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Abstract: Machine learning (ML) models are increasingly being used for high-stake applications
that can greatly impact people’s lives. Sometimes, these models can be biased toward certain social
groups on the basis of race, gender, or ethnicity. Many prior works have attempted to mitigate
this “model discrimination” by updating the training data (pre-processing), altering the model
learning process (in-processing), or manipulating the model output (post-processing). However,
more work can be done in extending this situation to intersectional fairness, where we consider
multiple sensitive parameters (e.g., race) and sensitive options (e.g., black or white), thus allowing
for greater real-world usability. Prior work in fairness has also suffered from an accuracy–fairness
trade-off that prevents both accuracy and fairness from being high. Moreover, the previous literature
has not clearly presented holistic fairness metrics that work with intersectional fairness. In this paper,
we address all three of these problems by (a) creating a bias mitigation technique called DualFair
and (b) developing a new fairness metric (i.e., AWI, a measure of bias of an algorithm based upon
inconsistent counterfactual predictions) that can handle intersectional fairness. Lastly, we test our
novel mitigation method using a comprehensive U.S. mortgage lending dataset and show that our
classifier, or fair loan predictor, obtains relatively high fairness and accuracy metrics.

Keywords: machine learning; algorithmic fairness; bias mitigation; mortgage lending; accuracy–
fairness trade-off

1. Introduction

Machine learning (ML) models have enabled automated decision making in a variety
of fields, ranging from lending to hiring to criminal justice. However, the data often used
to train these ML models contain many societal biases. These biased models have the
potential to perpetuate stereotypes and promote discriminatory practices, therefore giving
privileged groups undue advantages. As a result, it has become increasingly important for
ML researchers and engineers to work together in eliminating this algorithmic unfairness.

Despite an awareness of the need for these fair models, there still exist many examples
of models exhibiting prevalent biases, such as the following:

• In 2016, ProPublica reported that the ML models used by judges to decide whether to
keep criminals in jail were discriminatory against African-American males, labeling
them with relatively high recidivism (tendency to re-offend) scores [1].

• Amazon discovered that its automated recruiting system was biased against female
job applicants, rendering them far less successful in the application process [2].

• A healthcare algorithm evaluated on 200 million individuals to predict whether pa-
tients needed extra medical care was highly discriminatory against African Americans
while prioritizing white individuals [3].

One particular domain where bias mitigation has become especially crucial is mort-
gage lending. It has been reported that over 3.2 million mortgage loan applications
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and 10 million refinance applications exhibited bias against Latin and African American
lenders [4]. In another study, it was shown that minority groups were charged significantly
higher interest rates (by 7.9 basis points) and were rejected 13% more often than their
privileged counterparts [5]. These biases, when trained upon, lead to discriminatory loan
classifiers that can cause greater gaps in suitable housing, wealth, and property between
unprivileged (African Americans) and privileged (White and Asian American) groups.
This problem becomes exacerbated as companies rely on these biased models in making
real-life decisions. Additionally, these biased models are unlawful under the Equal Credit
Opportunity Act (ECOA) of the United States, which forbids the discrimination of individu-
als based upon sensitive attributes (e.g., race, gender, national origin, and ethnicity) by any
private or public institution. It has thus become the moral and legal duty for researchers
and software developers to find a solution to this problem of “algorithmic unfairness”.

Fortunately, work has been done in approaching this bias. There are currently three
ways in which bias mitigation has been approached, correlating with before, in, and after
the data usage pipeline:

• Pre-processing—the transformation of data (e.g., the alteration of balancing distribu-
tions) to “repair” inherent biases [6–9].

• lIn-processing—the use of classifier optimization or fairness regularization terms to
affect model learning and maximize a model’s fairness [10–12].

• lPost-processing—the manipulation of model output to improve performance and
fairness metrics [13].

While prior works gained relatively high fairness and performance metrics using one
or more of these mitigation techniques, the current literature contains three main problems
that hamper their adaptability and deployment: (1) more work can be done on extending
mitigation techniques to situations with intersectional fairness, (2) an accuracy and fairness
trade-off still exists, and (3) an absence of accepted fairness metrics for data with multiple
sensitive parameters and sensitive options. For point 1, it may be important to clarify that
in our study, intersectional fairness extends from its current definition by acknowledging
the existence of “joint” as a valid sensitive option under various sensitive parameters since
the category is commonplace in the realm of financial documents (e.g., mortgage loan
applications and tax returns).

