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Abstract: Nozzles are ubiquitous in agriculture: they are used to spray and apply nutrients and
pesticides to crops. The properties of droplets sprayed from nozzles are vital factors that determine
the effectiveness of the spray. Droplet size and other characteristics affect spray retention and drift,
which indicates how much of the spray adheres to the crop and how much becomes chemical runoff
that pollutes the environment. There is a critical need to measure these droplet properties to improve
the performance of crop spraying systems. This paper establishes a deep learning methodology to
detect droplets moving across a camera frame to measure their size. This framework is compatible
with embedded systems that have limited onboard resources and can operate in real time. The
method leverages a combination of techniques including resizing, normalization, pruning, detection
head, unified feature map extraction via a feature pyramid network, non-maximum suppression, and
optimization-based training. The approach is designed with the capability of detecting droplets of
various sizes, shapes, and orientations. The experimental results demonstrate that the model designed
in this study, coupled with the right combination of dataset and augmentation, achieved a 97%
precision and 96.8% recall in droplet detection. The proposed methodology outperformed previous
models, marking a significant advancement in droplet detection for precision agriculture applications.

Keywords: agricultural nozzles; droplet properties; deep learning; real-time detection; mobile
platform; YOLOv8; precision agriculture

1. Introduction

Spray nozzles play a crucial role in agricultural practices as they are widely used for
distributing pesticides, fertilizers, and other treatments to crops. To ensure the effectiveness
of agricultural crop spraying systems, it is essential to determine the properties of the
droplets sprayed from the nozzles, such as droplet size, velocity, and spray patterns [1].
These factors directly influence spray retention and drift, which, in turn, have significant
impacts on both crop health and the environment [2]. The effectiveness of crop spraying
systems and their treatment performance are intrinsically linked to the dimensions and
speed of the sprayed droplets. Hence, precise and accurate measurements of droplet size
and velocity are essential prerequisites to optimize nozzle design and enhance the overall
efficiency of the spraying process. However, state-of-the-art methodologies for assessing
these droplet properties suffer from several problems, including manual and complicated
implementation, suboptimal accuracy, and excessive cost.

For instance, one simplistic approach to estimating droplet sizes involves dispersing
colored liquid onto a white sheet, which is followed by a subsequent analysis of the resultant
patterns to obtain approximate droplet size information. On the other end of the spectrum,
a more sophisticated technique, known as the immersion sampling method, employs a
silicone oil-coated glass plate to yield more precise measurements of droplet dimensions [3].
Nonetheless, the traditional methodologies employed for evaluating droplet properties

Mach. Learn. Knowl. Extr. 2024, 6, 259–282. https://doi.org/10.3390/make6010014 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6010014
https://doi.org/10.3390/make6010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-6230-2432
https://doi.org/10.3390/make6010014
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6010014?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2024, 6 260

generally involve intricate experimentation, thus incurring high expenses, as well as
requiring specialized equipment and skilled personnel to operate [4,5].

To address these challenges, this research project proposes an innovative alternative
approach grounded in recent advancements in the fields of computer vision and machine
learning. Our proposed technique not only enables accurate measurements of droplet size,
but also facilitates the real-time detection of droplets in video recordings. By integrating
these technological innovations, our method offers promising advantages in terms of acces-
sibility, cost-effectiveness, and reliability, which can significantly contribute to advancing
agricultural spray nozzle design and optimizing treatment efficiency.

The methodology employed in this study for droplet detection is rooted in the prin-
ciples of deep learning, and it is a powerful approach capable of real-time detection of
droplet sizes. This droplet detection methodology aims to significantly improve the pre-
cision of droplet assessments, even under challenging conditions. A benchmark dataset
for droplet detection is introduced in this paper, which facilitates the evaluation of the
system’s performance in real-world spraying scenarios. The obtained results substantiate
the accuracy and efficiency of the proposed method, underscoring its potential to advance
sustainable agricultural practices. Prior to delving into the proposed methodology, the
following section provides a review of the existing state-of-the-art research in this domain
and identifies their inherent limitations.

2. Literature Review

Particle image velocimetry (PIV) is the current advanced state-of-the-art methodology
for measuring the flow of droplets; it is used to visualize and measure fluid velocities in a
flow field [6]. This optical flow measurement technique involves introducing tiny particles
into the flow, illuminating them with a laser, capturing consecutive images with a camera,
and using image processing software to calculate velocity vectors based on the particle
displacements. PIV provides non-intrusive, quantitative data that helps researchers and
engineers gain valuable insights into fluid dynamics for various applications. Conventional
computer vision techniques coupled with a complicated sensor system were also used for
droplet detection on captured images [7–9]. However, these existing methods do not offer a
solution for measuring the characteristics of individual droplets to estimate their properties.
Our hypothesis is that computer vision integrated with recent advances in deep learning
may fill this critical gap.

Object detection enabled by deep learning has emerged as a dynamic and intensely
investigated domain, garnering notable attention in recent years owing to its remarkable
practicality in diverse fields, such as computer vision, robotics, and autonomous vehicles.
A plethora of studies have been undertaken in this realm, in which the efficacy of deep
learning methodologies for object detection has been delved into. Specifically, the seminal
work of Ren et al. (2015) [10] introduced a region-based convolutional neural network
(R-CNN) that incorporates a region proposal network (RPN) to generate potential candidate
object regions called Faster R-CNN, which they subsequently classified by a deep neural
network. This pioneering approach attained state-of-the-art outcomes across various object
detection benchmarks. Other notable approaches for object detection include the YOLO
framework proposed in Redmon et al. (2016) [11], which uses a single neural network to
predict bounding boxes and class probabilities directly from full images in real time. In
addition to these approaches, several other deep learning-based object detection methods
have been proposed, including the Single Shot MultiBox Detector (SSD) [12], RetinaNet [13],
and Mask R-CNN [14]. These techniques have demonstrated superior performance in
various benchmarks and have been applied in various applications.

Recent research in this field has focused on improving object detection accuracy and
efficiency using deep learning. For example, researchers have proposed techniques to
optimize deep learning models [15,16], explored alternative architectures for object de-
tection [17], and studied the problem of object detection under challenging conditions,
such as in occlusion and changing lighting conditions [18]. The framework developed by
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Acharya et al. (2022) [19] was the first deep learning approach that aimed to address the
problem of droplet detection to improve crop spraying systems. This pipeline incorporates
four essential components, namely feature extraction, region proposal, pooling, and infer-
ence. These components are devised using deep neural networks, convolutional layers,
and filters, which are proven to be highly effective in various computer vision applications.

In the context of droplet detection, the work of Wang et al. (2021) [9] presented a
noteworthy development. Their research introduced a highly integrated and intelligent
droplet detection sensor system utilizing the MobileNetSSD model. This model, designed
for portability, is particularly adept in drone applications for detecting spray droplet de-
positions. The sensor system developed by Wang et al. incorporates a droplet deposition
image loop acquisition device and a supporting host computer interactive platform. No-
tably, their approach uses an adaptive light model to counter the impact of environmental
light on image recognition, thus enhancing field detection capabilities. The MobileNetSSD
network, as revealed through their quantitative analysis, successfully balances accuracy
and lightweight requirements, making it suitable for embedded devices. Subsequently, the
work of Gardner et al. (2022) [20] stands out, where they employed YOLOv3 and YOLOv5
models for the high-precision monitoring of cell encapsulation in microfluidic droplets.
Their approach, capable of processing over 1080 droplets per second, demonstrated the
application of deep learning in high-throughput environments and addressed the challenge
of class imbalance in training datasets. Their study underscored the versatility of deep
learning models in analyzing microfluidic droplets, a context that is significantly different
yet conceptually related to agricultural applications.

