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Abstract: A large amount of the polypropylene (PP) produced worldwide is used in the form of
fibers. In this work, a new modification route for talc and PP is investigated, which is based on the
in situ polymerization of a silane–siloxane monomer mixture on the surface of talc particles or PP
pellets, respectively. The obtained modified talc and PP samples were used for the development
of PP-talc composite drawn fibers. Tensile tests, thermogravimetry (TGA), and X-ray diffraction
(XRD) were used for the characterization of the materials. It was observed that such a modification
procedure resulted in the exfoliation of some talc particles. Enhanced tensile strength was observed
for composite drawn fibers of a low talc content (1% with respect to PP) and a low modifier content
(2% with respect to talc), while co-aggregation of talc and silicone may occur at high silicone and talc
contents, resulting in the inferior mechanical performance of the corresponding composites. It was
concluded that the produced silicone polymer simultaneously acts as a modifier, antioxidant, and
compatibilizer. The proposed modification route is promising and should be further optimized.

Keywords: polypropylene; talc; nanocomposites; silicone; fiber; drawing

1. Introduction

PP is one of the most frequently used polymers. It exhibits numerous attractive
properties such as low density, high thermal stability, and chemical inertness, and it
allows for easy processing [1]. The inherent mechanical properties of PP, e.g., elastic
modulus and tensile strength, are also high compared to those of various other polymers.
Considerably enhanced tensile strength is exhibited by PP anisotropic-oriented structures
that are produced by drawing (and the subsequent polymer chain orientation), which
can be either uniaxial or biaxial [2]. Due to this enhancement, PP is widely used for the
production of drawn sheets and fibers [3]. About 75% of the produced PP films are biaxially
drawn, while almost 100% of the produced PP fibers are uniaxially drawn [2].

Melt spinning and solid-state stretching are the typical processes used for the produc-
tion of drawn fibers. Although these are, in principle, rather simple processes, there are
multiple factors that affect the structure and, consequently, the properties of the produced
fibers. Among the factors that strongly influence fiber drawing are the molecular weight
and the polydispersity of the polymer. The thermal behavior of the polymer (crystallization
rate, glass transition, and crystallization temperatures) is also crucial for optimizing the
properties of fibers [4].

The most common approach for improving the thermal and mechanical properties of
polymers is via the use of additives and the development of composite materials. However,
as mentioned in a recent review article [3], the improvement in the mechanical strength of
drawn PP fibers or sheets due to the addition of fillers is much less than that achieved via the
drawing process. The compatibility of the additive and the polymer matrix is considered to
be of major importance for the enhancement of polymer’s properties [5], e.g., for nylon [6],
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poly(lactic acid) [7], and PP [8]. For this reason, there is a significant research interest for
the modification and functionalization of additives, e.g., silane functionalization [9], or the
modification of layered silicates [10] such as montmorillonite [11].

Very specialized PP modification is required in order to achieve compatibility with
hydrophilic fillers, such as phyllosilicate minerals [12]. However, increased compatibil-
ity and exfoliation of the phyllosilicate mineral inside the polymer matrix may lead to
increased crystallinity of the composite material [13], which is most often undesirable prior
to drawing since it leads to inhomogeneous structures [4]. For example, in PP-modified
montmorillonite drawn samples, the mineral acted as a nucleating agent and induced
increased crystallinity of the composite materials, leading to the need to apply higher
drawing temperatures [13]. In many cases, the composite PP fibers did not only not exhibit
any significant improvement (compared to neat PP fibers) but rather showed a clear re-
duction in their mechanical strength, e.g., for PP–sepiolite [14], PP–hydrotalcite (perkalite),
PP–montmorillonite [15], and PP–attapulgite [16]. For the case of attapulgite, such dete-
rioration of the mechanical properties can be attributed to its known ability to act as a
nucleating agent [17]. For this reason, attapulgite is commonly used as an additive only in
non-drawn PP samples [18].