Our Contributions: In this paper, we target all three of the previously stated problems
to develop a novel and real-world applicable fair ML classifier in the mortgage-lending
domain that obtains relatively high fairness and accuracy metrics. Through this process,
we coin a bias mitigation pipeline called DualFair (a pre-processing strategy), which
approaches intersectional fairness through data sampling techniques, and solves problems
hindering the growth of the “Fairness, Accountability, and Transparency”, or FAT, field.

More concretely, the main insights we provide within this paper include the following:

• Creating a bias mitigation strategy coined DualFair targeted toward the mortgage
domain, which debiases data through oversampling and undersampling techniques
that target the root causes of bias.

• Extending our mitigation approach to intersectional fairness by subdividing datasets
and then balancing by class and labels.

• Developing a novel fairness metric called AWI (alternate world index) that is general-
izable to intersectional fairness and an accurate representation of model fairness.

• Eliminating the accuracy–fairness trade-off by debiasing our mortgage lending data
using DualFair.

• Creating a fair loan classifier that achieves relatively high fairness and accuracy metrics
and can potentially be used by practitioners.

The rest of this paper is structured as follows: Section 2 provides an overview of
the prior work and contributions in the FAT field, particularly in relation to our own.
Section 3 explains fairness terminology and metrics used throughout our paper. Section 4
gives a detailed outline of our data, debiasing strategy, novel fairness metric AWI, and
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experimental design. Section 5 summarizes the results of our bias mitigation pipeline and
documents the success of our approach, compared to the previous state-of-the-art based
upon accuracy, precision, false alarm rate, recall, F1 score and AWI. In Section 6, we give a brief
overview on the potential directions for future work. Finally, Section 7 concludes the paper.

2. Related Work

Fairness in ML models is a largely explored topic within the AI community. Recently,
major industries have begun to put a greater priority on AI fairness. IBM developed AI
Fairness 360, which is a fairness toolkit that contains commonly used fairness metrics
and debiasing techniques to aid researchers working in ML fairness [14]. Microsoft has
established FATE [15], a research group dedicated to fairness, accountability, transparency,
and ethics in AI. Google [16], Microsoft [17], IEEE [18], and The European Union [19] each
respectively published on ethical principles in AI, which are general guidelines on what
the companies define as “responsible AI”. Facebook created bias detection tools for its own
internal AI systems [20]. The research community has started to take an interest in fair AI
as well. ASE 2019 and ICSE 2018 hosted workshops on software fairness [21]. Mehrabi et al.
studied various notions of fairness and fundamental causes of bias [22]. ACM established
the FAccT ‘21 as a conference to spearhead work on fairness and transparency of ML
algorithms [23].

Thus far, achieving algorithmic fairness has been addressed through pre-processing,
in-processing, and post-processing approaches. Prior work has proposed a variety of bias-
mitigating methods. Optimized pre-processing [9] is a pre-processing method that seeks to
achieve group fairness by altering labels and features, using probabilistic transformations.
Zhang et al. presented the in-processing approach, adversarial debiasing [24], which increases
accuracy and strips away an adversary’s ability to make decisions based upon protected
attributes using GANs. Reject option classification [25] is a post-processing strategy that
translates favorable outcomes from the privileged group to the unprivileged group and
unfavorable outcomes from the unprivileged group to the privileged group based upon a
certain level of confidence and uncertainty. Chakraborty et al. proposed Fair-SMOTE [26],
a pre-processing and in-processing approach, which balances class and label distributions
and performs situation testing (i.e., testing individual fairness through alternate “worlds”).

Our experience has shown, however, that these approaches lack mainly in their ability
to extend to intersectional fairness. Chakraborty et al. noted that the consideration of inter-
sectional fairness would divide data into unmanageable small regions [27]. Salerio et al.
attempted to approach intersectional fairness by creating AEQUITIS, a fairness toolkit, that
uses parameter-specific fairness metrics to systematically view bias within one sensitive pa-
rameter at a time [28]. Gill et al., Chakraborty et al., and Kusner et al. approached fairness
in their own separate domains by using a singular sensitive parameter, designating one
privileged group and one unprivileged group as a way to compare mitigation results [6].
Ghosh et al. introduced a new intersectional fairness metric coined the worst-case disparity
framework that finds the largest difference in fairness between two subgroups and then
minimizes this difference by utilizing existing single-value fairness metrics [29]. We refrain
from using this approach in our work because it relies on previous single-value metrics that
require the designation of unprivileged and privileged groups. Through our experience
with DualFair, we argue that it is possible to debias data with multiple sensitive param-
eters and sensitive options, given a proper pipeline, approach, and data. This allows for
deployability and scalability within real-world systems. We also show that given this type
of data, one could devise a fairness metric (AWI), which considers bias from all parameters
and options cohesively.

