Structure: ICPs have a conjugated structure with alternating single and

double bonds along the polymer backbone [54]. This conjugation creates a delocalized
π-electron system that facilitates electronic conduction.

π-Electron Delocalization: The presence of conjugated double bonds allows for the
delocalization of π-electrons over an extended molecular orbital system. This delocalization
enables the movement of charge carriers, contributing to electrical conductivity.

Charge Carrier Formation: In their neutral state, intrinsically conductive polymers can
act as insulators. However, when oxidized or reduced, charge carriers such as polarons or
bipolarons are formed within the polymer structure, leading to electrical conductivity [19].

Polymerization: The synthesis of intrinsically conductive polymers often involves
chemical polymerization methods. The polymerization process is crucial for achieving the
desired conjugated structure and electronic properties [2].

Tunable Conductivity: The electrical conductivity of intrinsically conductive polymers
can be tuned by modifying their chemical structure, controlling the degree of polymeriza-
tion, or introducing specific functional groups [54,55]. This tunability makes them suitable
for various applications.

Applications: Intrinsically conductive polymers find applications in a range of elec-
tronic devices, including organic solar cells, organic light-emitting diodes (OLEDs), sensors,
actuators, and flexible electronics [52]. Their unique combination of electrical conductivity
and processability makes them attractive for emerging technologies.
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Environmental Stability: Some intrinsically conductive polymers exhibit environ-
mental stability, allowing them to withstand exposure to air and moisture. However, the
stability can vary depending on the specific polymer and its chemical composition [56].

In general, intrinsically conductive polymers (ICPs) are a specialized class of poly-
mers that inherently possess electrical conductivity without requiring additional doping
or external factors. These polymers typically feature a conjugated structure along their
molecular backbone, allowing for efficient charge transport. One notable example of an
intrinsically conductive polymer is polyacetylene, which is recognized for its high conduc-
tivity and role in pioneering the field of conductive polymers. Other examples include
polypyrrole, polythiophene, and polyaniline. These polymers exhibit a range of electrical
and electrochemical properties, making them valuable in applications such as organic
electronics, sensors, and conductive coatings. Researchers continue to explore and engineer
intrinsically conductive polymers to unlock their full potential in various technological
advancements. Polymers such as polyacetylene, polyaniline, polypyrrole, and PEDOT-PSS
are some types of ICPs.

4.2. Extrinsically Conductive Polymer/Conductive Polymer Composites

Conductive polymer composites (CPC) are primarily made of insulating polymer ma-
trices and conductive fillers with high electrical conductivity. The conductive fillers operate
as carriers for the conductive fillers’ transfer into the polymer composites [57]. Due to their
light weight, ease of manufacturing, chemical resistance, high conductivity, and tunable
electrical properties, conductive polymer-based composites have recently gained popularity
in both academic research and industrial applications [58]. Conducive polymers can be
manufactured in a variety of structural configurations with a variety of design configura-
tions and functionalities for the polymer components as well as the electrically conductive
component. Conductive polymer composites refer to materials that combine conductive
polymers with other substances to enhance their properties. Conductive polymers are
a class of polymers that can conduct electricity. They exhibit unique electronic, optical,
and electrochemical properties, making them attractive for various applications, such as
sensors, actuators, electronic devices, and more. However, pure conductive polymers often
have limitations in terms of mechanical strength, processability, and stability.

Extrinsically conductive polymers are blended polymers obtained by solvent mixing
or melt mixing, and the blends are responsible for electrical conductions [59]. These types
of conductive polymers can be obtained by polymerizing an electrode surface (anode)
that has been coated with a non-conductive polymer. These conductive polymers receive
their conductivity from the presence of externally introduced components. For example,
when carbon black or some metal oxides or metallic fibers are introduced into the no-
conductance polymer, the polymer becomes electrically conductive [60]. The three most
important conductive fillers are carbon (carbon black (CB) and carbon nanotubes (CNTs)),
metal powders and their compounds (indium tin oxide (ITO) and aluminum zinc oxide
(AZO)), and ICPs (PPy and PANI). ECPs have special properties such as good electrical and
thermal conductivity, corrosion resistance, and good mechanical properties [41]. However,
they have much lower conductivity values than the ICPs but have equal mechanical
properties. Additionally, these types of polymers have conductive polymer composites
(CPC) structures, which can be manufactured as binary composites, ternary composites,
and quaternary composites that are composed of CP and other materials, elements, parts, or
divisions, including metal materials, non-metal materials, organic materials, and polymer
composites. Therefore, depending on the filler conductive elements, the conductivity of
the CPCs varied. Conductive polymer composites can be produced using conductive
polymers with carbon-based materials, graphene composites, CNT, and metal oxides. The
metal oxides used as fillers in the composites with conductive polymers for applications
of supercapacitor were, namely, ruthenium oxide (RuO2), manganese dioxide (MnO2),
nickel oxide, metal hydroxides, sulfides, and phosphides, which can be formed either as
binary nanocomposites or ternary nanocomposites. Beside conductive polymer composites,
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EDLC supercapacitor electrode materials were made from conductive polymers with metal
oxide or hydroxide and metal sulfides (metal oxides such as tin oxide (SnO2), vanadium
oxides (V2O5), cobalt monoxide (CoO), etc.), and the electrochemical properties were
investigated [61].