A notable advancement in the field is the work by Hasti and Shin (2022) [21]. They
proposed a deep learning-based method for denoising and detecting fuel spray droplets
from light-scattered images utilizing a modified UNet architecture. Their method represents
a significant leap in addressing the challenges of noise and clarity in droplet detection.
Their approach, which effectively differentiates droplets from noise, shows potential for
the real-time processing of data, a critical aspect in dynamic fluid systems.

Recent advancements in medical imaging segmentation offer valuable insights that
can be applied to other domains such as agricultural droplet detection. For instance, Wang
et al. (2022) [22] developed AWSnet, a novel segmentation method for myocardial pathol-
ogy in CMR data. This method combines reinforcement learning with a coarse-to-fine
approach, demonstrating success in accurately delineating complex pathological regions.
Such computational techniques may hold potential for enhancing segmentation tasks in
agricultural settings. Yu et al. (2022) [23] addressed the challenges of varying object scales
and blurred edges in medical imaging by developing a weakly supervised semantic segmen-
tation method for thyroid ultrasound images. Their approach underscores the complexity
and necessity of precision in segmentation tasks. Additionally, Zhou et al. (2023) [24]
introduced DSANet, a dual-branch shape-aware network tailored for echocardiography
segmentation in apical views. Their network employs shape-aware modules, including
an anisotropic strip attention mechanism and cross-branch skip connections, to enhance
feature representation and segmentation accuracy (particularly for cardiac structures such
as the left ventricle and left atrium). The integration of a boundary-aware rectification
module by Zhou et al. emphasizes the criticality of accurate boundary identification, a
principle that could be advantageous in droplet detection. Furthermore, data augmentation
techniques have gained significant attention in improving deep learning model perfor-
mance in medical imaging. Guan et al. (2022) [25] and Guan et al. (2022) [26] demonstrated
the effectiveness of a novel multichannel, progressive generative adversarial network with
texture constraints for pancreas dataset augmentation. Their work highlighted the role of
continuous texture and accurate lesion representation in enhancing detection performance,
an approach that might be beneficial in the context of agricultural droplet detection.

Our research, while drawing inspiration from these studies, focuses on the agricultural
domain, specifically targeting the detection of water droplets in crop spraying scenarios.
We employed the YOLOv8 framework to create a robust, accurate, and efficient method for
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droplet detection. Our approach contrasts with Gardner et al.’s [20] focus on microfluidic
droplets and Wang et al.’s emphasis on lightweight model deployment. We address the
challenges in existing methodologies, such as occlusions and variations in droplet size
and shape, with advanced deep learning techniques. Furthermore, we have developed
an autonomous annotation method for large-scale droplet data and optimized our model
for embedded systems, thereby extending the feasibility for real-time implementations
in mobile crop spraying systems. In comparison to Acharya et al. (2022) [19], the key
improvements of this work include the following:

• The droplet detector in [19] was designed to strike a balance between processing speed
and achieving higher accuracy. In the current work, we show that it is possible to
achieve even higher accuracy while reducing the processing speed.

• The data annotation in [19] was carried out manually. Manual labeling of droplet data
is not practical in real-world settings, especially when dealing with large volumes of
data. In this work, we developed a method for autonomous annotation of droplet data.

• The pipeline discussed in [19] can only operate with a high-performance comput-
ing cluster. In this work, we propose a model pruning technique to substantially
reduce the number of parameters, thereby shortening the processing time and mak-
ing it deployable in embedded systems. This opens up the feasibility for real-time
implementations in mobile crop spraying systems.

Therefore, the main goal of this work is to create a more robust, accurate, compact,
and faster inference pipeline for droplet detection.

Statement of Contributions

We leverage deep learning and computer vision to detect the motion of droplets from
sprayed nozzles moving across camera frames in real time. Our algorithm is grounded
in the recent progress in state-of-the-art detection methods, such as YOLOv8 and model
pruning, to improve droplet detection precision and enable real-time operation. We address
several challenges in the previous work of [19], including occlusion and variations in
droplet size and shape. To overcome the occlusion problem, we implemented a robust
algorithm that utilizes deep learning models capable of capturing and interpreting complex
visual patterns, even in the presence of occlusions. By leveraging these methods, we are
able to accurately detect droplets, even when they are partially obscured or hidden behind
other droplets. Furthermore, we addressed the challenge of variations in droplet size and
shape by developing a flexible and adaptable framework. Our approach incorporated
adaptive learning mechanisms that enable the model to dynamically adjust its detection
parameters based on the characteristics of the droplets observed in the input data. This
allowed our system to effectively handle variations in droplet size and shape, ensuring
accurate and reliable detection results across different scenarios and conditions.

The experimental data utilized in this study were collected through a dedicated setup
featuring crop spraying nozzles, as illustrated in Figure 1. The data collection process was
conducted via a user interface controller, which regulated the flow rate of the water pumped
from the water storage tank to the nozzles. The setup comprises an array of nozzles capable
of producing different spray patterns. To record droplet motion, an Olympus i-SPEED 3
camera (Tokyo, Japan) with a frame rate of 2000 fps and a lighting system were positioned
beneath the nozzles. However, annotating the data posed a tremendous challenge because
there were thousands of droplets to be labeled in order to construct a sufficiently large
ground truth dataset for training. To address this challenge, this work proposes a method
for automatic annotation, which results in an accurately labeled and substantial dataset.

The key contributions of this work are summarized as follows:

• Design and implementation of a real-time droplet detection approach that achieves a
higher level of accuracy.

• An AI-enabled automatic labeling and augmentation tool for establishing big droplet datasets.
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• The innovative modification of state-of-the-art models for droplet detection to optimize
their performance with respect to speed and precision, thereby facilitating the practical
implementation of our method.

• Overcoming the limitations associated with previous droplet detection frameworks,
such as in [19], as discussed earlier.

• Implementing a framework on an onboard computer platform, Jetson Orin, as well as
enabling advanced mobile robotics and edge AI capabilities for droplet analysis.

Array of nozzles

Water tank

Controller

Figure 1. Experimental setup with crop spray nozzles for droplet data collection.

3. Real-Time Deep Learning-Based Droplet Detection
3.1. Overview of the Methodology

The methodology in this paper builds upon the recent architecture provided by
YOLOv8 [27] to deliver a higher precision and faster processing rate compared to the
state-of-the-art methods in droplet detection. The selection of YOLOv8 is underpinned by
several key theoretical considerations:

1. Enhanced Speed and Real-time Processing: YOLOv8, as a single-stage detector, in-
herently offers faster processing speeds, which is crucial for real-time applications in
agricultural spraying where immediate feedback is essential.

2. Robust Accuracy in Diverse Conditions: Our dataset includes complex backgrounds
and varying lighting conditions. YOLOv8’s architecture maintains high detection
accuracy in these diverse conditions, which is an important consideration mirrored in
our methodology.

3. Effective Detection of Small Objects: The precise detection of small droplets is a
critical aspect of our study. YOLOv8 improves feature extraction and bounding
box prediction mechanisms, thereby providing enhanced capabilities in detecting
small droplets.

YOLOv8’s design is particularly beneficial for detecting small, fast-moving objects
like droplets as it effectively addresses challenges such as varying sizes and overlapping
objects. The use of YOLOv8 allows for the integration of advanced features like multi-
scale prediction and a more refined anchor box mechanism, which are vital for accurately
identifying droplets in diverse conditions. In particular, the process is shown in Figure 2
and encompasses the following key steps:

1. Preprocessing: The input image is resized and normalized to values between 0 and 1.
2. Feature Extraction: A total of 53 convolutional layers were created to extract a series

of feature maps, which were then unified via a feature pyramid network (FPN) for
detecting droplets across various sizes.

3. Detection Head: The unified feature map was passed to the detection head, which is
composed of convolutional and fully connected layers. It predicts bounding boxes,
objectness scores, and class probabilities for droplets, which are respectively classified
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into large, medium, and small sizes. Anchor boxes were also utilized here, which
helped in identifying droplets with diverse dimensions.