In other cases, it has been reported that the modified mineral did not act as a nu-
cleating agent but rather as a processing additive, which resulted in increased drawing
ability for the composite samples [19]. Similarly, for PP-POSS (polyhedral oligomeric
silsesquioxane) composites, it has been reported that POSS acted as a “lubricating agent”
that facilitates drawing [20]. Very often, common industrial additives, such as antioxidants,
compatibilizers, dyes, and plasticizers, are firstly embedded in a polymer matrix of low
molecular weight to facilitate mixing and adequate dispersion, forming a masterbatch that
is subsequently mixed with the final polymer. It has been reported that such additives
(antioxidant and compatibilizer) may significantly affect the drawing processing ability
and the properties of drawn composite PP fibers through various ways, i.e., due to their
lower molecular weight, or due to the existence of favorable intermolecular interactions
between them that act competitively to those between the compatibilizer and the filler (e.g.,
talc and carbon nanotubes) [16].

The geometry of the filler is also quite important for the properties of the drawn
composites. Needle-like fillers, such as carbon nanotubes, can align to the drawing axis
due to mechanical stretching [21]. The alignment of particles and the polymer chains along
the direction of stretching contributes to a symmetric stress transfer to the particles, which,
in turn, decreases the accumulation of stress in certain regions (preventing the formation of
early cracks). More precisely, upon exposure to mechanical stress, the molecules, atoms,
particles, etc., of the material are forced to move. The movement of one region, e.g., an
amorphous region, a crystal defect plane, etc., involves the transfer of stress to other
regions. In aligned structures, the distribution of the applied stress is balanced (symmetric)
throughout the material. In the case of random structures, the distribution of stress is
random and not balanced and, thus, some regions are subjected to greater forces than
other ones, leading to the formation of early cracks. Consequently, needle-like particles,
such as carbon nanotubes [22–25] and wollastonite [16,26], have been widely used for the
development of PP composite fibers. Also, it was shown that silica nanoparticles did not
cause any significant improvement in the mechanical strength of a non-drawn polymer
sample (tensile strength ~40 MPa); however, the tensile strength of the drawn sample
(tensile strength ~196 MPa) was increased up to 270 MPa upon their addition. This was
partially attributed to the spherical geometry of the nanoparticles and the formation of a
percolated network, which enables stress transfer to amorphous regions [27].

Overall, as reported in a recent study, the established knowledge about polymer (nano-)
composites (e.g., that an adequate dispersion of nanoparticles or an exfoliated structure of
layered silicates results in improved mechanical properties) cannot be taken for granted
for anisotropic structures due to the specificity of the drawing process and the specific
structure of the drawn polymer matrices.
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In this direction, in this work, we aim to explore the development of composite PP
drawn fibers by minimizing the number of additives and, thus, reducing the number of
possible negative interferences (e.g., by minimizing the content of low-molecular-weight
additives in order to reduce any undesirable interactions between them). Talc was chosen
since it is a common and cheap additive. Also, a silicon-based polymer was used for the
modification of talc. Silicon-based materials can increase the thermal stability [28] and
heat deflection temperature [29] of the polymer and can act as “lubricants” to facilitate
drawing [20]. The silicon-based polymer contains Si-H groups, which are highly compatible
with the C-H groups of PP and, thus, by modifying talc with such a polymer, the necessity of
using an additional compatibilizer is avoided. Organosilanes have been grafted to clay and
found to enhance the properties of the respective PP (non-drawn) composites [9]. Similar
silicone-based materials have been used as coatings for the hydrophobicity enhancement of
various substrates for outdoor applications and exhibit good adhesion [28,30]. Also, silicone
is expected to enhance the thermal stability of PP, helping to avoid the use of additives,
such as antioxidants or thermal stabilizers [28]. Next, we describe the modification route of
talc and its influence on the tensile strength of PP composite drawn fibers.

2. Materials and Methods
2.1. Materials and Instruments

A masterbatch of neat isotactic PP (ECOLEN HZ42Q, Hellenic Petroleum S. A., Thes-
saloniki, Greece) with a Melt Flow Index of 18 g/10 min was used. Microtalc (Luzenac
A3) with a median diameter of 1.1 µm was kindly provided by Imerys Minerals Ltd.
(Paris, France). Nanotalc with an average particle size lower than 100 nm was obtained
from Nanoshel LLC (Wilmington, DE, USA). A silane–siloxane mixture (SILRES BS290)
was purchased from Wacker (Munich, Germany). Acetone (>99.5%) was purchased from
Honeywell Riedel-de-Haen (Charlotte, North Carolina, USA).