Conductive polymer-based composites are synthesized via a variety of mechanisms.
As a result, the development of conductive polymer composites depends on their intended
use. The physical, electromechanical, and chemical properties and applications of the
as-obtained conductive polymer-based composites would be significantly influenced by
the design and structure of the composites, interfacial adhesion between the conductive
polymer and other components, and the synthetic strategies [62]. Electrosynthesis with an
insulating polymer present is one of the developments of CPC [63,64]. Another method for
making CPC is to encase textile fibers in conductive materials. Additionally, conductive
polymer nanocomposites are made by adding secondary nanoparticles via the electropoly-
merization of monomers, such as aniline, pyrrole, and 3,4-ethylenedioxythiophene [65,66],
as well as by the use of dopants with a variety of functionalities, such as di-sulfide bi-
otin [67,68]. Moreover, by integrating noble metal nanoclusters, such as platinum nan-
oclusters, during oxidative polymerization [69], a conductive polymer composite can be
developed. Therefore, the developed conductive polymer composites can exhibit mul-
tifunctional features, increased mechanical performances, and processability because of
the synergistic interaction of several components. Due to the above reasons, conducting
nanocomposites (CNCs) has attracted a lot of interest in the possibility of using them to
create materials suitable for electrocatalysis, microelectronics, and chemical sensors. Also,
conductive polymer composites exhibit multifunctional features, increased mechanical per-
formance, and processibility because of the synergistic interaction of several components.
Moreover, conductive polymers are used in a variety of fields, including electromechanical
sensors [70], gas sensors [71,72], transducers [73], electrostatics sensing device corrosion
protection [74], energy storage [75], supercapacitors [76], and biosensors [77].

5. Conductive Polymer Composite for Supercapacitor Application

Conductive polymer composites have gained significant attention for supercapacitor
applications due to their unique combination of electrical conductivity, flexibility, and ease
of processing. Supercapacitors, also known as electrochemical capacitors or ultracapacitors,
are energy storage devices that bridge the gap between traditional capacitors and batteries,
offering high power density and fast charge/discharge capabilities. Here’s how conductive
polymer composites are relevant to supercapacitor applications:

Conductive Polymer Selection: Polyaniline (PANI), polypyrrole (PPy), and polythio-
phene (PTh) are commonly used conductive polymers for supercapacitor applications
due to their good electrical conductivity and electrochemical properties [78]. Selecting the
appropriate conductive polymers will benefit the researcher in getting high-performance
supercapacitor applications.

Composite Structure: Conductive polymers are often combined with other materials,
such as carbon-based materials (carbon nanotubes, graphene, carbon black) or metal oxides,
to form composite structures [79]. Carbon dots and conductive polymers can be synthesized
using various polymerization techniques and can be combined to compensate for their
demerits to be used for various applications. The combination of a conductive polymer
with a conductive filler enhances the overall electrical conductivity and capacitance of
the composite.

Enhanced Electrochemical Performance: The composite structure allows for improved
charge storage capacity and faster electron transport, leading to enhanced electrochemical
performance compared to pure conductive polymers [79]. This system is used to facilitate
the production of high-efficiency supercapacitors.

Flexibility and Mechanical Strength: Conductive polymer composites can provide the
flexibility needed for flexible and wearable supercapacitor applications. The addition of
flexible substrates or matrices enhances the overall mechanical strength of the composite.
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Synthesis Methods: Various methods, including in situ polymerization, solution
casting, and electrochemical deposition, are employed to synthesize conductive polymer
composites for supercapacitors. The choice of method depends on the specific properties
desired for the application.

High Surface Area: Incorporating high-surface-area materials, such as carbon nan-
otubes or graphene, into the composite structure increases the available surface area for
charge storage, contributing to higher capacitance [80].

Cycling Stability: Researchers focus on improving the cycling stability of conductive
polymer composites to ensure long-term reliability in supercapacitor applications.

Several researchers have conducted and studied the methods of synthesis and capaci-
tive performance of the recent research progress of CPC based on binary composite, ternary
composite, and quaternary composite for supercapacitor applications. Supercapacitors are
crucial energy storage and recycling tools with high power densities, quick charge and
discharge rates, and extended cycle lives that address the pressing problems of energy
scarcity and environmental pollution for the sustainable development of humanity [81–84].
In addition, the energy gap between batteries and traditional solid-state and electrolytic
capacitors is currently filled by supercapacitors, which may store electrical energy by
double-layer charging, faradaic processes, or a combination of the two. Therefore, due to
these qualities, it has drawn a lot of attention for industrial applications. Furthermore, the
CPC supercapacitor was able to give bursts of high power rather than large amounts of
energy since the quantity of energy stored is often tiny and may be delivered instantly [85].

