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Abstract: High-performance concrete (HPC) is widely used in infrastructure for its durability and
sustainability benefits. However, it faces challenges like autogenous shrinkage, leading to potential
cracking and reduced durability. Fiber reinforcement offers a solution by mitigating shrinkage-
induced stresses and enhancing concrete durability. In this sense, this study investigates the use
of glass microfibers to mitigate autogenous shrinkage and early-age cracking in high-strength self-
compacting concrete. Samples were prepared with two water-to-binder ratios (w/b): 0.25 and 0.32;
and three glass microfiber contents: 0.20%, 0.25%, and 0.30 vol.%. The concrete mixtures were charac-
terized in the fresh state for slump flow and in the hardened state for compressive strength, static,
and dynamic Young’s modulus. Unrestrained and restrained shrinkage tests were also conducted in
the seven days-age. The findings revealed that glass microfibers reduced the workability in mixtures
with lower slump flow values (w/b of 0.25), while less viscous mixtures (w/b of 0.32) exhibited a
slight improvement. Compressive strength showed a proportional enhancement with increasing
fiber contents in concretes with a w/b ratio of 0.32. A contrasting trend emerged in concretes with
a w/b ratio of 0.25, wherein strength diminished as fiber additions increased. The modulus of
elasticity improved with fiber additions only in the matrix with a w/b ratio of 0.25, showing no
correlation with compressive strength results. In shrinkage tests, the addition of glass microfibers up
to specific limits (0.20% for a w/b ratio of 0.25 and 0.25% for w/b of 0.32) demonstrated improve-
ments in controlling concrete deformation in unrestrained shrinkage analyses. Concerning cracking
reduction in restrained concrete specimens, the mixtures did not exhibit significant improvements in
crack prevention.

Keywords: glass microfibers; autogenous shrinkage; high-performance fiber reinforced concrete;
durability; cracking

1. Introduction

Autogenous shrinkage arises from chemical shrinkage and self-desiccation due to
cement hydration. After the initial setting, autogenous shrinkage becomes progressively
restrained due to the increasing rigidity, primarily resulting from the restraint imposed
by aggregates and reinforcement. This generates tensile stresses, which can lead to the
formation of cracks when they surpass the material’s tensile strength [1]. When quantifying
autogenous shrinkage, factors such as mass fluctuations, thermal variations, and external
forces are typically not considered [2]. However, it is widely acknowledged that autogenous
shrinkage is chiefly influenced by the water-to-binder (w/b) ratio. Additionally, factors such
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as the composition and fineness of the Portland cement, as well as the curing environment
(temperature and humidity), also have a significant impact on shrinkage [3].

In conventional concretes and mortars, the extraction of water from larger pores is
generally considered to have minimal effects on the autogenous shrinkage phenomenon
and is often deemed negligible. However, in high-performance concretes (HPCs), where
lower w/b ratios are characteristic, the resulting pore refinement amplifies capillary stresses.
This leads to more pronounced autogenous shrinkage at early ages compared with drying
shrinkage [4,5]. The impact of the autogenous phenomenon is even more pronounced in
very high-strength self-compacting concretes (VHSSCCs) due to their very low w/b ratios
and the presence of reactive supplementary materials. From a practical perspective, the is-
sue of autogenous shrinkage becomes particularly significant in mass concrete applications.
This concern arises when the inner core of the concrete mixture remains in an autogenous
condition, implying that it does not exchange moisture with the surrounding environment.

Concrete cracking can be initiated by restrained shrinkage forces due to internal
or external constraints, under specific boundary conditions. As movements in concrete
structures are often restricted by elements like floors, foundations, reinforcing bars, or other
structural components, various tensile stresses develop within the concrete. These stresses
can surpass the concrete’s tensile strength, resulting in cracks in the structural element [6].

Extensive research has been conducted to address autogenous shrinkage in cement-
based materials, exploring supplementary cementitious materials, chemical admixtures,
mix design variations, and controlled curing conditions [7–11]. For a detailed discussion
of mitigation techniques for autogenous shrinkage in ultra-high-performance concrete,
readers are referred to [12]. This work focuses on another approach to reducing cracks in
concrete structures: the incorporation of fibers.