4. Anchor Boxes: As seen in Figure 3, the anchor boxes were predefined to cover different
droplet sizes and shapes, thus aiding in predicting precise locations and sizes.

5. Non-Maximum Suppression (NMS): Finally, NMS was applied to reduce overlap-
ping bounding boxes, and only those with the highest objectness score within each
overlapping region were retained.

The rest of the section will be dedicated to elaborating on the technical details of these
steps.

Feature extraction with CSPDarknet53 backbone, 
and pyramid feature network

...

Input image

Feature maps at 
three scales

Fully connected layers 
for inferencing Output

Anchor 
boxes

Droplet 
probability
Bounding 
box(x,y,w,h)

Backbone Detection head

Non-maximum 
suppression

Figure 2. The framework of the droplet detector.

X

Y

Ground-truth box

Anchor boxes

Width Width

Height Height

Center(xG,yG) Center(xA,yA)

Figure 3. Anchor boxes of an input image.

The rest of the methodology section will delve deeper into the key aspects of the
droplet detection framework.

3.2. Feature Extraction

The backbone network used in this work is composed of a series of convolutional
layers that extract features from input images. These convolutional layers use filters
or kernels to perform a series of convolutions on the input image. The output of each
convolutional layer is a set of feature maps that represent different levels of abstraction in
the input image.

• Early Layer Feature Maps: The initial layers predominantly focus on low-level features.
These include the following:

– Edges: Refers to the sharp changes in intensity or color in the image and marks
the boundaries of objects within the field of view.

– Textures: Patterns or repetitive arrangements found on the surface of objects in
the image, often manifesting as fine details.

• Later Layer Feature Maps: Advanced layers capture more complex, high-level features.
These encompass the following:

– Shapes: Refers to the geometric or outline properties of objects, as well as captures
the overall form and structure of the droplets.

– Boundaries: A more holistic view of the contours of objects, and it also helps to dis-
tinguish the droplets from the background by recognizing their complete periphery.

To improve the efficiency of the feature extraction process, we used the CSPNet archi-
tecture [28] to split the input feature maps into two parallel paths, which were processed
separately and then merged back together. This approach allowed us to reduce the number
of computations required while still maintaining the accuracy of the predictions. The
algorithm was designed in such a way that the feature extraction process was followed
by a series of upsampling and concatenation operations to increase the resolution and
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combine the feature maps from different layers. The resulting feature maps were then used
to predict bounding boxes and class probabilities for droplets in the image.

For example, when a droplet image of a size of 608× 608 pixels is input, it goes through
a series of convolutional layers. These layers gradually down sample the image to sizes of
304× 304, 152× 152, and finally 76× 76 pixels. Furthermore, it then extracts features at
different abstraction levels like edges, textures, shapes, and boundaries. The feature maps
are subsequently processed through additional convolutional layers, restoring them to the
original input dimensions of 608× 608 pixels. These final feature maps are used to predict
the bounding boxes and class probabilities for the droplets in an image. As demonstrated
in Figure 4, this process of feature extraction produces clearly identifiable patterns. Figure 4
displays the feature extraction from a droplet image, in which the distinct patterns on the
feature maps are highlighted. The left panel shows the early layer’s feature maps, and it
focuses on low-level, specific details like edges and corners with low spatial resolution.
The right panel represents the last layer’s feature maps, whereby more abstract, high-level
features like shapes and boundaries with higher spatial resolution are captured. These
varying feature maps contribute to tasks like droplet detection and classification, with clear
distinctions between the early and final layers in terms of resolution, receptive field, and
abstraction level being made.

(a) (b)

Figure 4. Examples of the feature maps obtained from the feature extraction module. (a) Feature
maps of the second layer and (b) feature maps of the last layer.

3.3. Detection Head

The detection head plays a critical role in the droplet detection framework in this paper.
It is a set of layers added on top of the backbone network that takes the high-level features
extracted by the backbone and performs droplet detection by predicting the bounding
boxes’ offsets and associated class probabilities. The droplets are classified into three
size-based categories: large, medium, and small.This classification is derived from their
physical dimensions, as follows:

• Small Droplets: Droplets with sizes up to the 33rd percentile of the size range in our
dataset. In our study, this threshold is defined as 299.0 units.

• Medium Droplets: Droplets whose sizes fall between the 33rd and 67th percentiles,
representing the mid-range sizes.

• Large Droplets: Droplets exceeding the 67th percentile, which, in our dataset, corre-
sponds to a size of 525.0 units and above.

These thresholds were calculated based on the percentile distribution of droplet sizes
within our dataset, thus helping to ensure an empirical and data-driven approach to
categorization.

The class probabilities represent the probability that the droplet in the anchor box
belongs to a particular class, while the offsets represent the distance between the anchor
box and the ground truth bounding box. These parameters are predicted using a series of
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convolutional layers that transform the input feature maps into a set of feature vectors. The
class probabilities are predicted using a sigmoid activation function and are normalized
such that they sum to 1 across all classes:

Pr(c|droplet) = σ(wT
c · f (droplet)), (1)

where Pr(c|droplet) is the probability that the droplet in the anchor box belongs to class c,
σ is the sigmoid activation function, wc is the weight vector for class c, and f (droplet) is
the feature vector for the anchor box.

Each anchor box is associated with a set of offsets, which are represented by a vec-
tor of 4 elements encoding the distance between the anchor box and the ground truth
bounding box. The offsets are predicted using a linear activation function applied to the
coordinates of the anchor box to obtain the coordinates of the predicted bounding box via
the following equation:

bx = σ(wT
x · f (droplet)) + xa, (2)

by = σ(wT
y · f (droplet)) + ya, (3)

bw = pwewT
w · f (droplet), (4)

bh = phewT
h · f (droplet), (5)

where bx, by, bw, and bh are the predicted coordinates and dimensions of the bounding box;
xa and ya are the coordinates of the center of the anchor box; pw and ph are the dimensions
of the anchor box; wx, wy, ww, and wh are the weight vectors for the offsets; and f (droplet)
is the feature vector for the anchor box.

After the bounding boxes are predicted, the post-processing module applies non-
maximum suppression (NMS) to remove the redundant bounding boxes that overlap with
each other. The NMS algorithm applies an intersection over union (IoU) threshold to
the class probabilities (Equation (1)) and removes all bounding boxes that have a lower
probability (IoU) than the threshold. It then selects the bounding box with the highest
probability for each droplet class and removes all other bounding boxes that have a high
overlap with the selected bounding box. IOU measures the overlap between the predicted
bounding box and the ground truth bounding box of a droplet. It is calculated as the ratio
of the area of intersection between the two bounding boxes, i and j, to the area of their
union as follows:

IoU(boxi, boxj) =
area(intersection(boxi, boxj))

area(union(boxi, boxj))
(6)

where boxi and boxj are two bounding boxes, intersection(boxi, boxj) is the intersection of
the two boxes, union(boxi, boxj) is the union of the two boxes, and IoU(boxi, boxj) is the
intersection over union between the two boxes.