Shokry. A et al. [86] fabricated a binary composite supercapacitor electrode based
on poly(3-hexyl-thiophene-2,5-diyl)(P3HT), single-walled-carbon-nanotubes (SWCNTs)
nanocomposites with different ratios onto a graphite sheet as a substrate with a wide voltage
window in non-aqueous electrolyte. According to the findings obtained, the P3HT/SWCNT
nanocomposite has a higher specific capacitance than its individual components. Micro-
porous structures that facilitate ion diffusion and electrolyte penetration in these pores
contributed to the nanocomposite’s high electrochemical performance. However, the
voltammograms obtained do not clearly show the anodic peaks, nor do they clearly show a
small reduction peak attributable to the reduction of the film deposited on the electrode.
In addition, the research study by Akbar Mummoorthi, Abdul Rehman [87,88] developed
and characterized a novel tertiary composite supercapacitor, which was carried out by
the introduction of S-PANI [89], which was made to synthesize 3-dimensional MnO2/S-
PANI/P-RGO composite aerogels at different scan rates and α-Fe2O3/NiO/rGO. These
composites were used as a high-performance freestanding cathode for SCs applications and
were utilized to create high-performance supercapacitors with improved electrochemical
performance using an environmentally friendly hydrothermal self-assembly process. The
result shows that the electrochemical performance of ternary composites has been recog-
nized because of their well-designed, unique architecture, which provides a large surface
area and synergistic effects among all three constituents. The 3D MnO2/S-PANI/P-RGO
composite supercapacitor had a specific capacitance of 571 Fg−1 at a current density of
1 Ag−1, along with a specific capacity of 413 Fg−1 at 40 Ag−1 and a retention capacity of
72.6%. In addition, the Fe2O3/NiO/rGO composite supercapacitors had an energy density
of 35.38 W h kg−1 at a power density of 558.6 W kg−1 and retained a 94.52% capacitance
after 5000 cycles at a 1 Ag−1 current density, as shown in Figure 2.

From the results, it was discovered that every single MnO2/S-PANI/P-RGO cyclic
voltammetry (CV) curve had a rectangle shape with a pair of redox peaks in the voltage
range of 0.2–0.6 V, implying that MnO2/S-PANI/P-RGO composite electrodes have not only
double-layer capacitance but also possess pseudocapacitance characteristics (Figure 2A–C).
The result also shows he greater the specific capacitance of MnO2/S-PANI/P-RGO compos-
ite aerogels (Figure 2D). Additionally, using a hydrothermal method, Zichen Xu et al. [90]
created a ternary composite supercapacitor from zinc sulfide/reduced graphene oxide
(ZnS/RGO) and doped it with various conductive polymers (PANI, PPy, PTh, and PEDOT)
via in situ polymerization. He then examined the capacitor’s capacitance performance and
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reliability. According to the results, the PANI ZnS/RGO ternary electrode composite has
the best cycle stability and capacitance performance, with values of 160% at 1 Ag−1 and
1045.3 Fg−1 after 1000 loops and power densities of 18.0 kW kg−1 and 349.7 W h kg−1. High-
energy power supercapacitors will use the ZnS/RGO/PANI electrode due to its improved
performance, such as its fast charge and discharge ability, which is very important for electric
energy storage devices. Thus, supercapacitors and batteries have been widely employed in
electric cars and portable electronic devices that require safe, trustworthy technology.
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Moreover, the recent advancements in flexible electronic devices, such as flexible dis-
plays, curved smartphones, flexible implantable medical devices, and wearable electronic
devices, indicate that flexible devices are the first to be developed as an important revolu-
tion in the next generation of advanced electronics. Lighter weight, wearability, bendability,
environmental friendliness, and reduced costs are advantages of flexible electronic devices
compared to conventional electronic devices. To balance and apply the growth of flexible
electronic devices, the energy storage mechanism should be developed to be light, thin,
and flexible [91].

In the field of flexible supercapacitors, numerous researchers have developed and
investigated the electrochemical properties of flexible supercapacitors. For example, Yu Jin
Kang et al. [92] investigated flexible supercapacitors based on papers coated with carbon
nanotubes and gel electrolytes based on ionic liquids using a drop-dry technique. CNTs
were coated on office paper to create flexible electrodes. High power density and energy
density performances were demonstrated by this solid-state flexible supercapacitor. Simply
considering the mass of active materials, the specific capacitance of the CNT electrodes was
135 Fg−1 at a current density of 2 Ag−1. The supercapacitors’ maximum power and energy
density were 41 Wh kg−1 and 164 kW kg−1, respectively [93].

The most popular electrode material for developing flexible supercapacitors and
enhancing their electrochemical properties was activated carbon. Since activated carbon
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may be made with a large specific surface area and is inexpensive and readily available on
the market, nevertheless, the electrical double layer (EDL) could only be charged using the
surface area that was accessible for electrochemistry. Both the energy and the power are
significantly increased in such a situation. It seems that materials having pseudocapacitance
qualities would greatly benefit from the addition of nanotubes as a conducting additive
and/or support [94,95]. In addition, a conductive graphene film is produced by different
methods such as blade coating, vacuum-assisted self-assembly wet spinning, gel die casting
interface, and self-assembly methods for wearable electronic products (such as curved
smartphones, smartwatches, laptops, and electronic skins) [96–98].

In recent times, the rapid development of flexible electronics, such as roll-up displays,
touch screens, smart electronics, smart textiles, and wearable sensors, is being acceler-
ated by developments in material science and technology as well as the robust consumer
demand for portable, thin, flexible electronics and supercapacitors that possess remark-
able features of miniaturization, high security, and easy integration [99,100]. Electroactive
materials that are flexible and lightweight are increasingly being developed to meet the
demands of the expanding electronic sector. A number of methods for flexible superca-
pacitors have recently been proven, including wire-shaped [101,102], fiber-shaped coaxial
supercapacitors [103], smart textiles made of carbon nanotubes (CNTs), and very stretchable
fiber-shaped supercapacitors [104–109]. However, because of the high surface area of car-
bon nanostructures, the capacitance of the electrochemical double-layer capacitors (EDLCs)
was low and constrained. Furthermore, several planar, 2D, and 3D printable conductive
polymers were employed in the production of flexible supercapacitors. Ghosh et al. [110]
conducted a study and produced conducting-polymer hydrogel electrodes that were signif-
icantly swollen. By using a straightforward preparation process, the aqueous dispersion
of PEDOT-PSS is paradoxically cross-linked into a nanometer-scale conducting network,
giving the material its high porosity and swelling capacity. Also, textiles, such as carbon
cloth, polymer, and ceramic fabrics, and 1D fibers, including aligned or twisted CNTs
and graphene fibers, have been utilized as flexible substrates for CP-based supercapaci-
tors [82,111–113]. The energy density of SCs is greater than that of conventional capacitors;
however, the power density of capacitors is greater than that of SCs, as shown in Figure 3.
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Figure 3 shows an illustration of a region plot, which contrasts the overall performance
of several energy storage technologies by graphing specific energy against specific power.
In that diagram, SCs are positioned between batteries and conventional capacitors to show
that they have more specific energy than traditional capacitors. To compete with the
efficiency of batteries and fuel cells, the specific energy of SCs must be increased.
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6. Types of Supercapacitors