The mortgage domain has seen its own work in the realm of AI fairness as well.
Fuster et al. and Bartlet et al. showed disparity in over 92% of loans, spanning origination,
interest rate charges, and preapprovals across the United States on the basis of sex, race,
and ethnicity [5,30]. Gill et al. built upon these conclusions and proposed a state-of-the-art
machine learning workflow that can mitigate discriminatory risk in singular sensitive
parameter and sensitive option mortgage data while maintaining interpretability [31]. This
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framework was used to create a fair loan classifier. Lee et al. also presented a theoretical
discussion of mortgage domain fairness through relational trade-off optimization [32]. That
is, the paper discussed a method to achieve a balance between accuracy and fairness within
the accuracy–fairness trade-off on mortgage lending data rather than maximizing both.

Our work builds on the foundation created by these previous works in mortgage
lending and bias mitigation in AI systems at large. It is important to note that the literature
varies in two main aspects, however: (1) finding bias and (2) mitigating bias.

While most prior work has centralized on finding bias, our study seeks to mitigate
bias through creating a debiasing pipeline and training a fair loan classifier.

3. Fairness Terminology

In this section, we outline the fairness terminology that will be used within this work.
An unprivileged group is one that is discriminated against by a ML model. Privileged groups
are favored by a ML model due to some sensitive parameter. These groups usually receive
the favorable label (i.e., the label wanted), which, for our purposes, is a mortgage loan
application being accepted. A sensitive parameter, also known as a protected attribute, is a
feature that distinguishes a population of people into two groups, an unprivileged group
and a privileged group. This parameter was historically discriminated against (e.g., race
and sex). Sensitive options are sub-groups, or options, within sensitive parameters (e.g., for
race: White, Black, or Asian). The distribution of all sensitive parameters and sensitive
options (e.g., White males, Black males, White females, Black females) is referred to as a
class distribution. The distribution of favorable outcomes and unfavorable outcomes for a
particular group as represented by the ground truth is its label balance. Label bias is a type of
societal bias which can shift the label balance (e.g, a mortgage underwriter subconsciously
denying reliable African-American lenders for loans). Selection bias is another type of
bias that is created when selecting a sample. For example, suppose that researchers are
collecting car insurance data for a particular location. However, the particular location they
are collecting data from has historical discrimination that causes it to have a low annual
income per person. The insurance data collected in this location, therefore, would contain
implicit economic biases. Fairness metrics are a quantitative measure of bias within a specific
dataset.

Finally, there are two main types of fairness denoted within the literature: individual
fairness and group fairness [22].

• Individual fairness is when similar individuals obtain similar results.
• Group fairness is when the unprivileged and privileged groups, based upon a particu-

lar sensitive parameter, are treated similarly.

Before beginning our discussion on DualFair, we would like to note that in this work,
we use a binary classification model for all of our inferences and methods of achieving
these notions of fairness. Future work could make an effort of looking into algorithmic
fairness with regression models instead.

4. Materials and Methods
4.1. Mortgage Data

Previous domain-specific ML studies have faced many challenges in acquiring large-
scale datasets for comprehensive work. The mortgage domain conveniently offers a solution
to this problem. For our study, we use the HMDA dataset, which was publicly made
available by the Home Mortgage Disclosure Act (HMDA) of 1975 [33]. HMDA data have
been used in various studies to outline and understand recent mortgage trends. They span
90% of all loan origination and rejections in the United States and contain over 21 distinct
features (e.g., race, sex, and ethnicity).

It is important to note that HMDA has prevalent racial and gender prejudices within
the data. Table 1 shows a quantitative distribution of these biases through particular
sensitive, or biased, features. Our evaluation shows that features, such as loan amount,
income, and interest rate, already give certain groups an undue advantage. For instance,
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females are given higher mean and median interest rates, lower loan amounts, and lower
property values compared to those of males. This is a primary indication of bias against
females applicants when compared to male applicants. The following issue will be dealt
downstream during DualFair’s bias mitigation pipeline.

Table 1. Population statistics for HMDA (note: all values are expressed in USD 1000; the interest rate
and LTV, the loan-to-value ratio, between the loan amount and property value are expressed as a
percentage; lastly, groups are split via sensitive parameters of sex, race, and ethnicity, respectively).