A four-zone twin-screw extruder (Haake Rheodrive 5001, Thermo Fisher Scientific,
Waltham, MA, USA), a three-zone single-screw extruder (Noztek Xcalibur, Shoreham-by-
Sea, UK), a filament winder (Noztek, Shoreham-by-Sea, UK), and a homemade drawing
apparatus were used for the preparation of the samples.

For the characterization of the samples, a Shimadzu TGA-50 (Shimadzu, Tokyo, Japan)
Thermogravimetric analyzer (TGA) and a D8 Advance Bruker (Billerica, MA, USA) X-ray
diffractometer (XRD) equipped with a Siemens X-ray source (Cu, 1.54 Å) were used. Tests
for tensile strength were performed with a Hans Schmidt & Co GmbH Universal Testing
Machine ZPM (Waldkraiburg, Germany) equipped with a Pacific load cell (model PA6110).

2.2. Talc and PP Modification

The silane–siloxane mixture was dissolved in acetone (2% w/v). In this solution, a
certain amount of talc (or PP) was dispersed in order to achieve the desired silicone-to-
talc (or PP) ratio. The mixture was constantly stirred until acetone was fully evaporated
(stirring was possible up to some point). The samples were left at room temperature for
2 days. Such a period was chosen based on a separate experiment in which a solution of
the silane–siloxane mixture was placed in a Petri dish at room conditions for 5 days. The
film was macroscopically examined on a daily basis, and it was observed that after 2 days,
solidification had occurred. Thus, it was deemed that a 2-day period is sufficient for the
silicone-based polymer to be produced.

According to the adopted procedure, the silicone-based polymer is in situ produced
on the surface of PP pellets or talc particles. Various modified talc and PP samples were
prepared, as shown in Table 1.
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Table 1. Names of the modified PP and talc samples and description.

Sample Description

PP-2%sil 98% PP modified/coated with 2% silicone-based polymer
PP-3.3%sil 96.7% PP modified/coated with 3.3% silicone-based polymer
PP-10%sil 90% PP modified/coated with 10% silicone-based polymer

Microtalc-10%sil 90% microtalc and 10% silicone-based polymer
Nanotalc-10%sil 90% nanotalc and 10% silicone-based polymer
Nanotalc-2%sil 98% nanotalc and 2% silicone-based polymer

Nanotalc-sil-12 ◦C Nanotalc sample obtained by vacuum filtering of a dispersion prepared
at 12 ◦C

Nanotalc-sil-26 ◦C Nanotalc sample obtained by vacuum filtering of a dispersion prepared
at 26 ◦C

The PP-3.3%sil sample was used for some preliminary experiments in order to eval-
uate the thermal stability of the composites. In the case of talc, besides the adhesion on
the surface, some molecules of the silane–siloxane mixture can be physically adsorbed
in the interlayer space. In such a case, some intercalation may occur during polymeriza-
tion. Of course, such a process is fundamentally different from the modification of other
phyllosilicates, like montmorillonite, in which the modification is based on ion exchange.
To check if adsorption occurs in the talc particles, the following experiment was carried
out. Nanotalc was dispersed in a 5% w/v acetone solution of the silane–siloxane mixture.
Two identical dispersions were prepared and were magnetically stirred for 5 h, with the
only difference being temperature. One dispersion (nanotalc-sil-26 ◦C) was stirred at 26 ◦C
(room temperature), while the other dispersion (nanotalc-sil-12 ◦C) was stirred at 12 ◦C.
After stirring, the dispersions were vacuum filtered and left to dry in room conditions.
These samples were examined with XRD (see Section 2.4 for more details). Adsorption is
enthalpy-driven and is favored by the decrease in temperature. Thus, the talc sample that
was treated at a lower temperature should exhibit the higher adsorption of silane–siloxane
molecules and, thus, should present a more pronounced intercalated structure compared to
the sample obtained at room temperature. It should be stressed that in this case (vacuum
filtering), the actual talc-to-silane–siloxane mixture ratio is unknown.