Supercapacitors can be classified into three groups based on their charge and discharge
mechanisms [114]. Supercapacitors can be made from different materials based on the
type of energy storage required and the application of the capacitance range. To produce
supercapacitors, electrode materials are presently available in different forms and different
materials, such as carbons, metal oxides, and conductive polymers, as shown in Figure 4.
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6.1. Electric Double Layer-Stage Capacitors (EDLCs)

Electric double-layer capacitors (EDLCs) are made mostly of high-surface-area carbon
materials such as carbon aerogels, activated carbon, and carbon nanotubes and graphene
create capacitors by using electrodes or electrolytes to separate charges, as shown in
Figure 5. EDLCs store charge electrostatically using the mechanism of the Helmholtz
layer principle [115]. The process for energy storage and release was based on nanoscale
charge separation at the electrochemical interface established between the electrode and
electrolyte. There are no chemical oxidation-reduction (redox) reactions associated with the
non-faradaic charge storage mechanism. EDLCs had relatively long cycle lives because only
physical charge transferring occurs [116]. There are a variety of mechanisms for assembling
the double-layer for producing the EDLCs supercapacitor, such as dip-coating, electrodepo-
sition, spin-coating, spray-assembly, and chemical bath deposition methods [117–120]. The
electromechanical characterization of EDLC supercapacitors has been studied by a variety
of scholars [121–126]. The average energy density of EDLCs is about 5 Wh kg−1.

In general, electric double-layer capacitors (EDLCs), also known as supercapacitors
or ultracapacitors, are energy storage devices that rely on the principles of electrostatic
charge separation. Unlike traditional capacitors, EDLCs store electrical energy through the
formation of an electric double layer at the interface between a porous electrode material
and an electrolyte solution. The double layer consists of positively and negatively charged
ions attracted to the electrode surface without undergoing a faradaic reaction, leading to a
purely electrostatic energy storage mechanism. EDLCs offer high power density and fast
charge/discharge rates due to the rapid ion adsorption and desorption processes at the
electrode-electrolyte interface. The capacitance of EDLCs is typically much higher than that
of conventional capacitors, making them well-suited for applications requiring quick bursts
of energy. EDLCs find use in various fields, including automotive systems, renewable
energy storage, and portable electronic devices, where their long cycle life and ability to
deliver rapid bursts of energy are advantageous. Ongoing research aims to further improve
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the energy density and overall performance of electric double-layer capacitors for broader
applications in energy storage.
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6.2. Pseudocapacitors

The second kind of supercapacitor is called a pseudocapacitor. It is primarily made up
of conductive polymer and transition metal oxide and is produced by a fast, reversible redox
reaction on the surface of an electrode [127–130]. They store energy electrochemically or
faradaically, respectively. A pseudocapacitor (Figure 6) is built using high-energy electrode
materials based on metal oxides, metal-doped carbons, or conductive polymers in faradaic
redox processes [131]. Higher-energy-density supercapacitors are made possible by these
electrode materials. Because of this, pseudocapacitors often offer larger energy densities at
the expense of slower rates and shorter life cycles than EDLCs.
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Typically, pseudocapacitors can store more charge than EDLCs, but the kinetics of
pseudocapacitors are slower than those of EDLCs. This is because the energy storage
process in pseudocapacitors occurs in the bulk of the electrode material, while for EDLC,
the charge/discharge process only occurs on the surface of the electrode material [132].
Therefore, a two-dimensional layered electrode material with multiple active sites can
greatly improve the capacitance and reduce the dynamic effects, which is a promising
electrode material for pseudocapacitors. The electrodes are made of metal oxides or
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conductive polymers, which show much higher capacitance than EDLCs. A capacitance of
600–1000 Fg−1 is attainable.

In summary, pseudocapacitors are a type of electrochemical energy storage device that
combines the principles of traditional capacitors with a pseudocapacitive mechanism. Un-
like electric double-layer capacitors (EDLCs), pseudocapacitors involve reversible faradaic
redox reactions at the electrode–electrolyte interface, leading to additional charge storage
beyond the electrostatic double layer. This pseudocapacitance results in enhanced energy
density compared to EDLCs. Pseudocapacitors often utilize transition metal oxides, con-
ductive polymers, or other materials that undergo reversible redox reactions, enabling the
storage of electrical energy through surface-bound ions. This combination of electrical
double-layer capacitance and pseudocapacitance provides pseudocapacitors with higher
energy storage capabilities and improved performance in terms of specific capacitance and
energy density. Electric pseudocapacitors find applications in various fields, including
portable electronics, renewable energy systems, and hybrid electric vehicles. Ongoing
research focuses on developing new materials and optimizing electrode designs to fur-
ther enhance the energy storage performance of pseudocapacitors for advanced energy
storage applications.