Group Income Loan Amt. Interest Rate LTV Ratio Property Value

Male Mean 124 267 3.36% 76.4% 405
(n = 1,224,719) Median 84 225 3.19% 79.8% 315

Female Mean 89 225 3.68% 74.4% 346
(n = 805,583) Median 69 195 3.25% 78.6% 275

White Mean 131 270 3.41% 73.6% 428
(n = 3,474,562) Median 96 235 3.13% 76.1% 335

Black Mean 94 240 3.47% 83.5% 319
(n = 220,517) Median 76 215 3.25% 90.0% 265

Non. Hisp. Mean 133 271 3.42% 73.6% 430
(n = 3,360,377) Median 97 235 3.13% 76.2% 335

Hispanic Mean 96 256 3.36% 79.3% 362
(n = 334,184) Median 76 235 3.25% 80.0% 305

In this study, we use HMDA national data from 2018 to 2020 and 2020 data from
two small states (<150,000 rows of data), two medium states (>150,000 to <250,000 rows
of data), and two large states (>250,000 rows of data). These data are unique compared
to past years’, as, in 2018, the Dodd–Frank Wall Street Reform and Consumer Protection
Act (Dodd–Frank) mandated more expansive updates to mortgage loan data from all
applicable institutions. Dodd–Frank led to the addition of features such as credit score,
debt-to-income ratio, interest rate, and loan term, providing a more comprehensive review
of loan applicants and studies for algorithmic fairness. In our work, we build a fair ML
classifier on the HMDA data using DualFair, where our classifier predicts whether an
individual originated (i.e., y = 1) or was denied (i.e., y = 0) a loan. The following steps are
taken to facilitate the creation of this classifier and analysis of HMDA data:

• 755,000 loan records were randomly sampled without replacement from each year
2018–2020 to form a combined HMDA dataset, spanning over 2.2 million loan applica-
tions, for analysis.

• Features with more than 25% data missing, exempt, or not available were removed
during data pre-processing. When deciding upon this value, we tested the threshold
values 20%, 25%, 30%, 35%, and 40%. We found that setting the threshold value to
25% produced the best accuracy. It is essential to note that this value was most optimal
for our data and prediction model. However, it is important to tune this value when
using alternative methods or materials.

• Only White, Black, and joint labels from the race category, male, female, and joint
labels from the sex category, and Non-Hispanic or Latino, Hispanic or Latino, and
joint labels from the ethnicity category were used in the study.

Note: Joint is defined as a co-applicant sharing a different feature option than the main
applicant. For instance, a White male applicant and a Black co-applicant would be joint for
race. Future research is highly encouraged in implementing all sensitive parameters and
sensitive options.
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4.2. Debiasing

It has been shown that data bias mainly derives from two factors: label bias and
selection bias [34,35]. In this section, we eliminate both of these biases from our dataset in the
debiasing process through a novel pre-processing approach that we coin DualFair. More
concretely, DualFair removes the accuracy–fairness trade-off and increases the algorithmic
fairness metrics by approaching the task of selection bias and label bias through balancing
at the class and label levels.

At first, DualFair splits the central dataset into sub-datasets based upon all combina-
tions of sensitive parameters and sensitive options. The following methodology is used
to designate the sub-datasets: suppose a dataset contains two sensitive parameters, sex
and race. Additionally, suppose that there are only two sensitive options for each sensitive
parameter, male (M) or female (F) and Black (B) or White (W). After being split, the dataset
is broken into four distinct sub-datasets WM (White males), BM (Black males), WF (White
females), and BF (Black females).

In the case of HMDA, DualFair results in 27 sub-datasets. We start with three sensitive
parameters: race, sex, and ethnicity. Then upon each parameter, there is a division by
sensitive options, where each sensitive parameter has three different options. For race, an
individual could be White, Black, or joint; for sex, individuals could be male, female, or
joint; and, lastly, for ethnicity, individuals could be Non-Hispanic or Latino, Hispanic or
Latino, or joint. Through the combination of these sensitive parameters and options, a
total of 27 unique datasets (i.e., groups) are formed and utilized extensively throughout the
pipeline.

We can generate an equation to represent the count of sub-datasets given by multiply-
ing each sensitive option count, oi, of a sensitive parameter:

n

∏
i=1

oi (1)

n = number o f sensitive parameters

oi = number o f sensitive options o f the ith sensitive parameter

In our case, n = 3 and each oi is 3; therefore, multiplication (i.e., o1 · o2 · o3) gives us
27 sub-datasets.

After dividing into sub-datasets, in each subset of data, we obtain the number of
accepted (y = 1) and rejected (y = 0) labels. We take the median number of accepted and
rejected labels in all subsets of data and synthetically oversample or undersample each
class in the sub-datasets to that value, using SMOTE (synthetic minority oversampling
technique) or RUS (random undersampling). The result of this process is a class-balanced
HMDA dataset that has no selection bias.