2.3. Drawn Fiber Preparation

The neat and composite PP drawn fibers were prepared in three steps, namely, two
extrusions and a solid-state drawing. The experimental apparatus and procedure have
been described in detail in previous studies [16]. Briefly, the PP pellets and the talc powder
were mechanically premixed inside a polyethylene bag by shaking. This mixture was then
inserted in the twin-screw extruder (die of 3 mm, rotating speed of 25 rpm, temperature
of the four zones: 190, 210, 215, 220 ◦C). The extruded filament was cooled in a water
bath held at 12 ± 2 ◦C before being collected in the winder. This filament was pelletized
and then inserted in the single screw extruder (die of 1.6 mm, rotating speed of 15 rpm,
temperature of the three zones: 190, 210, 215 ◦C). Due to the lower die diameter of the
second extruder, the extruded material was of lower diameter, and for this reason, instead
of the term filament, we use the term fiber. Similarly to the extruded filament of the
first extrusion, the extruded fiber of the second extrusion was cooled by immersion in a
water bath held at 12 ± 2 ◦C and finally collected in the winder. The obtained fibers had
a diameter of 0.4–0.7 mm. These fibers were subjected to solid-state drawing using an
apparatus described in detail in previous studies [16]. Briefly, as shown in Figure 1, the
fiber from the first winder is winded twice in the inlet low-diameter drum and is then
inserted in an oven of constant temperature (140 ± 1 ◦C) through a small preheating zone
(120 ± 2 ◦C). The filament is then winded twice in the outlet high-diameter drum and is
finally driven in the second winder. The inlet and outlet drums rotate at the same speed, of
5 rpm. This way, the drawing ratio is equal to the ratio of their diameters (it was kept equal
to 7 in all cases). The prepared drawn fiber samples are presented in Table 2.
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Figure 1. Scheme of the drawing apparatus.

Table 2. Names and description of the prepared drawn fiber samples.

Sample Description

1 PP neat PP
2 PP-2%sil PP modified with 2% silicone-based polymer
3 PP-10%sil PP modified with 10% silicone-based polymer
4 PP-1.5% microtalc neat PP with 1.5% unmodified microtalc

5 PP-1.5% microtalc-10%sil neat PP with 1.5% microtalc modified with 10%
silicone-based polymer

6 PP-1.5% nanotalc neat PP with 1.5% unmodified nanotalc

7 PP-1.5% nanotalc-10%sil neat PP with 1.5% nanotalc modified with 10%
silicone-based polymer

8 PP-1% nanotalc-2%sil neat PP with 1% nanotalc modified with 2%
silicone-based polymer

9 PP-4% nanotalc-2%sil neat PP with 4% nanotalc modified with 2%
silicone-based polymer

2.4. Characterization

As mentioned in Section 2.1, the median diameter of the used microtalc particles was
1.1 µm, while the average diameter of the nanotalc particles was lower than 100 nm, as
reported by the providers. The sample PP-3.3%sil, which was prepared during preliminary
experiments, was studied by TGA in the 40 up to 450 ◦C temperature range at static air
atmosphere and using a heating rate of 20 K/min. The neat nanotalc, the two modified
nanotalc samples treated with 5% acetone solution and vacuum filtered (nanotalc-sil-12 ◦C
and nanotalc-sil-26 ◦C), and the nanotalc-2%sil sample were examined with XRD using a
step of 0.02◦ in the 5–90◦ range and a step of 0.01◦ in the 0–10◦ range. All the produced
drawn fibers were characterized by tensile test measurements at room temperature using
a head speed of 100 mm/min. For each sample, 8–12 independent measurements were
carried out, and the results are presented as the average value (±standard deviation).