6.3. Hybrid Supercapacitors

The third type is a hybrid type which is formed by a combination of EDLCs and
pseudocapacitors [50]. As the name implies, hybrid supercapacitors combine processes
from EDLCs and pseudocapacitors. They store charges by combining electrostatically and
electrochemically. A semi-permeable membrane acts as a separator and separates two
electrodes from electrical contact in a supercapacitor. An electrolyte solution is used to
impregnate the electrodes and separator, allowing ionic current to flow between them
while preventing electronic current from discharging the cell [116,133–138]. Current col-
lectors carry electrical current from the electrodes. As a matter of fact, the charge storage
mechanisms of the hybrid capacitors (symmetrical and asymmetrical capacitors) are a
combination of faradaic and non-faradaic reactions. As a result, the hybrid capacitors
provide synergistic effects from both electrodes on the resultant material. A mixture of
different types of transition metal oxides, hydrogen oxides, or doped CP is also used to
construct the hybrid capacitor, as shown in Figure 7.
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In conclusion, hybrid supercapacitors are energy storage devices that combine the
features of both traditional electric double-layer capacitors (EDLCs) and electrochemical
pseudocapacitors. This hybrid design aims to capitalize on the strengths of both tech-
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nologies, offering a balance between high power density and enhanced energy density.
Typically, hybrid supercapacitors consist of an electrode with a double-layer capacitor
material alongside a redox-active material capable of pseudocapacitance. This combination
allows for rapid charge/discharge rates characteristic of EDLCs and additional energy
storage through reversible faradaic reactions, leading to increased overall energy storage
capacity. Hybrid supercapacitors find applications in various fields, including electric
vehicles, renewable energy systems, and portable electronics, where the demand for both
high power delivery and improved energy density is crucial. Ongoing research is focused
on optimizing electrode materials and designs to further improve the performance and
efficiency of hybrid supercapacitors.

7. Application of Supercapacitors

Supercapacitors, also known as ultracapacitors or electrochemical capacitors, have a
range of applications across various industries due to their unique characteristics, which
include high power density, fast charge and discharge rates, long cycle life, and relatively
simple maintenance. Supercapacitors are conveniently positioned between capacitors and
batteries in electrical component designs. They have several benefits to be able to store a
significant amount of energy as an electrostatic field. Due to their high-power density and
small size, they can be employed to store energy for common electrical circuits, possess
the capacity to charge and discharge quickly, can be utilized to meet peaks in demand
for power, and can provide massive bursts of power for a short period of time. They lack
electrochemical reactions, which means they have less operational wear and tear and a
longer lifespan. They do not need to be replaced after hundreds of thousands of uses.

Due to their special properties, supercapacitors are used in many different applications,
including electronics, thermoelectric, energy storage, and renewable energy in industry,
vehicles, and robotics. In addition, supercapacitors are used in wind turbines, cellular
base stations, electronic devices, and various industrial processes that require frequent
charge/discharge cycles and high-power density [139–141].Due to their advantages over
lead-acid batteries, they are now also used in UPS systems, electric cars, and a variety of
power electronics applications. In addition, SCs have been used as energy storage devices
for voltage regulation in renewable and hybrid energy storage systems for source and grid
control [142–147]. SCs support stable power supplies and electronics tools in applications
with variable loads and portable speakers. These applications include voltage stabilization,
micro grid [148,149], high energy harvesting [150], renewable energy storage [151,152], high
energy harvesting [153–155], street lights [156,157], medical applications [158–162], energy
recovery in military [163–169], and energy recovery in automobiles and machines [170–176].

7.1. Electronics

The development of flexible electronics relies heavily on conductive polymer compos-
ites (CPCs) with excellent conductivity and flexibility. Flexible solid-state supercapacitors
with high gravimetric-specific capacitances (80–200 Fg−1) have been created using graphene
or carbon nanotube-based thin films; however, these devices typically have relatively low
overall or area-specific capacitances (3–50 mF/cm2). Owing to their extremely low mass
loading and extremely thin electrode thickness (usually a few micrometers), they are highly
sought-after as a transportable power source for flexible electronics of the future [177].
In addition, Weng, Zhe, [178] fabricated flexible supercapacitors via graphene-cellulose
paper (GCP), as shown in Figure 8. The electrical conductivity of the GCP membrane
shows high stability, with a decrease of only 6% after being bent 1000 times, as shown
in Figure 8B. This flexible GCP electrode has a high capacitance per geometric area of
81 mF cm−2, which is equivalent to a gravimetric capacitance of 120 F g−1 of graphene and
retains >99% capacitance over 5000 cycles.
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The flexible composite polymer supercapacitor was used to manufacture soft elec-
tronics using printable single-walled carbon nanotubes and an organic liquid aqueous
gel as an electrolyte. The performances of the devices show very high energy and power
densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte
and organic electrolyte, respectively) [179]. From the result, it can be shown that these
types of printable supercapacitors will lead to a new class of entirely printable charge
storage devices, allowing for full integration with the emerging field of printed electronics.
However, the long-term performance and its durability were not investigated in relation
to external factors, namely, environment, mechanical abrasion, moisture, temperature,
and pressure. Moreover, the most common application for ICP films with high conduc-
tivity is as flexible electrodes or even as flexible transparent electrodes in optoelectronic
devices, which are manufactured using transparent and highly stretchable ICP such as
poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives [180]. The result shows that
to acquire a high-quality signal for the long term, the ICP should always have good contact
with skin or cells. Thus, they should be self-adhesive and have good stability in the biologi-
cal environment. There are tremendous opportunities for ICPs in flexible electronics, but
much more effort from materials scientists, chemists, physicists, and biologists is needed.