The effectiveness of fibers depends on ensuring compatibility between the properties of
the cementitious matrices and the selected fiber. This compatibility is crucial for promoting
strong cohesion between materials and increasing energy absorption capacity [13]. The
adhesion of fibers within the cement matrix acts as an effective bridge within cracks,
playing a pivotal role in mitigating high shrinkage deformations and enhancing concrete’s
resistance to bending [3].

Numerous studies consistently demonstrate that adding sufficient volumes of fibers
leads to a significant reduction in both shrinkage and cracking by virtue of their bridging
effect [14–16]. Their impact diminishes after the concrete hardens [17,18]. Some studies
investigated the effects of using polypropylene fibers on concrete shrinkage. The findings
highlight a significant reduction in both autogenous and overall concrete shrinkage. Addi-
tionally, researchers have attempted to investigate the effects of diverse fibers with varying
geometrical characteristics (sizes and shapes) on the cracking properties of concrete [19–22].
However, most of these studies predominantly focus on the utilization of steel fibers in
high-performance concretes. There is a notable dearth of research dedicated to investi-
gating the application of glass fibers as an alternative to steel fibers in self-compacting
high-performance concrete formulations. The rationale for considering glass fibers lies
in their non-corrosive nature, making them a favorable choice in environments prone
to corrosion. Additionally, their non-conductive property makes them suitable for ap-
plications requiring electrical insulation. Glass fibers also exhibit resistance to chemical
attack in diverse environments, and from an economic perspective, they may prove more
cost-effective than metallic fibers in specific cases. As per Loukil et al. [23], the integra-
tion of glass fibers within the cementitious matrix emerges as a favorable alternative to
steel-reinforced concrete, particularly in the construction of precast electrical equipment
shelters and slender structural elements. While autogenous shrinkage is more critical in
mass concrete applications, it can influence other types of concrete structures as well.

Apart from the limited use of glass fibers in self-compacting high-strength concretes,
the second contribution of this research stems from the exploration of glass fibers inte-
grated into concrete matrices under restrained conditions. This aspect addresses another
underexplored area, particularly in the assessment of autogenous shrinkage. In this con-
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text, this paper aims to fill the existing research gap by examining how the inclusion
of glass microfibers in concrete mixtures can mitigate autogenous shrinkage and early-
age shrinkage-induced cracking. The investigation encompasses both unrestrained and
restrained shrinkage tests, along with a comprehensive characterization of fresh state
properties through slump flow testing and evaluations in the hardened state, including
assessments of compressive strength and static and dynamic elastic moduli.

2. Materials and Methods
2.1. Starting Materials: Selection and Characterization

A Portland cement type III was used to produce the VHSSCC, in accordance with the
requirements outlined in the ASTM C 150 standard [24]. Silica fume (having 95% purity
and specific gravity of 2220 kg/m3) was blended with cement. The blend comprised 90%
cement and 10% silica fume.

The characterization of the binder constituents involved a quantitative chemical de-
termination of the oxides, which was performed using X-ray fluorescence spectrometry
(specification) with molten pellets. Table 1 shows the values of the chemical characterization
of cement and silica fume.

Table 1. Results of chemical analysis of cement and silica fume. LoI means loss on ignition.

SiO2 Al2O3 K2O Na2O Fe2O3 TiO2 CaO MgO MnO2 P2O5 SO3 LoI *

Cement 18.9 3.69 0.5 0.41 2.76 0.26 63 4.22 0.05 0.03 3.1 3.2
Silica fume 94.6 <0.04 1.3 0.49 0;06 0.06 <0.02 0.2 0.34 0.04 0.1 0.1

* Loss on ignition.