3. Results and Discussion
3.1. Talc Modification

In Figure 2a, the XRD graphs of neat and modified nanotalc are presented. The XRD
graphs have been normalized to a scale from 0 to 1, and the graphs of the two modified
samples (nanotalc-sil-12 ◦C and nanotalc-sil-26 ◦C) have been subtracted from the graph
of pure nanotalc. This procedure, which is commonly used in FTIR spectroscopy [31],
facilitates the direct observation of differences among the graphs. The subtracted graphs
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are also presented in Figure 2a. The diffraction peaks of talc at 9.47◦, 18.95◦, and 28.64◦

are related to the interlayer space of talc corresponding, respectively, to the (002), (004),
and (006) planes [32,33]. As can be seen in Figure 2a, the subtracted graph referring to
the talc modified at 12 ◦C exhibits clear negative peaks at the abovementioned angles,
indicating that the intensity of these peaks is reduced in the modified sample. In Figure 2b,
suggestively, the negative peak at 9.47◦ and another peak at around 41◦, which is clearly
positive, are presented.
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The relative decrease in these peaks indicates that some particles have been exfoliated.
More precisely, it is true that the comparison of subtracted graphs is not common in XRD
analysis, in contrast to FTIR analysis. However, both methods are volume-dependent
(the intensity of a given peak of a substance is proportional to the volume fraction of
this substance in the sample) and are used for quantitative analysis. The fact that only
the peaks that are related to the interlayer distance of talc were found to be negative is a
systematic and not a random change and points out that the volume fraction of these layers
has decreased after modification. Perhaps, the only possibility for this to happen is partial
exfoliation. A possible mechanism and explanation for this could be as follows. Initially,
the majority of silane–siloxane molecules are adsorbed on the surface of all the talc particles
and form a coating. Some monomer molecules are not adsorbed on the external surface
but on the interspace layer. The reaction between the silane–siloxane molecules occurs
spontaneously (upon exposure to moisture) and, thus, it is thermodynamically favored.
Most likely, it is more favored than the adsorption on the talc surface or the interspace
layer. Thus, as the polymerization reaction proceeds, the monomer molecules from the
surface and from the interspace layer are desorbed and react with the already formed
polymer and further increase its molecular weight. The desorption of these monomers is
expected to have no influence on the interspace distance of talc particles. As in various
other phenomena, it is known that the activation energy must be surpassed in order for
the reaction to initiate. In interfaces, the energy barrier is often lower, and for this reason,
it is likely that the polymerization reaction initiates at the interface of talc and monomer
molecules and not in the bulk monomer mixture. Consequently, it is likely that the first
oligomers are formed both on the surface and on the interlayer space of talc. Due to the
increase in molecular weight during the polymerization reaction, the exfoliation of some
talc particles is accomplished, while other particles remain intact. In the subtracted graph
referring to the sample modified at 26 ◦C, no pronounced negative peaks are observed (see
Figure 2b). This can be explained by the higher temperature that favors desorption, which
is entropy-driven, and disfavors adsorption, which is enthalpy-driven.
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As mentioned in the previous section, the actual composition of these raw modified
talc samples is unknown due to the adopted procedure. These samples were not used
for any PP composite preparation and were only prepared to investigate the modification
of talc. In Figure 3, the XRD graph of the nanotalc-2%sil sample (98% nanotalc and 2%
silicone-based polymer) is presented. Again, the graph is presented as a subtracted graph
along with the graph of nanotalc.
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Figure 3. XRD of nanotalc and subtracted XRD graph of the nanotalc sample modified with 2%
silicone-based polymer [(nanotalc 2%sil)–(nanotalc)].

It can be observed that this sample also exhibits negative peaks at angles related to
the interlayer distance. Despite the fact that this modification was carried out at room
temperature and not at a lower temperature, it seems that adsorption has occurred for the
following reason. The procedure for the preparation of this sample was different from
the procedure that was followed for the preparation of the other two samples, which are
discussed in Figure 2. The abovementioned samples were removed from the solution of the
silane–siloxane mixtures after 5 h of stirring and filtered, while the nanotalc-2%sil sample
remained in the solution until complete evaporation of the solvent. Thus, the nanotalc-2%sil
sample was exposed to a much higher amount of silane–siloxane mixture and, thus, it is
reasonable to expect higher adsorption.

The above points out that such an in situ polymerization approach for the modification
of talc is a very promising alternative for the modification of phyllosilicate minerals.