In order to enhance device performance in terms of electrical and mechanical quali-
ties, a series of soft materials for flexible electronics have been developed using CPC for
next-generation wearable electronic devices for the application of magnetism, photolumi-
nescence, and electrochemical reactivity [181–183]. From the result, it can be concluded that
the developed CPC for the application of wearable electronics and implantable healthcare
areas should fulfill the characteristics of being fully biocompatible and/or biodegradable
for inorganic elements and exhibiting high electrical conductivity.

https://creativecommons.org/licenses/by/4.0/
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7.2. Thermoelectric Application

The need for sustainable development in CO2 minimization and the use of renewable
energy sources and heat management systems is increasing, making the development of
novel thermoelectric materials using conductive polymer composites an important topic
for researchers in various fields [184]. Thermoelectric systems are particularly consis-
tent, reliable, eco-friendly, and stable power sources, making them efficient in generating
power from heat sources with low-temperature gradients in comparison to the ambient
temperature. Thermoelectric materials receive increasing attention due to their unique
capability of realizing the direct energy conversion between waste and low-grade heat
and electricity potentials as sustainable and green technologies [185–187]. In addition,
small molecules and polymers, including semiconductor nanomaterials like tellurium (Te),
bismuth telluride (Bi2Te3), and lead telluride, can be combined with conductive polymers
(PbTe). Furthermore, Dimethylsulfoxide (DMSO)-treated composite films of PEDOT:PSS
and spherical PbTe could be blended with noble metals such as silver and gold (Au-Ag)
nanomaterials and with carbon nanomaterials for the application of thermoelectric [188].

Various researchers studied conductive polymer composite-based thermoelectric for
application to wearable thermoelectric devices. For example, researchers [189,190] devel-
oped and studied the thermoelectric effects of a conductive composite made from PPy and
silver into a thin film through a simple, nature-friendly optical-chemical process. The result
shows that, by changing the concentration and size of Ag particles in the PPy substrate,
σ was increased from 1.5 S cm−1 to 17.3 S cm−1, and κ was decreased to 0.16 W m−1K−1.
As a result, the thermoelectric potential of this material reached the maximum value of
~7.4 × 10−3 at 355 K and exhibited high thermoelectric stability after repeated bending.

The performance of polymer-based thermoelectric generators is measured using See-
beck coefficient and power factor calculations, and the thermoelectric generator is demon-
strated as shown in Figure 9.
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Seebeck coefficient is calculated as S = ∆V/∆T (Figure 9) where ∆V is thermovoltage
difference and ∆T is designated as temperature difference. Optimum electrical conductivity
and Seebeck coefficient have meaningful correlations.

Xinyu Yang [191] studied an ionic thermoelectric supercapacitor, which is manufac-
tured from NaCl-polyacrylamide/Sodium carboxymethyl cellulose (NaCl-PMSC) elec-
trolyte and carbon nanotube-polyacrylamide (CNT-PAM) electrodes that relies on the
synergistic functions of thermoelectricity and supercapacitors in the thermoelectric ion gel
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electrolyte and high-performance hydrogel electrodes to enhance the ECS performance
under a thermal gradient. The result shows that the TE ion gel electrolyte shows the maxi-
mum Seebeck coefficient of 17.1 mV K−1 by adjusting the Na+ content in the ion gel. The
integrated thermoelectric supercapacitor was capable of outputting a voltage of ~450 mV
at ∆T 30 K and storing a charge of ~1.3 mC at ∆T 10 K.

Kyungwhan Yang et al. [192] developed a thermoelectric generator-coupled micro-
supercapacitors (TEG-MSC) consisting of planar microsupercapacitors linked directly to
the thermoelectric pn modules of p-Ag2Te and n-Ag2Se nanoparticle thin films. In the
TEG-MSC, a Seebeck voltage of 82 mV is generated at a temperature difference of 15.8 K
and is rapidly charged with an efficiency of 98%.