The coarse aggregates, derived from natural gravel, exhibited a particle size ranging
from 4.75 to 12.5 mm, along with an apparent density of 2610 kg/m3. The fine aggregate,
composed of natural sand, featured fine quartz sand with a specific mass of 2660 kg/m3

within the range of 0.2 to 0.6 mm. This fine aggregate was classified as medium-sized
according to ASTM C33 standards [25]. Tap water was employed in the preparation of the
concrete mixtures. To achieve the desired flowability, a superplasticizer admixture based
on polycarboxylate, typically recommended for prefabricated self-compacting concrete,
was used. This admixture possesses a specific mass of 1.04 g/cm3 and a solids content of
30% (information obtained from the manufacturer of the admixture).

A glass microfiber, the characteristics of which are detailed in Table 2, was employed.
This specific fiber type was selected due to its Young’s modulus proximity with that
of the ultra-high-performance concretes (40–60 GPa), a crucial factor in optimizing the
compatibility and performance of the cement matrix–fiber composite [26]. Using fibers with
a Young’s modulus close to that of the concrete matrix helps to ensure that both the fibers
and the matrix deform together under load. This compatibility in deformation reduces the
likelihood of cracking and enhances the overall performance of the composite material.
The dimensions of the fibers were chosen to minimize contact with the coarse aggregate.

Table 2. Characteristics of the microfiber glass according to the supplier.

Young’s
Modulus

(GPa)

Tensile
Strength

(MPa)

Diameter
(mm)

Length
(mm)

Aspect
Ratio

Strain
Capacity

(%)

Specific
Mass

(g/cm3)

72 1698 0.02 13 650 2.0–3.5 2.68

2.2. Mix Design

This study focused on three key independent variables: the water-to-binder ratio
(w/b), the content of glass fibers, and the age of hydration of the mixture. To achieve high
strength and durable concrete, water-to-binder ratios of 0.25 and 0.32 by mass were selected.
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The proportions of materials were carefully determined, with coarse aggregate constituting
35% of the concrete volume and the mortar comprising 30% fine aggregate and 70% paste.

To maintain stability in the mixtures, this study was performed with fiber volumes
of 0.2%, 0.25%, and 0.3% relative to the volume of concrete. The desired fluidity of fresh
VHSSCC was guaranteed by the polycarboxylate superplasticizer (SP), dosed at 1.54% and
0.84% (relative to the mass of the binder) for mixtures with 0.25 and 0.32 w/b, respectively.
Given that the fiber content was determined relative to the volume of concrete, it resulted
in some minor variations in the paste volume among the different mixtures. In terms of
material proportions per cubic meter (m3), the quantities of cement and water per m3

exhibited slight variations corresponding to the increase in fiber content (as indicated in
Table 3). Nevertheless, these discrepancies were minimal and did not seem to have any
discernible impact on the test results.

Table 3. Materials proportions used to produce the concrete mixtures (kg/m3).

Nomenclature
Contents (kg/m3)

Cement Silica
Fume

Fine
Sand

Medium
Sand

Coarse
Aggregate

Glass
Microfiber Water SP

0.25_0% 706 78 309 202 922 0 196 12.07
0.25_0.20% 705 78 309 202 920 5.36 196 12.05
0.25_0.25% 704 78 309 202 920 6.70 196 12.04
0.25_0.30% 704 78 309 202 919 8.04 196 12.04

0.32_0% 630 70 309 202 922 0 224 5.88
0.32_0.20% 629 70 309 202 920 5.36 224 5.87
0.32_0.25% 628 70 309 202 920 6.70 224 5.86
0.32_0.30% 628 70 309 202 919 8.04 224 5.86

2.3. Test Procedures for Concrete Characterization

This section outlines the methods employed to evaluate the fresh and hardened-state
properties of the concrete. These methods include the slump flow test, determination of
specific mass, measurement of compressive strength, assessment of static and dynamic
elastic moduli, and, finally, analysis of unrestrained and restrained shrinkage. Figure 1
summarizes the performed analysis.
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Figure 1. Flowchart of the conducted experiments.