3.2. Preliminary Results on the Effect of Silicone-Based Polymer on Thermal Oxidation Stability
of PP

In Figure 4, the TGA and derivative TGA curves of neat PP and PP-3.3%sil samples are
presented. The typical application of this silicone polymer is hydrophobization. However, it
has been reported that it contributes to the thermal oxidation stability and flame retardation
of cellulose [28]. Thus, although in this work the main aim was to enhance the tensile
strength of PP drawn fibers, it was checked whether the produced silicone can provide any
thermal oxidation protection to PP as well. Indeed, as can be seen in Figure 4a, it seems that
this is the case. The temperature of initiation of the thermal decomposition is more than
20 ◦C higher for the PP-3.3%sil sample compared to that of neat PP. From the derivative
TGA curves (Figure 4b), it can be observed that the temperature of the maximum mass loss
rate is approximately 350 ◦C for neat PP, while in the PP-3.3%sil sample, it is higher than
400 ◦C. Also, the maximum mass loss rate is lower for the modified sample. Clearly, the
silicone-based polymer can act as a protecting agent for PP.
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In general, the thermal decomposition and thermal oxidation of polymers are com-
plicated processes involving multiple phenomena. Thus, the recognition of the exact
mechanism of the antioxidant activity of the silicone-based polymer requires a dedicated
study. Here, we will briefly discuss some aspects that may explain the antioxidant activity
of the silicone-based polymer. The C-C bond (that is the bond of the PP backbone) presents
an average bond energy (or bond strength or dissociation energy) of 347 kJ/mol [34], while
the average bond energy of Si-O (that is the backbone bond of siloxane polymers) is quite a
bit higher and equal to 452 kJ/mol [34]. The values of other bonds of these two polymers
are pretty similar, e.g., the average bond energies of C-H and Si-H are 413 and 393 kJ/mol,
respectively [34]. Thus, in the presence of the silicone polymer, there is an increased num-
ber of strong bonds per unit mass of the (composite) material. Stronger bonds are less
easily attacked by heat, oxygen, etc., and lead to better thermal stability. In addition, it is
known [35] that at the early stage of polymer degradation through random scission, some
of the decomposition products are too large to vaporize. Similarly, thermal oxidation is
also accompanied by scission reactions, and some of the products may present rather high
molecular weight, while reactions between such silicone polymer and the PP residues are
possible. Some of the produced bonds may be stronger than the C-C bonds, e.g., the Si-C
bond has an average bond energy of 360 kJ/mol, which is slightly higher than the one of
C-C (347 kJ/mol) [34]. This could explain the increasing difference between the mass loss
profiles of neat and modified PP as temperature increases, as well as the lower maximum
mass loss rate and the higher temperature at which maximum mass loss occurs that were
observed for the modified PP sample.

3.3. Mechanical Properties of PP Composite Drawn Fibers
3.3.1. Effect of Silicone on the Mechanical Properties of PP Drawn Fibers

In Table 3, the results of the tensile tests for the neat PP and composite PP drawn fibers
are presented. Firstly, we will discuss the results that refer to samples 1, 2, and 3 in order
to examine the influence of the silicone-based polymer on the tensile strength of the PP
composite drawn fibers. In general, the addition of a rubbery polymer, such as silicone,
in the PP matrix is expected to reduce the tensile strength and the elastic modulus of the
composite material and to increase the elongation at break. However, as revealed in the
previous section (see the TGA results), silicone acts as an antioxidant protecting the thermal
decomposition of PP during fiber processing (two extrusions and one high-temperature
solid-state drawing), and such behavior tends towards better mechanical properties for the
composite material. Consequently, the addition of the silicone polymer has a dual effect
on the mechanical properties of the composite fibers. As revealed by the results of Table 3,
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upon the addition of 2% silicone, the latter phenomenon prevails, and the tensile strength
seems to be marginally increased (see results for samples 1 and 2). However, upon the
addition of 10%, the expected behavior is observed, i.e., sample 3 presents decreased tensile
strength compared to sample 1.

Table 3. Results of the tensile tests for the neat PP and PP composite drawn fibers.