Figure 1 captures the class and label distributions before and after selection bias are
removed. Observing the figure, it can be seen that HMDA is unbalanced within the class
distributions (i.e., between different subsets of data) and label distribution (i.e., balance of
accepted and rejected labels within a class). Some sub-datasets are far more common in the
data, while others are less represented. Thus, there is a huge imbalance that propagate root
biases when trained on a model, which need to be taken into account. In the after class and
label balance figure (right graph), it is shown that all sub-datasets have become balanced
at both the label and class distribution level. This strips away selection bias by regulating
the way that the model perceives the data. That is, the data are repaired so that no class is
overly trained upon and each group has an equivalent amount of favorable labels.
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Figure 1. Class and label balancing before (left graph) and after (right graph) using DualFair. (Note:
only 5 sub-datasets from the balancing procedure of Connecticut, a smaller sample of HMDA, are
shown by the normal 27; note that J denotes joint, B denotes Black, W denotes White, F denotes
female, M denotes male, HOL denotes Hispanic or Latino, and NHOL denotes Non-Hispanic or
Latino. These denotations form sub-groups shown above. For instance, JJJ is a joint, joint, joint
individual and HOLJJ is a Hispanic or Latino, joint, joint individual).

In using oversampling techniques to achieve this equal distribution, we follow the
general guidelines taken from Chakraborty et al. Thus, we preserve valuable associations
between values when oversampling. When creating data, we make sure they are close
to the neighboring examples. This allows for the average case association that may be
between two particular variables. We use two hyperparameters called “mutation amount”
( f ) and “crossover frequency” (cr) to carefully use SMOTE. These parameters lie in between
[0, 1]. “Mutation amount” controls the probability the new data point is different from the
parent point, while “crossover frequency” denotes the probability of how different the new
data point is to its paternal point. When tuning, we determine that from the options of 0.2,
0.5, and 0.8, using 0.8 (80%) as the value for both of these parameters provides the best
results for data generation in regards to preserving vital associations.

After balancing, our debiasing process uses a method known as situation testing,
coined by Chakrabokty et al., to reduce label bias [27]. Situation testing finds biased points
within the training data by probing all combinations of sensitive options. More clearly,
situation testing will test all combinations of sensitive options on an ML model trained
on the balanced dataset. If all combinations of sensitive option do not result in the same
prediction, then that data point is removed. For instance, given that sex is a sensitive
parameter, if changing a mortgage loan applicant’s sex from male to female alters the
mortgage loan approval prediction, then that data point is considered biased. This process
removes biased data points from the dataset and decreases label bias.

The use of balancing and situation testing is illustrated by the DualFair process
outlined in Figure 2. After removing label and selection bias from our dataset, we have a
debiased dataset that can be used in our testing framework for yielding metrics. DualFair
removes the accuracy–fairness trade-off within this debiasing process, as it creates fair
data to evaluate and train from. Fairness metrics are shown before and after DualFair in
Section 5.1.
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Figure 2. DualFair bias mitigation pipeline.

4.3. Novel Fairness Metrics

Although there is a significant amount of fairness metrics proposed by the literature,
all of the fairness metrics lack in one general area: non-applicability to data with multi-
ple sensitive parameters and sensitive options. We remedy this issue by creating a new
fairness metric, the alternate world index (AWI), based upon computational truths and
previous literature.

Let us begin by defining fairness. Because of varying definitions of fairness in prior
work, for our purposes, we will define fairness as having different sensitive groups
(e.g., male group and female group) being treated equivalently and similar individuals
(i.e., possess similar statistics) being treated equivalently. For this definition of fairness to
occur, both group fairness and individual fairness must be met.

Mathematically, this fairness is defined as Ug|y = 1 being similar to Pg|y = 1, where
Ug is the underprivileged groups, Pg is the privileged groups, and y = 1 represents the
desired outcome.

Using our previous definition of fairness, we can generate a metric that satisfies the
interpretation of the previous requirements for intersectional fairness work; we coin this
metric AWI (alternate world index).

∑n
w=1[

∑k
i=1 pi

k 6= {0, 1}]w
n

(2)

n = number o f data points

k = subsets o f data

pi = prediction in one world
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Specifically, AWI is a count of the number of biased points within a dataset normalized
by the dataset size. A biased point is identified by iterating a point through all respective
counterfactual worlds (i.e., similar individuals with different sensitive parameters and
options) and evaluating prediction constancy with the model in use. If, under all coun-
terfactuals, the model prediction is constant, we call this point devoid of bias; however, if
one situation yields a unique result, the point is marked as ambiguous (biased). Figure 3
illustrates this procedure. After repeating this process for all points in the test dataset, we
use the count of total bias points normalized by the total dataset points to yield AWI. AWI
captures model bias by inferring all biased points as synonymous to biased predictions
the model made. In our study, we report AWI to be 10 times larger than its value to more
accurately represent its difference, whether beneficial or harmful.