The slump flow test was used to evaluate the flowability characteristics of the con-
crete mixes. The admixture dosage was adjusted for the control mix (without fibers) to
achieve a slump flow exceeding the minimum requirement of 600 mm as mandated for
self-compacted concrete (SCC) in compliance with ASTM C 1611 [27]. The admixture
dosage was kept constant to evaluate the effect of various fiber dosages on the slump flow
of the mixtures.
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The concrete specific mass test was determined using the gravimetric method, follow-
ing the guidelines outlined in the ASTM C 138 standard [28]. This procedure enabled the
calculation of both the entrained air content introduced during the mixing process and the
consumption of the materials.

Cylinders with nominal dimensions of 10 × 20 cm were used to evaluate the compres-
sive strength, according to ASTM C39 [29]. The samples were loaded at a rate of 0.6 MPa/s.
Testing was conducted at different ages, at 3, 7, and 28 days, in Shimadzu equipment with
a loading capacity of 2000 kN.

The dynamic modulus of elasticity was determined according to the standard test
methods ASTM C 215 [30] and ASTM E 1876 [31]. These methods establish a correlation
between the material’s dynamic modulus and its fundamental resonant frequency. For the
static modulus test, the procedure followed the guidelines outlined in ASTM C 469 [32].
This test was conducted on the same specimens that were previously subjected to com-
pressive strength testing. Each mixture underwent testing of dynamic and static elastic
modulus on five specimens, with evaluations conducted at 3, 7, and 28 days of hydration.

Unrestrained autogenous shrinkage was performed to determine the volumetric
variation exhibited by the concrete mixtures. The dimensions of the molds used were
75 mm × 75 mm × 285 mm, according to ASTM C157 [33]. Deformations were continuously
measured from the first hours of hydration, with automated readings taken at five-minute
intervals. For each mixture, three prisms were molded, and the longitudinal deformations
were measured on both faces of the prisms (Figure 2a). A fourth prism was molded to
monitor variations in the temperature and relative humidity of the concrete. The specimens
were kept at 23 ± 2 ◦C at 50 ± 4% relative humidity throughout the test period. To ensure
that there was no restriction by the mold, a double layer of plastic film was applied to the
interior of each metal mold. These tests were conducted in sealed samples cured for seven
days (Figure 2b).
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Figure 2. Photographs of (a) unrestrained shrinkage instrumentation and (b) mold details.

The restrained autogenous shrinkage test was carried out to investigate the effects of
the addition of glass microfibers on cracks in restricted concrete. These cracks primarily
result from the stresses caused by autogenous shrinkage. The test was performed accord-
ing to ASTM C 1581 [34]. Three specimens of each mixture were prepared. Each mold
was formed by two concentric steel rings measuring 330 ± 3.3 mm (internal diameter),
406 ± 3 mm (external diameter), and 152 ± 6 mm in height (Figure 3). Each inner steel ring
was instrumented with three pairs of strain gauges, which were attached to the surface but
not in direct contact with the concrete. The top faces of the concrete rings were promptly
sealed by a polymeric acrylic-based film immediately after the molding. After 24 h, the
outer metal ring was removed, and the outer side of the concrete ring was immediately
painted. As for unrestrained shrinkage measurements, the deformation of the metal rings
was measured at five-minute intervals and collected through a data acquisition system.
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Figure 2a shows the specimen from above at the onset of the test, and Figure 2b shows
the section of the specimen at the onset of the test.

These tests were conducted in sealed samples cured for seven days. Table 4 provides a
concise summary of the conducted tests, including details about the dimensions of the test
specimens, and the respective norms or standards followed for each test.

Table 4. Summary of tests performed, parameters, and standards.

Test Specimen Dimension [mm] Standard

Slum Flow Fresh state - ASTM C1611 [27]
Specific Mass Fresh state 150 × 150 × 150 ASTM C 138 [28]
Compressive Strength Cylinder 100 × 200 ASTM C39 [29]
Static Young’s Modulus Cylinder 100 × 200 ASTMC469 [32]
Dynamic Young’s Modulus Cylinder 100 × 200 ASTM E1876 [31]
Unrestrained Shrinkage Prism 75 × 75 × 285 ASTM C157 [33]