Sample Elastic Modulus, MPa Stress at Break, MPa Elongation at Break

1 Neat PP 2138 ± 186 360 ± 57 77 ± 7
2 PP-2%sil 2179 ± 283 383 ± 16 62 ± 3
3 PP-10%sil 1789 ± 242 331 ± 56 104 ± 6
4 PP-1.5% microtalc 2349 ± 288 356 ± 47 79 ± 4
5 PP-1.5% microtalc-10%sil 2805 ± 387 390 ± 47 72 ± 6
6 PP-1.5% nanotalc 2515 ± 342 366 ± 18 70 ± 4
7 PP-1.5% nanotalc-10%sil 2076 ± 512 340 ± 40 67 ± 4
8 PP-1% nanotalc-2%sil 2445 ± 581 421 ± 62 56 ± 4
9 PP-4% nanotalc-2%sil 1615 ± 338 343 ± 47 83 ± 7

3.3.2. Effect of Talc Modification on the Mechanical Properties of PP Composite
Drawn Fibers

The comparison of samples 1 and 4 (see Table 3) reveals that the addition of 1.5%
unmodified microtalc results in the typical behavior of micro-composites, i.e., a small
increase in the elastic modulus and a (small here) deterioration of tensile strength. However,
sample 5, which has been prepared with modified talc, exhibits both higher modulus and
stress at break than both samples 1 and 4. This could be attributed to two factors: (a) the
beneficial antioxidant activity of silicone (as revealed by the TGA measurements), and
(b) the exfoliation of some talc particles (as revealed by the XRD measurements).

By comparing samples 1, 6, and 7, the respective discussion for nanotalc, as above for
microtalc, can be carried out. The addition of 1.5% unmodified nanotalc seems to increase
the elastic modulus and to have a small influence on tensile strength. The addition of
modified nanotalc (with 10% silicone-based polymer, sample 7) seems to cause a deteri-
oration of tensile strength. Having in mind the results for the PP composite with 1.5%
modified microtalc (sample 4), this behavior of the modified nanotalc was unexpected,
since nanocomposites are, in general, expected to perform better than microcomposites.
Perhaps this behavior is caused by the high amount of the modifier (10%), which interferes
with the process in various ways. In more detail, such a negative effect may be attributed
to the poor mechanical strength of the silicone-based polymer, as well as its low molecular
weight (compared to that of PP). Such low molecular weight imposes a limitation to the
drawing process, since it is known that the overstretching of short polymer chains results
in the deterioration of the final mechanical properties [3]. In addition, this problem could
be intensified by the high polydispersity of the silicone polymer, which is expected due to
the uncontrolled polymerization of the silane–siloxane mixture, e.g., the temperature of the
reaction is not controlled.

In order to further investigate the latter point, two new PP-nanotalc composite drawn
fiber samples were prepared, but with a lower content of the modifier (2%), one con-
taining 1% nanotalc (sample 8) and one containing 4% nanotalc (sample 9). Sample 8
(PP-1%nanotalc-2%sil) clearly appears to be superior to all of the investigated samples and
exhibits, by far, the highest tensile strength. The deterioration of the properties at high
nanotalc contents (4% for sample 9) can be considered as the typical behavior of nanocom-
posites, i.e., only a rather very small amount of the filler increases the mechanical strength.
Considering sample 8 (PP-1%nanotalc-2%sil), it seems that the increased stability of PP
over thermal oxidation (supported by TGA) and the partial exfoliation of talc (supported
by XRD) due to the presence of the silicone-based polymer overcompensate any of the
negative effects discussed above.
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4. Further Discussion

As discussed in the Introduction section, a considerable increase in tensile strength
is achieved by drawing, which is incomparably higher than any increase accomplished
by the addition of fillers. This is the case also for the results of this study. The non-drawn
neat PP sample exhibits a tensile strength of around 35 MPa, which was increased up to
360 MPa simply by drawing (930% increase in tensile strength). For the PP composite
sample that performed better (sample 8, PP-1%nanotalc-2%sil), the addition of the modified
filler further increased the tensile strength from 360 to 420 MPa, which corresponds to an
additional increase of 17%.