Figure 3. AWI bias classification procedure. (Note that only 2 counterfactual worlds are shown;
however, a select data point will, for our use case, iterate over 27 counterfactual worlds. Bold indicates
a change in parameters and results with respect to the ground truth.)

AWI extends the fairness metrics to the realm of intersectional fairness by quantifying
the biased predictions within a dataset using counterfactuals. By doing this, we solve two
major problems when applying fairness metrics to data with multiple sensitive parameters
and sensitive options: (1) an unequal amount of privileged to unprivileged group and
(2) the lack of one holistic fairness value for an entire dataset.

AWI takes a pragmatic approach to fairness evaluation, specifically targeting similar
individuals and their different realities. It is a versatile metric for any work looking to
achieve individual or group fairness with or without multiple sensitive parameters and
sensitive options. One pitfall of AWI is its computational expense, especially with large
volumes of data, as all class distributions must be predicted upon. Future research could
look for directions in optimization.

Since AWI is a metric of our own creation, we utilize the average odds difference
(AOD), a method of equalized odds fairness from Chakraborty et al., as a method of
comparison in testing [26]. AOD measures the average of difference in false positive
rates (FPR) and true positive rates (TPR) for unprivileged and privileged groups [27].
Mathematically, AOD represents the following:

TPR =
TP
P

=
TP

(TP + FN)
(3)

FPR =
FP
N

=
FP

(FP + TN)
(4)

AOD = [(FPRu − FPRp) + (TPRu − TPRp)] ∗ 0.5 (5)
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Two major flaws with AOD for our work is that (1) an unprivileged and privileged
group must be designated and (2) AOD can only account bias for one sensitive parameter
at a time (i.e., cannot collectively handle data with multiple sensitive parameters and
sensitive options). Point 1 serves an issue when using multiple option datasets (i.e., datasets
including multiple options, such as White, Black, and joint for a parameter such as race)
because only two options can be designated as privileged and unprivileged. To circumvent
this issue, we refrain from including joint in all of our AOD testing calculations. Point
2 raises the issue that all biases within a dataset are not measured at once. However,
for our use case, we attempt to deal with this issue by measuring three AOD metrics
simultaneously, AODsex, AODrace, and AODethnicity, for all runs.

4.4. Experimental Design

Here, we describe the process we used to prepare our data for our experiments. Our
study used the 2020 HMDA data for the training and testing set and logistic regression
(LSR) as the classification model. We decided to use logistic regression with default settings
as our classification model because it is a simple model that does not require a large amount
of high-dimensional data, which is not a common occurrence in the fairness domain
due to the process of debiasing datasets. Furthermore, due to the model’s simplicity
and interoperability, previous literature has frequently used the model for classification
problems and, in most cases, concluded it to be the best performing classifier for their task.
For each experiment, the dataset is split using 5-fold cross validation (train—70%, test—
30%). This step is repeated 10 times with a random seed and then the median is reported.
The feature columns that have at most 25% of the values as missing or not applicable are
kept, but any rows containing said values that are missing or not applicable are removed.
Additionally, non-numerical features are converted to numerical (e.g., female—0, male—1,
and joint—2) values. It is important to note that any data points that do not contain White,
Black or joint as the race are removed. Finally, all feature values are normalized between 0
and 1.

Now, we describe how we obtained the results for each of our experiments. In DualFair,
the training and testing data are both repaired during the bias mitigation pipeline. We
evaluated AWI, AODsex, AODrace, and AODethnicity fairness metrics before and after the
bias mitigation process for comparison. To do this, we first trained a classification model
on the training data (i.e., either before or after DualFair) and then measured its fairness
and accuracy on testing data. Our accuracy was measured in terms of recall, specificity,
accuracy, and F1 score. Fairness was measured in AWI, AODsex, AODrace, and AODethnicity.
Recall, specificity, accuracy, and F1 score are better at larger values (i.e., closer to 1), while
AWI, AODsex, AODrace, and AODethnicity are better at smaller values (i.e., closer to 0).