Restrained Shrinkage Ring model
Inner diam. 330 ± 3.3

ASTM C1581 [34]Outer diam. 406 ± 3
Height 6

3. Results and Discussion
3.1. Fresh State Properties: Flowability, Specific Mass and Air Content

The effects of fiber addition on the fresh state properties of the mixtures are presented
in Figure 3. Notably, in highly viscous mixtures (w/b = 0.25, Figure 4a), loss of fluidity
occurred when the fiber was incorporated. This is because the fibers act as physical barriers
that the constituents of the mixture must navigate, and their relatively large aspect ratio and
specific surface area account for the decrease in fluidity. This loss of fluidity was consistent
across various fiber contents, with no significant differences observed among the levels
of the fiber content tested. For the w/b of 0.32 (Figure 4b), the addition of fibers did not
significantly change the fluidity of the mixtures. Indeed, there was a slight increase in
fluidity as the fiber content increased.

Additionally, another factor affecting workability can be a large fiber surface area.
This can cause the material to behave more like a lamellar aggregate, increasing water
consumption in the mixture and impacting fluidity, as well as trapping air, particularly in
mixtures with low W/Wb ratios.

For both w/b ratios, a significant increase in the content of entrained air was observed
during the mixing process with increasing fiber additions, leading to concretes with lower
specific masses. The incorporation of air, in the absence of additives, is often attributed
to the reduction in workability. During the mixing process, air is entrapped, particularly
in stiffer mixes, a phenomenon well documented in the literature [35]. In fact, when
comparing the reference samples with w/b ratios of 0.28 and 0.32, the fluidity is slightly
higher for the w/b 0.32 sample, resulting in a lower content of entrained air. On the other
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hand, the mixtures with a w/b ratio of 0.32 containing fibers exhibit a different behavior, as
both workability and entrained air increase with higher additions of fibers.
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The literature addressing the impact of glass fibers on the workability of high-strength
self-compacting concretes is limited. Thus, we conducted a comparative analysis with
findings from studies on traditional self-compacting concretes with medium strength
available in the literature (see Table 5). While there are no records of increased fluidity
with the insertion of glass fibers, it is observed that the reduction in workability is less
pronounced in some studies, while more significant in others.

The increase in fluidity with fiber additions reported in this work may be related to
the interaction of fibers and additives with a higher water content, which might improve
the dispersion of the fibers [36]. Rheological analysis is not the primary focus of this
study; however, given the investigative gap in rheological analysis of high-strength self-
compacting concretes reinforced with fibers, it can be a subject for future studies.
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Table 5. Comparison of slump flow results of this work with glass-fiber reinforced concretes from
literature.

Reference Type of Concrete SP (wt.%) w/b
Ratio

Length
(mm)

Aspect
Ratio

Content of Fiber
(vol.% (1) or

wt.% (2))

Slump Flow
(mm)

This work

Very high
strength

self-compacting
concretes

1.5 0.25

13 650 Control, 0.2, 0.25,
and 0.3% (1)

650, 220, 210,
and 215

0.8 0.32 685, 690, 710,
and 725

Sanjeev et al.
[37]

Self-compacting
concrete 1.0 0.36 6 461 Control, 0.02, 0.03

and 0.04% (1)
740, 720, 700,

and 680

Hake et al. [38] Self-compacting
concrete 2.5 0.54 12 857 Control, 0.25 and

0.5% (2)
689, 681, and

676

Ahmad et al.
[39]

Self-compacting
concrete 0.8 0.35 12 Control and 0.025

(2) 720 and 710

Güneyisi et al.
[40]

Self-compacting
concrete 0.21–0.28 0.35 12 923 Control, 0.35 and

0.7 (1)
~745 and

~730

Mehdipour
et al. [41]

Self-compacting
concrete 0.5 0.35

6 150 Control, 0.1, 0.2,
and 0.5% (1)

46, 45, 43,
and 38 *

12 200 Control and
0.5% (1) 46 and 36 *

Ghosh et al.
[42]

Self-compacting
concrete 0 0.62

19 106 Control and
0.3% (1)

678 and 531

12.7 71 678 and 546

* They used mini-slump flow tests. (¹) Percentage of concrete volume; (²) Percentage of the binding weight.