3.4. Optimization-Driven Model Training

The process of training a model is crucial in deep learning to tune the hyperparameters
that enable the model to produce predictions as close to the ground truth as possible.
During this phase, the model learns to identify patterns and make predictions based on
the ground truth data. In the context of our droplet detection system, the model needs to
be trained to recognize droplets of different sizes and shapes and to track their movement
across frames. The training process involves feeding the model with labeled data, which
contain images of droplets with their corresponding bounding boxes and class labels. The
model then automatically adjusts its parameters to minimize the difference between the
predicted droplet detections and the ground truth droplet labels. This process is iterative
and continues until the model’s performance on the training data reaches a satisfactory
level or until a specified number of iterations (epochs) have been completed.
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In this work, the training process for the deep learning model was formulated as an
optimization problem, as described in Figure 5, where the objective is to find an optimal
set of model parameters that minimize a loss function. The loss function quantifies the
difference between the predicted and actual labels for the training data. In the case of our
droplet detection system, we designed the loss function as a combination of the following:

• Localization Loss (Lloc): This loss is calculated using the intersection over union (IoU)
between the predicted bounding box and the ground truth bounding box. The IoU
is a measure of the overlap between two bounding boxes and is calculated using
Equation (6). The localization loss is then calculated as

Lloc = 1− IoU. (7)

• Classification Loss (Lcls): This loss is calculated using the cross-entropy loss between
the predicted droplet class score (Ppred) and the ground truth droplet class labels (Pgt).
The equation for weighted cross-entropy loss is

Lcls = −∑
i

∑
j

α · yij ·
(

σ(Spred,i,j)
)γ
· log

(
σ(Spred,i,j)

)
. (8)

Here,

– The outer summation ∑i iterates over the detected droplets.
– The inner summation ∑j iterates over the classes.
– yij is 0 or 1, and it corresponds to whether the ground truth class of a detected

droplet i is class j or not. Specifically, yij = 1 if the true class for the detected
droplet i is class j, otherwise yij = 0.

– Spred,i,j represents the predicted score that the detected droplet i belongs to class j.
This score is used as an input to the sigmoid function to convert it into a predicted
probability for the corresponding class.

– α and γ are hyperparameters that exist within the range [0,1].
– σ represents the sigmoid function σ(x) = 1

1+e−x , where x = Spred,i,j.

• Confidence Loss (Lcon f ): This loss is calculated using the binary cross-entropy loss
between the predicted objectness score (Spred) and the ground truth objectness score
(Sgt). The equation for the binary cross-entropy loss is

Lcon f = −Sgt log(Spred)− (1− Sgt) log(1− Spred). (9)

Validation data

Train data

Optimize

Testing data Predicted data

Predict

Evaluate

Testing 
metrics

Error

Loss 
function

Training and evaluation phase

Testing phase

Figure 5. Optimization-driven model training process for droplet detection.

The total loss (L) is then a weighted sum of the following three losses:

L = λlocLloc + λclsLcls + λcon f Lcon f (10)
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where λloc, λcls, and λcon f are the weights for the localization loss, classification loss, and
confidence loss, respectively.

The model parameters are then tuned automatically via the stochastic gradient descent
scheme to minimize the following loss function:

θt+1 = θt − η∇L(θt; xit , yit), (11)

where η is the learning rate, ∇L(θt; xit , yit) is the gradient of the loss with respect to the
parameters, and it is a randomly selected index from 1, . . . , N at iteration t.

The training process also involves a validation dataset, which is a separate set of data
that is not used in the initial training phase. We split our data into three sets: training,
validation, and testing. The training set was used to adjust the model parameters, while the
validation set was used to tune the hyperparameters and monitor the model’s performance
during the training process. The performance of the model on the validation set was
monitored during the training process to prevent overfitting (i.e., the model performs well
on the training data but poorly on unseen data). The training process was stopped when
the performance on the validation set stopped improving. After the training and validation
phases, the final model was evaluated on the testing set. This set was completely unseen
during the training and validation phases, and it also provided a measure of how well the
model will perform on real-world data.

3.5. Model Pruning

The initial deep neural networks designed in this work have a large number of
connections and weights, which lead to tremendous computational and memory demands
during training and deployment. To alleviate the demands, we implemented a model
pruning technique to reduce the complexity of the neural networks by removing redundant
connections and weights, thus making the codes easier to load, store, and deploy. Since the
resulting model is substantially more compact and efficient, it can be trained and deployed
even with resource-constrained devices such as embedded systems and onboard computers.
Additionally, the smaller model also leads to energy and memory efficiency gains, which
are crucial for battery-powered devices such as smartphones or drones [29]. In this section,
we will describe the pruning procedures detailed in Algorithm 1.

Algorithm 1 Pseudo-code for model pruning with a threshold.
Input: Trained neural network model, pruning threshold τ

1: Initialization:
2: Let W be the set of weights in the model
3: Let S be an empty dictionary to store importance scores
4: Compute Importance Score:
5: for each weight w ∈W do
6: S[w]← ComputeImportanceScore(w) ▷ Use a criterion like L1 and L2
7: end for
8: Prune Weights:
9: for each weight w ∈W do

10: if S[w] < τ then
11: w← 0 ▷ Prune the weight
12: end if
13: end for
14: Fine-tune Model:
15: Train the model with the remaining weights using a reduced learning rate
16: Repeat:
17: If the desired level of compression is not achieved, return to step 4.

Output: The pruned and fine-tuned neural network model
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Compute the importance score: This step involves computing an importance score
for each layer, neuron, or weight in the model based on a specific pruning criterion. The
pruning criterion can be based on various factors, such as weight magnitude, sensitivity
analysis, or information entropy. The importance score represents the contribution of each
layer/neuron/weight to the overall performance of the model, and it is used to determine
which connections/weights to prune. In this work, we employed the weight magnitude
parameter to compute the importance scores of weights in the model pruning process. The
process of how weight magnitude can be used to compute importance scores is as follows:

• Compute the Magnitude of the Weights: The algorithm computes the magnitude of
each weight in the neural network by taking the absolute value of the weight and
disregarding its sign.

• Normalize the Magnitudes: The algorithm normalizes the magnitudes of the weights
by dividing each weight’s magnitude by the maximum magnitude observed across all
weights in the model. e.g., mw = |w|

M . This step ensures that the magnitudes are scaled
between 0 and 1, thus allowing for a fair comparison among the weights.

• Importance Score Calculation: The importance score of a weight can be directly
derived from its normalized magnitude by assigning the normalized magnitude mw
as the importance score for weight w.

Prune the least important connections/weights using the pruning threshold: After
computing the importance scores, the least important connections/weights are pruned
based on a pruning threshold. The pruning threshold represents the threshold value
used to determine which connections/weights to prune based on their importance scores.
Connections/weights with importance scores below the pruning threshold are considered
unimportant and are pruned by setting the weight value to zero. The pruning process
aims to remove redundant connections/weights and reduce the size of the model while
maintaining its accuracy.

Fine tune the pruned model to recover the performance loss caused by pruning:
After pruning, the model is fine tuned to improve the accuracy of the pruned model
and mitigate the performance loss caused by pruning. The fine tuning process involves
training the model on the same dataset as the original model using a smaller learning rate
before pruning.

Algorithm 1 describes the entire model pruning process, including the computation of
importance scores, pruning, and fine tuning. Meanwhile, Algorithm 2 focuses specifically
on the computation of the importance scores of each weight in the model, which is an es-
sential step in the model pruning process. The importance score represents the contribution
of each weight to the overall performance of the model, and it is used to determine which
weights to prune during the model pruning process.

Algorithm 2 Pseudo-code explaining the calculation of importance scores.
Input: Trained neural network model

1: Initialize an empty dictionary to store the importance scores of each weight
2: for each layer in the model do
3: L1-norm of weights: L1(w) = ∑n

i=1 |wi|
4: L2-norm of weights: L2(w) =

√
∑n

i=1 w2
i

5: Store the norm value in the dictionary for each weight in the layer
6: end for
7: Normalize the importance scores by dividing by the total number of weights in the

model
Output: The importance scores of each weight in the model

The first step of the algorithm initializes an empty dictionary to store the importance
scores of each weight in the model. Next, the algorithm computes the L1-norm or L2-norm
of the weights in each layer of the neural network. The L1-norm and L2-norm are mathe-
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matical formulas that measure the magnitude of a vector (in this case, the weights in a layer)
in different ways. The L1-norm represents the sum of the absolute values of the weights,
while the L2-norm represents the square root of the sum of the squares of the weights. The
importance score of each weight is then computed using the L1-norm or L2-norm value
computed in the previous step. The importance scores represent the relative importance
of each weight compared to other weights in the same layer, and they are then stored in
the dictionary initialized in the first step. Finally, the importance scores are normalized
by dividing each score by the total number of weights in the model. Normalizing the
scores ensures that the importance scores are between 0 and 1, which facilitates the pruning
process. The output of the algorithm is the importance score of each weight in the model.