7.3. Energy Storage

Supercapacitors made of conductive polymer composites have a lot of potential for
fast charging and energy storage. Single supercapacitors may store a lot more energy than
a standard capacitor with a solid dielectric. Electronically conductive polymer composites,
such as PEDOT-PSS, were used as the electrodes of transparent supercapacitors and as high-
capacity energy storage devices [193,194]. Supercapacitors are an example of an energy
storage and delivery technology that can store and deliver energy quickly and provide
high current for a short period of time. Because of their high specific surface area and
excellent energy storage, carbon and carbon-based materials have become more popular as
supercapacitor electrode materials [195–199]. From Figure 2, the supercapacitor had high
energy storage and a long cycling life. Moreover, the specific capacitance of supercapacitors
built of composites of NiMnCo ternary oxide and PEDOT-PSS can reach 1234.5 F/g−1 at
current densities of 1 A/g−1 and an energy density of 51.9 Wh/kg−1 at power densities
of 275 W/kg−1, respectively [200]. A study by Astha Shrivastava et al. [201] describes the
application of supercapacitors for photovoltaic systems in the automotive and avionics
sectors. Energy storage devices are constructed in such a way that two electrodes (negative
and positive electrodes) are separated by an insulator where an electrolyte is incorporated
between the two electrodes (Figure 10).
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Energy storage is a critical component of modern energy systems, providing the
capability to store and release energy for later use. Various technologies are employed
for energy storage, including batteries, pumped hydro storage, flywheels, and capacitors.
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These systems play a crucial role in balancing the intermittent nature of renewable energy
sources, such as solar and wind, by storing excess energy during periods of high generation
and releasing it during times of high demand or when renewable sources are not actively
producing [202]. Effective energy storage is vital for enhancing grid reliability, improving
the efficiency of energy utilization, and facilitating the integration of renewable energy
into the power grid. As the demand for sustainable and resilient energy solutions grows,
ongoing research and development in energy storage technologies aim to improve efficiency,
decrease costs, and expand the overall capacity of energy storage systems [203].

7.4. Smart Textiles

The recent rapid development of flexible and wearable electronics requires flexible
and portable supercapacitors, which are foldable, stretchable, and/or bendable, with smart
functions and long-time outdoor operation, as the power source wearable [204–208]. Due to
their high flexibility, conductivity, pseudocapacitance, smart characteristics, and moderate
preparation conditions, supercapacitors were widely applied. In addition, fiber-shaped
supercapacitors have the advantages of being lightweight, highly flexible, soft, low-cost,
highly flexible, can be transformed into any shape, and can be manufactured using different
approaches [209]. These fiber-shaped supercapacitors were used for wearable applications
and are considered to be one of the most promising power source candidates [210–212].
Stretchable electrodes for engineered tissues based on conductive polymer composites
can also be created by adding metal or carbon-based nanoparticles to elastomers like
polydimethylsiloxane (PDMS) or styrene-butadiene-styrene (SBS) [213]. In addition, Marjan
Barakzeh et al. [214] developed and studded a textile-based electrode through modification
with reduced graphene oxide (rGO) nanosheets and polypyrrole (PPy) nano spherical
particles onto polyethylene terephthalate (PET) fabric. The conductive composites are used
to fabricate flexible, all-solid-state supercapacitors using a gel electrolyte that was prepared
by dissolving 1 g of PVA in 10 mL of DI water at 90 ◦C.

Moreover, flexible and wearable electronics have many potential applications in daily
life, ranging from body-worn entertainment to protection, sensing, communication, therapy,
and electromechanical sensors [215,216]. For instance, a stretchable fiber-shaped synthetic
composite with other materials, which include carbon materials and transition metal oxides
and hydroxides, was used to manufacture wearable electronics that were stretchable up
to 400% without obvious capacitance degradation. These devices had a high-voltage
output of 12.8 V and an ultrahigh energy density of 41.1 µWhcm−2 at a power density of
3520 µWcm−2 [217–219].

According to researchers [220–222], carbon-based yarn/fiber-shaped and planar elec-
trodes with tiny volumes and promising performances have gained a lot of attention as
flexible electrodes. These electrodes can be used to fabricate flexible and wearable pseu-
docapacitors. The materials used to create fiber-shaped electrodes (1DSCs) include metal
wires, carbon material-based fiber, cotton fiber, Kevlar fiber, and polymer nanofibers, as
shown in Figure 11. This stores electrical energy through electrochemical double-layer
capacitance (EDLCs) by reversible adsorption of electrolyte ions at the surface or inside
pores of electrodes and pseudocapacitance through surface faradaic redox reactions or ion
intercalation at electrode surfaces [223].

In addition to the previously mentioned novel electric double-layer capacitor with
a coaxial fiber structure (Figure 11), a wire-shaped EDLC woven into electronic clothes
by the well-developed textile technology [224] shows promising applications in a wide
variety of fields. However, the high contact resistance between two twisted fiber electrodes
has largely decreased the energy storage capability. The result shows that the developed
1D supercapacitor had high electrochemical performance, with a maximum discharge
capacitance of 59 F g−1 (32.09 F cm−3 or 29 µ F cm−1 or 8.66 mF cm−2). Further, wire-
shaped EDLCs were not stretchable in the straight wire state, so the resulting electronic
textiles based on the wire-shaped EDLC will break during mechanical action such as tensile
force, bending force, and mechanical abrasion [225]. To overcome this problem, researchers
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use a transition-metal dichalcogenide as the active material. For example, Ma et al. [226]
used MoS2, a transition-metal dichalcogenide, as the active material.
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The materials exhibit significant promise in the creation of flexible supercapacitors
due to their huge surface area, high conductivity, favorable mechanical characteristics,
and great stability. Unfortunately, carbon-based materials have poor specific capacitance
due to the intrinsic EDLC mechanism, which is a major barrier to raising the energy
density of supercapacitors. Surface modification was an effective method for raising
the energy density of these types of supercapacitors. For example, surface activation
and N-doping or S-doping approaches can effectively increase the capacitance of carbon-
based materials [227]. Generally, N-doping uses the nitrogen sources of nitrogen gas,
ammonium salts, urea, and ammonia gas, whereas S-doping deals with different sulfur
sources, including thiourea, benzyl disulphide, sulphates, methionine and sulphuric acid
temperatures [228].