In this work, we perform experiments using DualFair on 2020 state-level data from
two small states (<150,000 rows of data), two medium states (>150,000 to <250,000 rows of
data), and two large states (>250,000 rows of data). We also perform an experiment using
DualFair on 2018–2020 nationwide HMDA (2,265,000 rows of data). For this experiment,
we randomly sample 755,000 rows from each year and then apply DualFair. For selecting
our two small, medium, and large states, we group all states according to category and
randomly sample two states from each group.

5. Results

We structure our results around three central research questions (RQ).

5.1. RQ1: How Well Does DualFair Create an Intersectional Fair Loan Classifier?

RQ1 explores the performance of our pipeline in debiasing mortgage data and creating
a fair loan classifier. It is reasonable to believe that a fair loan classifier should perform
two things proficiently: prediction and fairness. Accordingly, we test DualFair for both
performance metrics (e.g., accuracy, recall, precision, and F1 score) and fairness metrics
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(e.g., AWI, AODsex, AODrace, and AODethnicity). A summary of all the metrics we use can
be found in Table 2.

Table 2. Fairness and performance metrics. (Note: AOD represents AODsex, AODrace, and
AODethnicity; FPR denotes false positive rate and TPR denotes true positive rate. The subscript
U denotes underprivileged group and P denotes privileged group.)

Metric Equation Ideal Value

Accuracy
(TP + TN)

(TP + FP + TN + FN)
1

Precision TP/(TP + FP) 1
Specificity TN/N = TN/(TN + FP) 1

Recall TP/P = TP/(TP + FN) 1

F1 Score
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

1

Alternate World Index (AWI)
∑n

w=1[
∑k

i=1 pi

k
6= {0, 1}]w

n
0

AOD [(FPRu − FPRp) + (TPRu − TPRp)] ∗ 0.5 0

In Table 3, we give the performance and fairness before and after the DualFair pipeline.
We run seven different trials from a range of small, medium, and large states as well as
nationwide. Columns 1, 2, 3, 4, 5, 6, and 7 summarize the results of DualFair on the trials.
Measured in terms of AWI, DualFair is successful in increasing fairness for 5 of 7 states
varying in data size. Measured in terms of AODsex, AODrace, and AODethnicity, DualFair
is successful in increasing fairness for 7 of 7 states. A state is considered successful if a
majority of the AOD metrics show improvement. In terms of transitions (i.e., changes
between before and after the pipeline), AODsex, AODrace, and AODethnicity increase fairness
in 18 of 21 transitions. It is important to note that AWI, AODsex, AODrace, and AODethnicity
are all multiplied by 10 to more accurately represent their differences before and after the
bias mitigation pipeline. In addition to fairness, DualFair benefits precision and specificity
on all occasions while damaging recall and F1 score only slightly.

Table 3. Results before and after DualFair. AWI, AODsex, AODrace, and AODethnicity the lower
the better. Accuracy, Precision, Recall, Specificity, and F1 Score the higher the better. All values
are rounded. AWI, AODsex, AODrace, and AODethnicity are multiplied by 10 to accurately show
the change.

Nationwide CA TX IL WA NV CT
HMDA (Large) (Large) (Medium) (Medium) (Small) (Small)

# of Rows 2,265,000 2,000,000 1,964,077 864,270 823,323 316,969 231,251

Before After Before After Before After Before After Before After Before After Before After

AWI (−) 0.17 0.04 0.15 0.13 0.13 0.02 0.06 0.11 0.18 0.26 0.13 0.09 0.24 0.05
AOD Sex (−) 0.08 0.01 0.03 0.01 0.07 0.04 0.11 0.01 0.07 0.05 0.10 0.03 0.12 0.02

AOD Race (−) 0.17 0.00 0.09 0.02 0.07 0.06 0.10 0.06 0.05 0.03 0.08 0.04 0.12 0.06
AOD Ethnicity (−) 0.07 0.01 0.12 0.05 0.06 0.01 0.03 0.03 0.01 0.04 0.03 0.07 0.04 0.01

Accuracy (+) 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.98
Precision (+) 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00

Recall (+) 0.98 0.95 0.97 0.94 0.98 0.97 0.99 0.97 0.98 0.95 0.98 0.97 0.98 0.96
Specificity (+) 0.97 0.99 0.96 1.00 0.98 1.00 0.96 1.00 0.95 1.00 0.95 1.00 0.96 1.00
F1 Score (+) 0.99 0.97 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.98 0.99 0.98

We hypothesize that medium states, columns 4 and 5, falter in their ability to im-
prove fairness, AWI, as their median oversampling and undersampling value tends to
be small compared to counts of individuals in certain classes. For robustness, taking an
average rather than a median for the oversampling and undersampling value may provide
improved results in the future.