4. Annotation and Augmentation of Experimental Data

In order to create the optimal deep learning-based droplet detection model, we estab-
lished a dataset that satisfies the following specific requirements:

• Diversity of Droplet Characteristics: Ensuring variations in the droplet sizes, shapes,
and orientations.

• Image Quality and Variation: Images are collected under various conditions.
• Multiple Droplet Instances: Including images with more than one droplet.
• Sufficient Training Data: An adequate number of images for training, validation, and

testing.

4.1. Autonomous Labeling

To meet these requirements, we conducted experiments and collected images/videos
of droplets sprayed from an array of nozzles (see Figure 1 for the experiment setup), as well
as created a database with all the images for training, validation, and testing. However,
constructing a large-scale dataset of droplets is a time-consuming and resource-intensive
process, mainly because it involves the manual labeling of thousands of droplets. The
manual annotation also poses challenges in terms of efficiency, accuracy, and scalability.
Thus, there is a critical need for an automatic labeling tool to be integrated with the
deep learning model. This tool could then alleviate the burden of manual annotation by
automating the process and improving the precision and efficiency of labeling.

In order to develop this automatic labeling tool, first, we manually labeled a small set
of droplet data to train the droplet detector designed in the first part of this paper. Then,
we used this pre-trained model to localize and classify the droplets, thereby assigning
appropriate bounding boxes and class labels automatically. Since the droplet detector was
trained with a small dataset, there were errors in the droplet detection. Hence, the last step
in the process was to manually correct these errors. Although manual annotation was still
involved, it was reduced to a manageable task, and the automatic labeling tool bore the
main burden of annotation. The tool significantly reduced the time and effort required for
dataset annotation, thus allowing us to create large-scale datasets more efficiently. This
efficiency is crucial when dealing with thousands or even millions of droplet instances.
Since the droplet detector worked so well at that point, there was no manual annotation
involved in the data annotation for the model training at all.

4.2. Data Augmentation

We also implemented data augmentation techniques, such as Cutout, Noise, and
Mosaic, to increase the dataset’s size and diversity. These techniques were tested for their
impact on the mean average precision (mAP), with the Mosaic augmentation technique
being the most effective. Figure 6 illustrates these augmentations.

In the pursuit of enhancing the dataset’s size and diversity, these data augmentation
techniques were employed and analyzed for their impact on the mean average precision
(mAP). As can be seen in Table 1, the baseline results, obtained without applying any
augmentation, served as a starting point for comparison, with mAP50 values of 0.792 for
validation and 0.884 for the test. Applying a 5% noise yielded significant improvements,
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whereby mAP50 values of 0.904 and 0.903 for the validation and test, respectively, were
achieved. The Cutout technique, involving the removal of 10% of the random sections from
the images, also demonstrated improvement, with mAP50 values of 0.834 and 0.922 for
the validation and test, respectively. Most strikingly, the Mosaic augmentation technique
was particularly effective as it achieved superior metrics when compared to the other
augmentation techniques with mAP50 values of 0.977 and 0.967 for the validation and
test, respectively. However, a combined approach using Noise, Cutout, and Mosaic did
not outperform the individual techniques, with mAP50 values of 0.893 for validation
and 0.858 for the test. The previous model without augmentation was also evaluated,
which achieved a test precision of 0.908. The results clearly indicated that the Mosaic
augmentation technique is the most effective method among those tested as it consistently
achieved the highest mAP50 and mAP50-95 values. Therefore, the Mosaic augmentation
technique was selected as the optimal choice for improving the classification and detection
outcomes in this project.

(a) (b) (c)

Figure 6. Illustration of the data augmentation techniques: (a) Cutout; (b) Noise; and (c) Mosaic
augmentations. Green boxes indicates the labels of droplets.

Table 1. Statistics on the mean average precision with respect to data augmentation techniques.

Train Valid Test Augmentation Model Class Validation Test
Precision Recall mAP50 mAP50-95 Precision Recall mAP50 mAP50-95

468 41 44 None YOLOv8n All 0.934 0.744 0.792 0.048 0.957 0.829 0.884 0.526
1404 41 44 Noise (5%) YOLOv8n All 0.952 0.862 0.904 0.557 0.949 0.865 0.903 0.53

1404 41 44 Cutout
(10%) YOLOv8n All 0.954 0.796 0.834 0.507 0.937 0.893 0.922 0.552

1404 41 44 Mosaic YOLOv8s All 0.935 0.935 0.977 0.65 0.95 0.945 0.967 0.663

1404 41 44
Noise,

Cutout,
Mosaic

YOLOv8n All 0.921 0.852 0.893 0.532 0.914 0.814 0.858 0.496

1404 41 44 Mosaic YOLOv8m All 0.95 0.944 0.981 0.664 0.955 0.955 0.971 0.67
1404 41 44 Mosaic YOLOv8l All 0.937 0.937 0.976 0.662 0.948 0.943 0.973 0.624
1404 41 44 Mosaic YOLOv8x All 0.928 0.935 0.972 0.674 0.959 0.945 0.977 0.658
1404 41 44 Mosaic YOLOv8x6 All 0.944 0.963 0.981 0.677 0.954 0.96 0.976 0.653

468 41 44 None Previous
model All - - - - 0.908 - - -

4.3. Data Organization

Figures 7 and 8 provide insights into the dataset characteristics. This new collection
was twelve times larger than that which was previously used, and it encompassed var-
ious complexities like varying lighting conditions, multiple droplets, and high droplet
density. In Figure 7a, the aspect ratio distribution of the images within our dataset is
portrayed, which provides insights into the diversity of the image dimensions before any
standardization process.
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Figure 7b presents an annotation heatmap that visualizes the density and distribu-
tion of droplets across the standardized image frames. The heatmap employed a color
gradient to signify the frequency and location of the droplets. Cooler colors (blues and
greens) indicate the areas with a lower likelihood of droplet presence, thus representing
fewer annotations and a sparser occurrence of droplets. Warmer colors (yellows and reds)
delineate the regions with a higher likelihood of droplet detection, and they correspond to
a higher density of annotations. This heatmap effectively illustrates the spatial distribution
of droplets within the image frames, and it provides a visual summary of the most and
least common locations for droplet occurrence in our dataset.

1024px

1024px

(a) (b)

Figure 7. Visual representations of the dataset characteristics. (a) Aspect ratio distribution of the image
sizes: yellow dots (18%) represent the ’tall’ images, sky-blue dots (38%) denote the ’square’ images,
and deep-sea blue dots (44%) symbolize the ’wide’ images—all of which reflect the proportions of
images before standardization. (b) Annotation heatmap: the color gradient represents the likelihood
of finding droplets in each size category across standardized frames, with cooler colors indicating a
lower frequency (i.e., sparse droplet occurrence) and warmer colors depicting a higher frequency (i.e.,
dense droplet occurrence).

In the construction of our dataset, we have considered a range of complexities to
ensure a robust evaluation of the droplet detection algorithm. As illustrated in Figure 8,
our dataset encompasses the following various challenges:

(a) Different lighting conditions that can significantly affect the appearance of droplets
and potentially the performance of detection algorithms. These conditions range from
uniform illumination to more complex scenarios with shadows and highlights.

(b) Scenes with multiple droplets, which present the challenge of detecting each
droplet accurately while also distinguishing between overlapping droplets.

(c) High droplet density, where the number of droplets in a single frame can be
substantial, thus requiring the algorithm to maintain high precision and recall despite the
increased difficulty.

These complexities are representative of real-world conditions that any effective
droplet detection system must handle. Regarding the construction of a benchmark dataset,
the images used in this study are part of a dataset funded and managed by the USDA
National Institute of Food and Agriculture. Due to data sharing agreements and privacy
constraints, we are unable to make the dataset publicly available. However, we provide
representative images from the dataset in Figure 8, which demonstrate the variety and
complexity of the imaging conditions under which our droplet detection system was tested
and validated.
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(a) (c)(b)

Figure 8. (a) Different lighting conditions; (b) multiple droplets; and (c) the max number of droplets
labeled in a given frame.