At this moment, it is worth highlighting the guidelines set forth by The European
Guidelines for Self-Compacting Concrete (EFNARC) [43], which categorizes the standard
slump flow for a diverse range of applications into three distinct classes. SF1 represents
spreading in the range of 550 to 650 mm, SF2 for 660 to 750 mm, and SF3 for 760 to 850 mm.
According to EFNARC’s recommendations, SF1 (550–650 mm) is apt for applications
involving unreinforced or slightly reinforced concrete structures that are cast from the top,
allowing for free displacement from the delivery point (e.g., housing slabs), as well as for
casting via a pump injection system (e.g., tunnel linings). It is also suitable for sections
small enough to prevent long horizontal flow (e.g., piles and certain deep foundations). SF2
(660–750 mm) is well suited for a multitude of standard applications, including walls and
columns. On the other hand, SF3 (760–850 mm) is specifically recommended for vertical
applications within highly congested structures, those with complex shapes, or when filling
under formwork is required.

Thus, by following the EFNARC guidelines, the control mixture with a w/b of
0.28 falls within the SF1 class, nearing the upper limit. However, mixtures with the same
w/b ratio incorporating fibers do not meet the criteria for classification as self-consolidating
concretes. Conversely, all mixtures with a w/b ratio of 0.32 are assigned to the SF2 class.

3.2. Mechanical Properties

Figure 5 depicts the results obtained from compressive tests. Notably, in the case of
fiber-reinforced concretes with a w/b of 0.25 (Figure 5a), there is an evident decline in
the average mechanical performance corresponding to the increase in the fiber content.
In contrast, for a w/b ratio of 0.32 (Figure 5b), a remarkable strengthening effect can be
observed with increasing fiber additions, particularly pronounced at 28 days.
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Hence, the influence of fibers on compressive strength is contingent on both the
fiber content and the w/b ratio. In the case of very high-performance concretes, typically
presenting compressive strengths surpassing 100 MPa after 28 days of curing, the impact of
fibers is detrimental to mechanical strength, which diminishes with increasing fiber content.
Conversely, for higher w/b ratios, where concretes do not exceed 100 MPa, the fiber effect
is beneficial, progressively enhancing strength in proportion to the fiber content employed.

As for comparison, Schwartzentruber et al. [1] observed a 19% reduction in slump
flow and a slight improvement in compressive strength at 28 days by incorporating 1%
volume of glass fibers with similar dimensions and an aspect ratio in ultra-high strength
mortar (with a water-to-binder ratio of 0.25). Similar trends were observed with other types
of microfibers [44]. Kumar et al. [45] reported an increase in compressive strength up to a
certain threshold content (~0.3 vol.%). Beyond this threshold, there was a noticeable decline
in compressive strength. This finding was also noticed by Loukil et al. [23] The authors
attributed this loss of compression strength to less compaction of the material associated to
spaces occupied by the glass fibers.

Table 6 summarizes our research findings and provides a comparative analysis with
results reported in the existing literature. It can be noticed that for all self-compacting con-
cretes, the compressive strength rises with increasing glass fiber additions. These findings
suggest that the fiber dispersion and workability are the primary factors influencing the
mechanical performance of concretes.

Table 6. Comparison of compressive strength results of this work with glass-fiber-reinforced concretes
from literature.

Reference Type of Concrete w/b
Ratio Aspect Ratio

Content of Fiber
(vol.% (1) or

wt.% (2))

Compressive
Strength at

28-Days Age
(MPa)

This work Very-high strength
0.25

650
Control, 0.2, 0.25,

and 0.3 (1)

107, 105, 102 and
97

0.32 82, 89, 98 and 106

Schwartzentruber
et al. [1]

Ultra-high-
performance 0.26 857 Control and 1.0 (1) ~135 and ~138

Kumar et al. [45] High performance 0.3 857 Control, 0.33 and
0.67 (1) 30.1, 41.3, and 32.2

Loukil et al. High performance 0.3 857 Control, 2.0 and
3.0 (2) 82, 86, and 79
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Table 6. Cont.