Thus the answer to RQ1 is “DualFair establishes an intersectional fair loan classifier
that achieves both high levels of accurate prediction and fairness”. That is, DualFair can
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mitigate bias within data with multiple sensitive parameters and sensitive options while
maintaining high levels of accuracy. This is one of the biggest achievements of our work
and is pivotal toward real-world applicability.

5.2. RQ2: Does DualFair Eliminate the Accuracy–Fairness Trade-off?

RQ2 seeks to consider if DualFair effectively removes the accuracy–fairness trade-off.
That is, we hope to explore if our pipeline resulted in consistent accuracy while increasing
fairness simultaneously.

In all our testing, including our seven rigorous trials in Table 3, we found that our
accuracy remained consistent prior to debiasing. It also remained stagnate after debiasing,
albeit showing an increase in fairness metrics. We hypothesize that the reason for this
derives from our pipeline which “repairs” both training and testing data. We believe the
repair process ensures that a fair model is evaluated upon fair data. This leads the model
performance to remain equivalent both prior to and after DualFair.

Hence, the answer to RQ2 is “Yes, DualFair simultaneously removes the accuracy–
fairness trade-off while achieving individual fairness”.

5.3. RQ3: Is DualFair Capable of Capturing All Sensitive Parameters and Sensitive Options in
HMDA Data?

To answer RQ3, we analyzed DualFair’s time complexity with increasing multiple
sensitive parameters and sensitive options for HMDA data. The literature has suggested
that all sensitive parameters and sensitive options may not be both computationally and
logically feasible due to data division into very small, unmanageable regions.

Our analysis of DualFair’s time complexity tells us that it is possible for DualFair
to scale to all sensitive parameters and sensitive options. We determined that although
DualFair’s computational expense compounds at a rate of O(n2), our mitigation strategy
is still adequate at scaling with the demand of more sensitive parameters or options for
HMDA data, as it only contains about six sensitive parameters with an average of three
sensitive options, each.

One limitation of this conclusion is that adequate data must be provided. That is,
at least two individuals from all sub-datasets of the original data must be present. In
addition, each sub-dataset must contain at least a rejected individual (y = 0) and an accepted
individual (y = 1) to generate oversamples, using SMOTE. Thus, there arises a problem
with the data fragmentation into small sub-datasets when large data with multiple sensitive
parameters and sensitive options may not be readily available.

Overall, DualFair has the capacity to scale to all of HMDA, given its limited quantity
of sensitive parameters and options and large dataset size that can provide adequate data.

6. Future Works

The following are future directions and limitations for researchers to consider:

• Direction 1: Use of DualFair within other AI-related domains (e.g., healthcare, job
applications, and car insurance).

• Direction 2: Performing a widespread analysis of bias mitigating methods (including
DualFair) with AWI as a fairness metric for comparison.

• Direction 3: Applying DualFair or another bias-mitigating method to ML regression
models in various domains.

• Limitation 1: Instability of DualFair on low amounts of data with multiple sensitive
parameters and sensitive options.

• Limitation 2: DualFair, although it removes the accuracy–fairness trade-off, needs
large quantities of data to achieve high-performance metrics.

We provide our GitHub repository below to aid practitioners and researchers in
enhancing the domain of AI fairness and/or adopting DualFair for their own purposes.
The repository contains the source code for DualFair and AWI as well as their application
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on HMDA data (https://github.com/ariba-k/fair-loan-predictor accessed on 6 February
2022).

7. Conclusions

This paper tested the DualFair process, which removes label bias and selection bias
within the working data (pre-processing). As shown above, we showed that DualFair can
be applied to the HMDA dataset to create a high-performing fair ML classifier in the
mortgage-lending domain. Unlike other ML fairness pipelines, DualFair is capable of such
results, even if the data contain non-binary sensitive parameters and sensitive options, such as
in the case of HMDA. We showed that DualFair is a comprehensive bias mitigation tool
targeted specifically for the mortgage domain. In summary, we achieved the following in
this work:

1. Created a novel bias mitigating method called DualFair for data with with multiple
sensitive parameters and sensitive options.

2. Developed a new fairness metric (AWI) that can be applied to data with multiple
sensitive parameters and sensitive options.

3. Established a fair machine learning classifier in the mortgage-lending domain.

We aim for our work to cause the creation of fair ML models in other domains of work
and solve the dilemma of linking research with real-world deployment. We hope our work
is adopted by mortgage-lending organizations wanting to implement a state-of-the-art
non-discriminatory model for loan prediction and comply with the ECOA.
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