5. Evaluation Metrics

To assess the overall performance of our framework, we focused on evaluating the
detection performance of the droplets.

Droplet Detection Performance Metrics

For the evaluation of droplet detection performance, a set of evaluation images with
manually labeled ground truth bounding boxes for each droplet was utilized. The ground
truth represents the ideal performance achieved through meticulous human inspection.
Each image was fed into the trained model, thus allowing the algorithm to place bounding
boxes around the droplets it detected. These droplet detections were subsequently com-
pared to the corresponding ground truth annotations. During this comparison process, we
retained the following information for each image as follows:

• Intersection over Union (IoU): IoU measures the overlap between the predicted bound-
ing boxes and the ground truth bounding boxes. It quantifies how well the model’s
detections align with the actual droplet locations. A higher IoU indicates a better
match. The general formula used for calculating IoU is presented in (6).

• The Precision–Recall Curve: For the droplet class, we calculated the precision and
recall at different IoU thresholds. Precision represents the ratio of the correctly detected
droplets to the total number of detections, while recall measures the proportion of the
true droplets that are correctly detected. By varying the IoU threshold, we generated a
precision–recall curve. Let us consider the following definitions:

– True Positives (TP): The number of correctly detected droplets when compared to
the ground truth labels.

– False Positives (FP): The number of incorrectly detected droplets when compared
to the ground truth labels.

– False Negatives (FN): The number of droplets that were missed by the droplet
detection algorithm when compared to the ground truth labels.

Precision =
True Positive

True Positive + False Positive
, (12)

Recall =
True Positive

True Positive + False Negative
. (13)

• Average Precision (AP): AP is calculated by computing the area under the preci-
sion–recall curve. It captures the overall detection performance across various levels
of precision and recall. A higher AP indicates better accuracy in droplet detection. To
calculate the AP, we first computed the interpolated precision at each recall level by
taking the maximum precision value to the right of that recall level.

Interpolated Precision = max(Precision(R′)) where R′ ≥ R, (14)
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where R represents the recall level and n is the total number of recall levels. Next, we
calculated the area under the interpolated precision–recall curve, which represents the
AP value as per the following:

Average Precision (AP) =
1
n ∑

R
Interpolated Precision(R). (15)

• Mean Average Precision (mAP): The mAP is a commonly used evaluation metric in
object detection [30–32]. To obtain the mAP, we averaged the AP values across all
the droplet classes. This accounted for the variations in the detection performance
for different droplet sizes, shapes, or orientations. The mAP provides an overall
assessment of the algorithm’s ability to detect droplets accurately across multiple
classes. Let c1, c2, ..., cn be the classes of droplets, then the mAP can be calculated by
the following equation:

mAP =
1
n

n

∑
i=1

AP(ci), (16)

where n represents the total number of droplet classes and AP(ci) represents the
average precision for a class ci, which is computed using (15).

6. Experimental Results
6.1. Droplet Datasets

We have discussed various evaluation metrics for droplet detection extensively thus
far. As we delve into the results obtained by our trained model in this section, we will be
using some specific variants of the mean average precision (mAP) metric, which may fit
better for performance evaluation depending on the scenarios. Specifically, we will use
mAP50, which refers to the mAP calculated at an intersection over union (IoU) threshold
of 0.50; this means that a prediction is considered correct if its bounding box has at least a
50% overlap with the ground truth bounding box. We also used mAP50-95, which is the
average of mAP values calculated at IoU thresholds ranging from 0.50 to 0.95 with a step
size of 0.05. This gave us a more comprehensive view of the model’s performance across a
range of precision levels.

Table 2 shows the experimental results that indicate the comparisons made among the
four different datasets and two different models. The models in the comparison include the
framework designed in this work and the model developed in [19]. The datasets include
the following:

• Previous dataset: The dataset used to produce the results reported in [19] with the
respective model. This dataset includes 468 images in the training set, 41 images in
the validation set, and 44 images in the testing set.

• Augmented dataset: This is obtained by performing a Mosaic augmentation on the
previous dataset to increase the size of the training set to 1404 images.

• New dataset: This is obtained by implementing data augmentation and automatic
labeling to increase the size to 6124 images in the training set, 494 images in the
validation set, and 275 images in the testing set.

The performance was evaluated using precision, recall, mAP50, and mAP50-95 on
both the validation and test sets.

6.2. Results on Performance Metrics

We can see from Table 2 that our model (i.e., the model designed in this work) trained
with the Previous dataset, without any augmentation, had the lowest performance as it
achieved a validation mAP50 of 0.792 and a test mAP50-95 of 0.526. When trained with the
Augmented dataset with Mosaic augmentation, our model achieved a better performance
with a validation mAP50 of 0.976 and a test mAP50-95 of 0.624. Additionally, when our
model was trained with the New dataset, also with Mosaic augmentation and automatic
labeling, it had the best performance, whereby it achieved a validation mAP50 of 0.988 and
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a test mAP50-95 of 0.737. The precision reached 0.968, i.e., the model could successfully
detect 96.8% of the droplets in the testing set that it has never seen before. Moreover, all
these performances were superior when compared to the model developed in [19], which
was trained with the Previous dataset.

The comparison of the results showed that the data augmentation and the design of
the model are crucial for achieving good performance in the droplet detection task. The
model designed in this paper when coupled with the Mosaic data augmentation outper-
formed the other models, and the use of the Augmented dataset improved the performance
significantly. The results demonstrated that choosing the right combination of dataset,
augmentation, and model can lead to a state-of-the-art performance in droplet detection.

Table 3 presents a detailed evaluation of the droplet detection model’s performance
across different droplet classes (i.e., small, medium, or large), as well as an aggregate of all
the classes. Furthermore, the table also offers insights into various aspects of the model’s
effectiveness. The metrics are provided for both validation and test datasets. The following
results were particularly noteworthy:

• For small droplets, the model’s performance showed a consistent behavior between
the validation (precision: 0.846 and recall: 0.92) and test sets (precision: 0.891 and
recall: 0.898). The mAP50 values were 0.929 for the validation set and 0.934 for the test
set, while the mAP50-95 values were 0.64 and 0.621, respectively. The consistency and
relatively high precision and recall values suggested effectiveness in identifying small
droplets, but the gap between the mAP50 and mAP50-95 values indicated a sensitivity
to IoU thresholds.

• In the case of medium droplets, the precision dropped slightly from 0.845 in the
validation set to 0.813 in the test set, while the recall values were 0.854 and 0.858,
respectively. The mAP50 values were 0.918 for the validation set and 0.912 for the
test set, with mAP50-95 values at 0.761 and 0.724, respectively. This indicates that the
model maintained a balance between the precision and recall, but there was also a
slight drop in the precision in the test set.

• For large droplets, the analysis showed consistency between the validation (precision:
0.927 and recall: 0.881) and the test sets (precision: 0.921 and recall: 0.844). The mAP50
values were 0.95 for the validation set and 0.939 for the test set, with mAP50-95
values of 0.792 and 0.751, respectively. The higher precision for large droplets and
the closer values between mAP50 and mAP50-95 suggested a robustness to different
IoU thresholds.

• The aggregate metrics for all the classes showed a precision of 0.873 and a recall of
0.885 for the validation set, as well as a precision of 0.875 and a recall of 0.867 for the
test set. The mAP50 values were 0.932 for the validation set and 0.929 for the test set,
with mAP50-95 values of 0.731 and 0.699, respectively. These numbers provided a
well-rounded view of the model’s performance across all droplet sizes, thus indicating
overall stability and generalization ability.

Table 2. Statistics of the mean average precision.