Such an improvement is low, but it is not negligible. It is higher than the corresponding
one shown by other PP–composite drawn fibers that were investigated in our previous
studies and were prepared by the very same procedure (two extrusions, drawing with the
same ratio and drawing temperature and using the same equipment) [16]. In more detail,
in our previous works, we prepared PP composite drawn fibers with various fillers, such as
wollastonite, attapulgite, carbon nanotubes, montmorillonite, microtalc, and ultrafine talc,
using a drawing ratio of seven, and various important additives, such as an antioxidant
and PP grafted with maleic anhydrite as a compatibilizer. However, we rarely observed
a value of tensile strength higher than 400 MPa. Thus, though an increase of 17% seems
low, it is promising if it is taken into account that, besides the filler, only one additive (the
silicone polymer), which has multiple effects as it acts as both a talc modifier, polymer
compatibilizer, and antioxidant, was used in this approach.

Thus, besides the direct action of the modified talc, it is possible that there was an
indirect contribution to the improvement in mechanical properties which originates from
the fact that the use of low-molecular-weight additives was minimized. Consequently, the
proposed modification route for talc seems to be promising and should be further studied
and optimized.

Optimization is necessary, especially for the modification approach of talc and PP. As
it was shown, a high content of the silicone polymer causes deterioration of the mechanical
strength of the PP fibers in the absence of talc, but lower contents appeared to be beneficial.
A fine tuning of this amount should be performed. However, such optimization should
be simultaneously performed both for talc and PP and not only for PP, since the optimum
amount of silicone for neat PP may not be the optimum in the case of PP-modified talc
composites. For studying the effect of multiple independent variables on response variables
(e.g., tensile strength), the design of the experiments based on the surface response analysis
is a very attractive option. Additionally, the major drawback of the second approach, which
was used for the modification of talc, is high uncertainty regarding the amount of silicone
polymer that is added to talc. Of course, careful filtering and accurate weighting before
and after modification could solve this problem. Though talc modified by this approach
was not used for producing PP composite fibers, this approach may have the following
advantage. In the talc sample, which is produced by the first approach, a large amount of
the monomer mixture is on the surface of talc particles, forming a coating, and only a very
small amount is likely to be adsorbed on the interspace layers. The high silicone content
on the surface of talc may contribute to the deterioration of the mechanical properties,
and this would be more intense if PP was also treated with silicone. On the contrary, in
the talc was modified with the second approach, the amount of silicone on the surface of
the talc particles is expected to be less, and this may minimize any negative effects. In
both approaches for the modification of talc, the use of organic solvent is necessary, and
this is a drawback related to environmental and health issues as well as cost issues. In
a potential application on an industrial scale, the volatility and flammability of acetone
will also raise safety issues. Finally, the modification process is a rather time-consuming
process, and additional costs would be required in order to accelerate it, e.g., to include a
drying stage. Of course, such issues are also present in other modification processes, e.g.,
the modification of montmorillonite, which occurs is aqueous solution.
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5. Conclusions

A novel route for the modification of phyllosilicate minerals, and particularly talc,
was explored. The modification was based on the adsorption of silane–siloxane monomer
mixture on talc particles and the in situ synthesis of a silicone polymer. During the
polymerization of the silane–siloxane mixture and the corresponding increase in molecular
weight, some talc particles were exfoliated, as concluded by XRD measurements. On top
of that, it was observed that the introduction of the obtained silicone polymer inside the
PP matrix increases the thermal stability of the composite material. Consequently, the
produced silicone polymer simultaneously acts as a talc modifier, as an antioxidant, and
as a polymer compatibilizer. The introduction of silicone polymer inside the PP matrix at
high contents deteriorates the tensile strength of PP drawn fibers. Also, the co-aggregation
of talc and silicone may occur at high silicone contents, resulting in the inferior mechanical
performance of the corresponding composites. However, at a low talc content (1% with
respect to PP) and a low modifier content (2% with respect to talc), very promising results
were obtained, and the average value of the stress at break increased by 17% (from 360
to 421 MPa). The optimization of the talc’s modification route might result in a further
enhancement of the tensile strength of PP drawn fibers.
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