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Carbon fibers (CFs) have received tremendous attention since their discovery in
the 1860s due to their unique properties, including outstanding mechanical properties,
low density, excellent chemical resistance, good thermal conductivity, etc. [1–3]. CFs are
widely applied in energy storage/conversion, sports, wind energy, electronics, etc. [4,5].
Additionally, with continuous efforts and ever-growing demand, CFs are widely utilized to
reinforce composite materials because of the abovementioned characteristics, which have
received remarkable interest [6].

The collection of papers in this Special Issue may provide new insights regarding
the development of CFs and their composites from both experimental and simulation
perspectives, advancing technology and facilitating the practical application of these de-
vices. Various candidates, including metal, polymer, inorganic materials, etc., have been
explored and implemented in composites [7–9]. Meanwhile, factors such as starting materi-
als, structural designs, compositions, etc., which may affect the overall properties of the
resultant composites, have been thoroughly investigated [10–13]. For example, Adeniran
et al. studied the influence of fiber content on the compressive properties of the prepared
composites [14]. A method proposed by Martinez et al. was used to analyze the spread-flow
kinetic effect of fluid drops on the unidirectional fiber beds [15]. Additionally, computa-
tional studies have been performed to assist in better understanding the impact of different
parameters [16,17].

Preparing these composites (i.e., curing, cyclic compression, cyclic temperature, etc.)
is still crucial since processing parameters also play critical roles in determining their final
properties [18–22]. The curing reaction progress, which can help to monitor the quality of
prepared parts, was measured by Kyriazis et al. [23]. In addition to studying these parame-
ters, different strategies have been discovered and used to prepare the composites [24–26].
For instance, Moazed et al. developed and plotted structural indices and efficiency metrics
in design charts in order to better select parameters [27]. In contrast to the traditional
structural function, Li et al. used the carbon fiber composite for catalysis [28]. Moreover, a
critical review of the broad applications of carbon fibers and their composites in renewables,
sensing, and tissue engineering is also presented [29].

This Special Issue covers experimental designs and computational studies, moving
from discussions of principles, parameter optimization, and manufacturing to end uses.
It may provide new methods and advanced technologies that could help us to better
understand these approaches to the unique characterization and modeling of carbon fiber
composites, facilitating their practical application.
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