Validation TestDataset Train Valid Test Augmentation Model Precision Recall mAP50 mAP50-95 Precision Recall mAP50 mAP50-95

Previous [19] 468 41 44 None This
work 0.934 0.744 0.792 0.548 0.957 0.829 0.884 0.526

Augmented 1404 41 44 Mosaic This
work 0.937 0.937 0.976 0.662 0.948 0.943 0.973 0.624

New 6124 494 275 Mosaic This
work 0.954 0.966 0.988 0.765 0.97 0.968 0.988 0.737

Previous[19] 468 41 44 None Previous
model [19]

- - - - 0.908 - - -
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Table 3. Statistics of the mean average precision for the three classes.

Classes
Validation Test

Images Instance Precision Recall mAP50 mAP50-95 Images Instance Precision Recall mAP50 mAP50-95

Small 494 727 0.846 0.92 0.929 0.64 275 438 0.891 0.898 0.934 0.621

Medium 494 814 0.845 0.854 0.918 0.761 275 492 0.813 0.858 0.912 0.724

Large 494 665 0.927 0.881 0.95 0.792 275 482 0.921 0.844 0.939 0.751

All 494 2206 0.873 0.885 0.932 0.731 275 1412 0.875 0.867 0.929 0.699

Figure 9 provides a visualization of the training performance of our model when
trained with the New dataset, which also achieved the best performance, as shown in
Table 1. Figure 9a illustrates the F1-confidence curve of our detection model across the
different droplet sizes, namely small, medium, and large. The F1 score is a crucial metric
in the field of machine learning and computer vision, particularly in tasks such as object
detection, where the balance between precision and recall is vital. It provides a single metric
that encapsulates the performance of the model in terms of both precision and recall. We can
see that the high F1 scores ranging from 0.6 to 0.9 with a confidence threshold from 0 to 0.8
for all classes—including small, medium, and large droplets—are indicative of the model’s
strong performance. The model’s performance was consistent across different droplet sizes,
as evidenced by the close proximity of the F1 scores for the small, medium, and large
droplets. This consistency was maintained over a wide range of confidence thresholds,
thus indicating the model’s robustness in handling droplets of various sizes. The F1 scores
exhibited a fast increase with a confidence threshold of 0 to 0.1, after which they stabilized
up to a confidence threshold of 0.8. This suggests that the model’s performance remains
steady over a wide range of confidence levels, thus reinforcing its reliability. However, a
drastic decrease in the F1 scores was observed at a confidence threshold above 0.8. This
is a common phenomenon in object detection models, as a confidence threshold close
to 1 implies absolute certainty in the predictions, which is rarely achievable in practice due
to inherent uncertainties and potential errors in the data or model.
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Figure 9. Performance metrics of the droplet detection model. (a) F1—confidence curve; (b) precision—
confidence curve; (c) recall—confidence curve; and (d) precision—recall curve.
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The precision, which indicates the proportion of true droplets (i.e., correct detections)
among all detected droplets, was used as a measure of the model’s performance. Regarding
the precision–confidence curve, as shown in Figure 9b, for small droplets, the precision
started at 0.5 and then rapidly climbed to 0.7 at a confidence level of 0.08. This suggests
that the model’s accuracy in predicting small droplets quickly improves as the confidence
level increases. When the confidence level is between 0.1 and 0.85, the precision is rising
gradually for all classes of droplets. However, a sudden drop in precision from above 0.9
down to 0.5 was observed at a confidence level of about 0.9, which was followed by a
rebound to 1 at a confidence level close to 1, for the small droplets. This volatility suggests
that the model’s performance on small droplets may be less stable at high confidence
levels, which could potentially be due to the inherent challenges associated with smaller
droplets. In contrast, the precision for medium and large droplets exhibited a steady
increase for the majority of the precision–confidence curve. The absence of any sudden
drops in precision indicates that the model’s performance on medium and large droplets
is stable across all confidence levels and its performance improves consistently as the
confidence level increases.

The recall–confidence curve of our model was analyzed to understand the model’s
performance across various droplet classes, including small, medium, and large. Recall,
which is defined as the ratio of true positive predictions to the sum of true positives and
false negatives, serves as an essential metric through which to gauge the model’s ability
to correctly identify the droplets it was trained to detect. Regarding the recall–confidence
curve, as shown in Figure 9c, for small droplets, the recall commences at 1 at a confidence
level of 0, which gradually diminished to 0.5 at a confidence level of 0.8. This gradual
decline illustrates the model’s decreasing efficacy in identifying small droplets as the confi-
dence level rises. A precipitous decline to a 0 recall at a confidence level of 1 underscores
a potential vulnerability in the model’s performance with small droplets at elevated con-
fidence levels. Simultaneously, the trend for the medium droplets mirrored that of the
small droplets, which initiated at 1 at a 0 confidence and further attenuated to 0.7 at a
0.8 confidence. The less pronounced decline compared to decline in the small droplets
indicates a more robust performance with medium-sized droplets, though the trend still
suggests a diminishing ability to identify these droplets as the confidence increases. In
addition, the recall trajectory for large droplets begins at 1 at a 0 confidence, which then
tapers to 0.8 at a 0.8 confidence. This pattern, with the highest recall at a 0.8 confidence
among the three sizes, signifies the model’s relative strength in detecting large droplets.

The precision–recall curve is a valuable tool for understanding the trade-off between
precision (the ratio of true positive predictions to the sum of true positives and false
positives) and recall (the ratio of true positive predictions to the sum of true positives and
false negatives). The precision–recall curve, as shown in Figure 9d, demonstrated that both
the small and medium droplets exhibited a similar trend in terms of precision and recall. As
the recall increased from 0.0 to 0.8, the precision gradually decreased from 1.0 to 0.9. This
gradual decline illustrated that, as the model identified more droplets (increasing recall),
it became slightly less accurate in its predictions (decreasing precision). The decrease in
precision for the small and medium droplets implied a balanced trade-off between these
two metrics for these droplet sizes. Meanwhile, the large droplets followed a similar pattern
but with a milder decline in precision. Starting at 1 precision with 0 recall, the precision
decreases to 0.95 at a recall of 0.8. This higher precision at the same recall level compared
to small and medium droplets suggests that the model is more accurate in detecting large
droplets.

6.3. Results of the Confusion Matrix and Training Loss

Figure 10 presents the confusion matrix for the three classes of droplets of our droplet
detection model. The model correctly identifies 92% of the small droplets but misclassified
8% as medium. For the medium droplets, the model showed good performance with an 85%
true positive rate, but it also had some confusion between the small and large categories.
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Large droplets were identified with an 87% true positive rate, with some confusion with
the medium category and an 18% false positive rate with the background. The model’s
performance with large droplets stood out as particularly strong, while there were areas of
confusion between the small and medium categories.

In addition to the mAP metrics, we also evaluated the training loss of our droplet
detector, as indicated by the lost functions defined in Equations (7)–(10). The training
loss provided insights into how well the model is learning from the training data and is
an essential aspect of understanding the model’s convergence and overall performance.
Figure 10 illustrates the results of training the droplet detection model over 200 epochs.
It includes three types of loss: localization loss, classification loss, and confidence loss.
The localization loss started at 1.68 and gradually decreased to 0.52 by the end of the
training. This indicated that the model’s ability to accurately locate droplets within an
image improved over time. The consistent decrease in the localization loss suggested
that the model was learning the spatial characteristics of the target droplets effectively.
The classification loss began at 1.93 and ended at 0.29. This metric measures the model’s
ability to correctly classify the droplets within the image. The substantial reduction in
classification loss over the epochs indicated that the model was becoming increasingly
proficient at identifying the correct classes for the droplets. Simultaneously, starting at
1.06, the confidence loss dropped down to 0.8 after 200 epochs. Confidence loss typically
measures the model’s certainty in its predictions. The decrease in this loss shows that the
model’s confidence in its predictions improved but at a slower rate when compared to
the other two losses. This is because the features that describe large, medium, and small
droplets are very similar to each other, especially if the size differences are subtle.
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Figure 10. The confusion matrix and training loss of our droplet detection model.