Reference Type of Concrete w/b
Ratio Aspect Ratio

Content of Fiber
(vol.% (1) or

wt.% (2))

Compressive
Strength at

28-Days Age
(MPa)

Sanjeev et al. [37] Self-compacting 0.36 461 Control, 0.02, 0.03
and 0.04 (1)

47.7, 50.2, 53.7, and
57.3

Hake et al. [38] Self-compacting 0.54 857 Control, 0.25 and
0.5 (2) 39.1, 40.2, and 44.0

Ahmad et al. [39] Self-compacting 0.35 Control and
0.025 (2) 45 and 47

Mehdipour et al.
[41] Self-compacting 0.35

150 Control, 0.1, 0.2,
and 0.5 (1) 55, 55, 54, and 54

200 Control and 0.5 (1) 55 and 56
(¹) Percentage of concrete volume; (²) Percentage of the binding weight

Figure 6 shows the static modulus and the dynamic elastic modulus of the specimens.
For the mixture with a w/b of 0.25 (Figure 6a,c), both static and dynamic elastic moduli are
less influenced at early ages but demonstrate a clear improvement with fiber incorporation
at 28-days age. At this age, the mixture with w/b = 0.32 demonstrated minimal variation
in values (refer to Figure 6b,d). This contrasts with the findings in compressive strength,
where a w/b of 0.32 improved with the influence of fibers. Given that both elastic and
dynamic modulus values were derived from distinct test procedures, the convergence
of results toward the same tendency suggests the improbability of testing errors. The
consistency of these findings is further emphasized by the significantly higher correlation
observed between the outcomes of both analyses, as illustrated in Figure 6e.
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It has been reported that fibers have a lesser impact on the modulus of elasticity of
concrete in compression [46], yet they exhibit the potential to enhance the modulus of
elasticity in tension [47]. Nevertheless, this observation has sparked contradictions found
throughout the literature. Kumar et al. [45], Schwartzentruber et al. [1], and Abdullah and
Jallo [48] have reported an uptick in the elastic modulus of concrete with the incorporation
of fibers. In contrast, Kizilkanat et al. [49] documented a slight decrease in the elastic
modulus with the inclusion of fibers ranging from 0.25 to 1.0 vol.%. Simultaneously,
they observed enhancements in both flexural strength and split tensile strength for the
corresponding fiber contents. Furthermore, while the compressive strength showed no
significant impact at 0.25 and 0.5 vol.%, a slight increase was evident at 0.75 and 1.0%.

Therefore, it is evident that the results of mechanical strength tests may not always
align with the outcomes of elasticity modulus tests. The underlying reasons for the dispari-
ties in findings between the present study and Kizilkanat et al., as well as their divergence
from other literature, remain elusive. This discrepancy necessitates thorough exploration
in future research.

3.3. Autogenous Shrinkage

The results of the unrestrained autogenous shrinkage tests are shown in Figure 7,
where the mean strain of each specimen is shown over 7 days. The unrestrained shrinkage
deformations obtained in the tests decreased when microfibers were added to the mixture
compared with the reference sample; however, no significant differences were observed
among the contents tested. This finding was consistent across both w/b ratios.

Figure 8 presents the average unrestrained autogenous shrinkage values for each
concrete studied at 7 days ages. The maximum reduction in the deformation obtained
in the mixtures studied was 48% for the mixture 0.25_0.20% and 75.5% for 0.32_0.25%.
These contents represent the threshold limit, as higher amounts appear to diminish the
effectiveness of shrinkage mitigation. This behavior has also been reported in the litera-
ture. Mehdipour et al. [41] systematically examined the influence of glass fibers on the
unrestrained drying shrinkage of self-compacting concrete. Their investigation revealed
a notable reduction in shrinkage with an escalation in the fiber content up to a critical
threshold. This threshold is contingent upon the aspect ratio, approximately 4 vol.% for
fibers characterized by an aspect ratio of 200 and approximately 6 vol.% for fibers with an
aspect ratio of 150. Beyond this specified content, the diminishing returns on shrinkage
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reduction were noted. The researchers postulated that beyond this critical threshold, fibers
exhibit insufficient distribution and interconnectivity, hindering their efficacy in stress
transfer.
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Barluenga et al. [50] observed a significant reduction, ranging from 55% to 95%, in
unrestrained cracking for two types of glass fibers tested at a concentration of 600 g/m3.
The effectiveness of cracking control diminished when both types of fibers were added at a
higher concentration of 1000 g/m3. This optimal behavior was consistently observed in
restrained concrete as well, where the addition of fibers at 600 g/m3 resulted in a substantial
reduction of 70–80%.