7.5. Biomedical

Biomedical implantable devices mostly require micro power sources with tiny sizes
and enough power supply [229]. Implantable medical devices have improved the treatment
of several chronic diseases. For example, modern cardiac pacemakers can monitor and
control the patient’s heart function and report critical events to hospital control centers.
However, powering such implanted devices with batteries creates problems because these
devices must be replaced when the battery is drained [161]. This necessitates that the
patient undergoes painful surgery at a significant expense. Therefore, a few researchers are
exploring battery-free implantable devices by harvesting energy directly from the human
body. Recently, researchers have successfully developed an implantable nanogenerator in
a living rat that works by extracting energy from its periodic breathing. This energy was
used to power a prototype pacemaker [230–233]. A tiny supercapacitor as an energy source
used for medical implants and healthcare monitoring devices was manufactured using
different methods, such as by doping poly (3,4-ethylenedioxythiophene): poly(styrene
sulfonate) composite with a supramolecular solvent (β-cyclodextrin and citric acid), a soft,
self-adhesive conductive polymer [234]. In addition, there was also a biodegradable and
nontoxic food material-based supercapacitor for biomedical applications with a primary
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battery and biosensors using an implantable triboelectric nanogenerator [235]. Furthermore,
one of the key areas of research to address the increasing ecological problems associated
with the issue of electronic waste is the development of environmentally friendly and
biodegradable electrical components, as shown in Figure 12. This energy storage unit is
made up of biodegradable Zn-ion hybrid supercapacitors with an anode made of zinc foil,
a cathode made of molybdenum sulfide (MoS2) nanosheets, and an electrolyte made of ion-
crosslinked alginate gel. The high capacitance of 93.5 mF cm2 and an output voltage of 1.3 V
are achieved with this architecture. These types of biodegradable supercapacitors are also
highly desirable for biomedical applications such as integrated bioelectronics, which also
call for biocompatibility. However, in the case of wireless power transfer, biodegradable
supercapacitors, low energy density, short lifetimes due to self-discharge, limited capacity,
and limited continuous power supply capability were mentioned as drawbacks.
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8. Challenges for Conductive Polymer Composite Supercapacitors

As previously mentioned, CPC supercapacitors offer many advantages over batteries
and fuel cells. Even so, they also face challenges at the current stage of technology. The
major disadvantage of conductive polymers when used as supercapacitor electrodes is their
poor cycle life [131], low energy density [236,237], high cost [238], high self-discharging
rate [239], and challenges regarding the mass production of CNT-based flexible superca-
pacitors should also be overcome. The fabricating process with high-throughput synthesis
should be held on a large scale, allowing commercial application. In addition, insolubility
and intractability remain the major challenges obstructing the use of CPs in energy stor-
age; other problems include diffusion issues, cycling, and stability [61]. Furthermore, in
current practical applications, flexible supercapacitors still face many challenges in wear-
able electronics, making them unsuitable for industrial production, in addition to safety
issues related to the development of flexible capacitors. Since it is used close to the skin,
biocompatible materials are one of the best choices for constructing supercapacitors [240].

Research conducted by S. R. Sivakkumar [241] has shown that conductive polymer
composites swell and contract substantially on charge and discharge, respectively. This
volume change, or swelling, causes mechanical failure of the electrode under prolonged
cycling. Consequently, cycle life is poor compared with carbon-based supercapacitors,
which generally only charge via adsorption and desorption of ions (typically giving a few
thousand cycles for conductive polymers compared with >500,000 cycles for carbon-based
devices). This draw back was solved by Mengting Liu [242], who developed novel non-
woven Al2O3 nanowire polyvinyl butyral (PVB) membrane separators with highly porous
networks that demonstrated tensile strength of >30 MPa, extremely high electrolyte ab-
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sorption (>200 wt%), low-to-no swelling behavior, and stable electrochemical performance
substantially exceeding that of analogous cells with commercial separators.

9. Outlook, Future Perspectives and Conclusions

Conductive polymers offer various benefits as supercapacitor electrodes. They are
flexible, highly conductive, easy to process, have high charge storage, and have a low resis-
tance to electroactive materials to achieve high capacitance performance. Many conductive
polymers exhibit high specific capacities and capacitances while being able to deliver en-
ergy at a relatively rapid rate. The major disadvantage of conductive polymers, when used
as supercapacitor electrodes, is their poorer cycle life than those based on carbon.

Several researchers are currently working on the further development of supercapac-
itors made of conductive polymer composites. Recent studies indicate that the annual
growth rate for the development of reliable, high-capacity supercapacitors will skyrocket
over the next few years. Demand for increasingly advanced and electroconductive polymer
composite supercapacitors has increased as technology has developed. Flexible conductive
polymer composite supercapacitor design and development issues have frequently been
solved using unique techniques created by several researchers. This review clearly shows
the conductive polymers and composites for supercapacitor applications in various fields.
The fabrication and conductivity mechanisms of conductive polymer supercapacitors are
explained. Overall, the application of the conductive polymer composite discussed above
led to the development of a broad range of flexible, reliable, and high-capacity conductive
polymer supercapacitors with full performance. Current challenges remain in ensuring
consistent performance, achieving satisfactory energy density, and developing suitable
cathode materials and electrolytes. In particular, the electromechanical performance of a
conductive polymer-based supercapacitor can store huge amounts of electricity, have a
long shelf life without deteriorating, and have extremely low energy waste.

In general, for the future, the design and development of conductive polymer com-
posite supercapacitors should be environmentally friendly and use a sustainable green
electrode material that is easily recyclable and has zero waste.
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