Figure 11a consists of the labeled ground truth images, which contain multiple bound-
ing boxes that denote the droplets. Figure 11b shows the detection results on the right,
and it highlights the droplets detected by the model with high confidence scores (>0.9).
The confidence score represents the level of certainty or confidence assigned by the model
to each detected droplet. It indicates the model’s confidence in the accuracy of the detec-
tion, with higher scores indicating a stronger belief that the droplet is present. Notably,
the detection results, as shown in Figure 11b, encompassed all of the droplets present in
the ground truth data, which is shown in Figure 11a. Interestingly, the model can even
detect additional droplets that do not have corresponding bounding boxes that the ground
truth data missed. It appears that the droplet detection model achieved an exceptional
performance, in which it potentially indicated convergence and exhibited a high level of
effectiveness.

It is also evident from Table 2 that our model, when trained with the Previous dataset
without any augmentation, demonstrated the least robustness to occlusion. In contrast, the
model trained with the Augmented dataset, when using Mosaic augmentation, exhibited
an improved performance, which was evidenced in it maintaining high mAP50 values even
with partial droplet occlusions. The model trained with the New dataset, which included
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Mosaic augmentation and automatic labeling, showcased the highest resilience to occlusion
with only a marginal decrease in the mAP50-95 when faced with up to 50% occlusion. The
consistent precision and recall across varying levels of occlusion underscore the model’s
ability to detect and correctly classify partially visible droplets, which is a critical aspect for
real-world applications where occlusions are commonplace. In addition, in Figure 11b, we
present a series of image patches that showcase the droplet detection model’s capacity to
recognize droplets under varying conditions, including instances of partial occlusion. This
robust detection even amidst occlusions can be attributed to the model’s learned feature
representations, which are capable of capturing the essential characteristics of droplets
even when they are not fully visible. The ability to discern partially obscured droplets
is crucial for applications in dynamic environments, where complete visibility of every
droplet cannot always be guaranteed. The results depicted in Figure 11b affirm the model’s
proficiency in maintaining high detection accuracy—a testament to its robustness against
occlusion.

The excellent performance of the model can be attributed to its advanced architecture,
effective training process, and robust feature representation. The model’s deep neural
network structure allows for the efficient and precise detection of droplets, whereby it
leverages multi-scale features to capture intricate details. Through extensive training, the
model has learned to effectively discriminate between droplets and background regions,
thereby resulting in accurate and comprehensive detection. The convergence of the model’s
training process, coupled with its ability to generalize in unseen instances and handle
various droplet sizes, enables it to surpass expectations and achieve a desirable performance
in droplet detection tasks.

(a) (b)

Figure 11. Droplet detection in image patches. (a): Several instances of an image patch, which are
annotated with bounding boxes to indicate the droplets based on ground truth labels. (b): Corre-
sponding image patches with bounding boxes denoting the droplets identified by the droplet detector
with a confidence level higher than 80%.

6.4. Results of Model Pruning and Implementation in an Embedded System

Tables 4 and 5 demonstrate the inference time of the droplet detection and tracking
framework before and after pruning, which were measured in milliseconds per frame on
different devices with distinct GPU and CPU configurations. The pruning process described
in Algorithm 1 resulted in a more compact model with approximately a 30% reduction
in the model size. This was achieved by removing the redundant or less significant
parameters, connections, and layers. The compactness makes the model compatible with
mobile onboard computers.

The observed improvements in the inference time before and after pruning are
as follows:

• For the Jetson AGX Orin device, the CPU inference time improved by approximately
4.9% after pruning, while the GPU inference time remained almost the same with a
reduction of approximately 0.4%.
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• In the case of the AI supercomputer, both the CPU and GPU inference times improved
after pruning. The CPU time decreased by approximately 1.3%, while the GPU time
decreased by approximately 8.4%.

• On the work station, there were slight improvements in both the CPU and GPU
inference times after pruning. The CPU time reduced by approximately 0.8%, and the
GPU time reduced by approximately 7.8%.

The improvements in inference time after pruning can be attributed to several factors.
Pruning removes redundant parameters and reduces memory access and computational
complexity. This leads to optimized computation, increased parallelism, and streamlined
execution, thus resulting in faster inference times. These findings suggest that the per-
formance of the droplet detection framework can be optimized through pruning, thereby
resulting in more efficient processing of frames, especially with GPUs. However, it is worth
noting that the specific GPU and CPU configurations of each device also play a role in
determining the overall inference time. The percentage reductions in inference time after
pruning indicate an improved efficiency and faster processing of droplet detection. These
improvements contribute to better performance and near real-time capabilities. This makes
the droplet detection framework more practical and efficient for deployment in various
mobile applications.

Table 4. Device specifications for inferencing deep learning models (ms).

GPU CPU

Jetson AGX Orin NVIDIA Ampere (Santa
Clara, CA, USA) ARM(R) Cortex(R) (Cambridge, UK)

Work Station NVIDIA GeForce RTX 3070 Intel(R) Core™ i7-i010700F (Santa
Clara, CA, USA)

AI Supercomputer A100 AMD EPYC 7402P Rome (Santa Clara,
CA, USA)

Table 5. Statistics of the inference time (ms).

Before Pruning After Pruning

CPU GPU CPU GPU

Jetson AGX Orin 7693.3 45.8 7317.1 45.6

AI Supercomputer 7655.4 22.3 7555.6 20.5

Work Station 7662.4 32.7 7604.6 30.14

Upon further analysis, we recognized that the nuances of GPU inference on the Jetson
AGX Orin platform required additional explanation, especially in the context of model
pruning. Unlike more powerful AI supercomputers and workstations, the Jetson AGX
Orin is designed with a focus on power efficiency for embedded systems. As such, the
pruning process, while reducing the model’s complexity, does not significantly impact the
already optimized GPU inference due to the embedded system’s limited parallel processing
resources when compared to full-scale GPUs.

The Jetson AGX Orin’s embedded GPU is tailored for high efficiency in a constrained
power envelope, and this architectural focus on efficiency means that there is less redundant
computation to eliminate through model pruning. Therefore, the performance gains on this
platform from pruning are more noticeable on the CPU than the GPU. This contrasts with
more powerful, dedicated GPU platforms, where the larger number of parallel processing
cores can benefit from the reduced computational load post-pruning. Furthermore, it
should be noted that the observed marginal reduction in GPU inference time on the Jetson
AGX Orin could be within the range of measurement variability, thus suggesting that
the performance on such embedded systems can be primarily constrained by hardware
capabilities rather than model complexity.
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7. Conclusions

This study represents a pioneering step in the field of droplet detection, and it ex-
hibits an innovative methodology grounded in deep learning and an architecture laid
by YOLOv8. By leveraging cutting-edge techniques—such as CSPDarknet53 for feature
extraction, non-maximum suppression for clutter-free detection, and model pruning to
make it compact—our approach significantly enhances the precision and processing rate
in droplet detection. The use of anchor boxes and unification through a feature pyramid
network further contributes to the model’s ability to detect droplets across various sizes
with solitary, optimally situated bounding boxes.

The experimental results, which showcase a 97% precision and 96.8% recall in droplet
detection, affirm the advantages of our methodology. Moreover, its capability of real-time
operation on embedded systems like Jetson Orin makes it a viable and revolutionary tool
for practical applications in agriculture. Our approach thus provides a foundation for sus-
tainable farming practices by facilitating efficient resource utilization and waste reduction.

This research not only sets a new benchmark in droplet detection, but it also opens
up promising avenues for further exploration and refinement. Future work can delve into
extending the applicability of this model to other domains and enabling more efficient
pixel processing by integrating policy networks and reinforcement learning into the droplet
detection framework. We are also working toward making this technology deployable in
mobile crop spaying systems in the field.
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