The results of the restrained shrinkage tests are presented in Figure 9. Fiber-reinforced
concrete reduced steel deformation of the ring, which indicates a reduction in concrete
shrinkage, resulting in less tension generated by the restraint from the steel ring. Figure 10
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depicts the timeline (in days) when cracks emerge in the samples. It is worth noting that
the occurrence of cracking took place between the fourth and seventh days. However,
there is no discernible correlation between the timing of cracking and the presence or
content of glass fibers. This lack of correlation aligns with findings from other works.
Schwartzentruber et al. [1] demonstrated a notable 24% decrease in restrained stress after
incorporating approximately 1 vol% glass fibers for a 24-h period. However, the reduction
in the propensity for cracking was not as substantial. Messan et al. [51] demonstrated that
the addition of glass fibers at 0.06 mass% does not alter the increase in restrained tensile
stress compared with the unmodified formulation. However, it significantly reduces both
unrestrained shrinkage and local strain activity at the drying surface of the mortar.
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4. Conclusions

This study conducted a comprehensive investigation into the effects of fiber addition
on the properties of VHSSCC prisms. The assessment covered the influence of microfibers
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on concrete workability, mechanical properties, and both unrestrained and restrained
shrinkage. The analysis of the findings leads to the following conclusions:

✓ Glass microfibers decreased workability in mixtures with lower slump flow values
(w/b of 0.25). Conversely, in less viscous mixtures (w/b of 0.32), there was a slight
improvement in slump values.

✓ The compressive strength demonstrated a proportional enhancement with rising fiber
contents in concretes featuring a w/b ratio of 0.32. Conversely, a contrasting behavior
was noted for concretes with a w/b of 0.28.

✓ The modulus of elasticity demonstrated improved results with fiber additions in the
matrix with a w/b ratio of 0.28, showing no correlation with compressive strength
results.

✓ In the shrinkage tests, the addition of glass microfibers, up to a certain limit, show-
cased improvements in controlling concrete deformation in unrestrained analyses.

✓ Regarding cracking reduction in restrained concrete specimens, the mixtures did not
exhibit significant improvements in crack prevention.

✓ According to the results obtained, for the level of strengths achieved, glass microfiber
does not prove effective in combating concrete cracking, even though it reduces
deformation due to shrinkage in the mixtures. This shows that fiber anchorage in the
matrix must be improved to increase its performance and enable its practical use.

Finally, it is worth highlighting that reducing concrete deformation with the usage
of glass fibers offers numerous practical advantages. Firstly, it enhances the durability of
concrete structures, extending their service life. Additionally, minimizing deformation
contributes to an improved aesthetic appearance by preserving the quality of the concrete
surface, enhancing the overall visual appeal of the structure. While the usage of fibers
requires the addition of a superplasticizer to maintain workability, which increases the cost
of concrete, minimizing concrete deformation still results in cost savings by reducing the
need for frequent repairs and maintenance, which can be financially burdensome.

It is also important to point out that the effectiveness of glass fibers in reducing
shrinkage might come at the expense of reducing the strength of concrete when the water-
to-binder (w/b) ratio is quite low, such as 0.25 or less, as evidenced in this study. Therefore,
future research can focus on assessing the influence of glass fibers in ultra-high-performance
concrete, exceeding 150 MPa, where the w/b ratio can be as low as 0.20.
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