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Abstract: Generative models such as generative adversarial networks, diffusion models, and vari-
ational auto-encoders have become prevalent in recent years. While it is true that these models
have shown remarkable results, evaluating their performance is challenging. This issue is of vital
importance to push research forward and identify meaningful gains from random noise. Currently,
heuristic metrics such as the inception score (IS) and Fréchet inception distance (FID) are the most
common evaluation metrics, but what they measure is not entirely clear. Additionally, there are
questions regarding how meaningful their score actually is. In this work, we propose a novel evalua-
tion protocol for likelihood-based generative models, based on generating a high-quality synthetic
dataset on which we can estimate classical metrics for comparison. This new scheme harnesses the
advantages of knowing the underlying likelihood values of the data by measuring the divergence
between the model-generated data and the synthetic dataset. Our study shows that while FID and IS
correlate with several f-divergences, their ranking of close models can vary considerably, making
them problematic when used for fine-grained comparison. We further use this experimental setting
to study which evaluation metric best correlates with our probabilistic metrics.
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1. Introduction

Implicit generative models such as generative adversarial networks (GANs) [1] have
made significant progress in recent years, and are capable of generating high-quality
images [2,3] and audio [4]. Despite these successes, evaluation is still a major challenge
for implicit models that do not predict likelihood values. While significant improvement
can easily be observed visually, at least for images, an empirical measure is required as
an objective criterion and for comparison between relatively similar models. Moreover,
devising objective criteria is vital for development, where one must choose between several
design choices, hyper-parameters, etc. In light of the epistemological challenges presented
in [5], on their study on the limits of knowledge, it becomes imperative to explore how
these constraints impact the evaluation and understanding of generative models. The
most common practice is to use metrics such as the inception score (IS) [6] and Fréchet
inception distance (FID) [7] that are based on features and scores computed using a network
pre-trained on the ImageNet [8] dataset. While these have proved to be valuable tools,
they have some key limitations: (i) It is unclear how they relate to any classical metrics
on probabilistic spaces. (ii) These metrics are based on features and classification scores
trained on a certain dataset and image size, and it is not clear how well they transfer to
other image types, e.g., human faces, and image sizes. (iii) The scores can heavily depend
on particular implementation details [9,10].

Another evaluation tool is querying humans. One can ask multiple human annotators
to classify an image as real or fake or to state which of two images they prefer. While this
metric directly measures what we commonly care about in most applications, it requires a
costly and time-consuming evaluation phase. Another issue with this metric is that it does
not measure diversity, as returning a single good output can obtain a good score.
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In this article, we offer a new evaluation protocol for likelihood-based generative
models such as autoregressive (AR) and variational auto-encoders (VAEs) [11]. We created
a high-quality synthetic dataset, using the powerful Image-GPT model [12]. This is a
complex synthetic data distribution that we can sample from and compute exact likelihood
values. As this data distribution is trained on natural images from the ImageNet dataset
using a strong model, we expect the findings on it to be relevant to models trained on
real images. The dataset provides a solid and useful test-bed for developing and exper-
imenting with generative models. We will make our dataset public for further research
(https:/ /github.com/eyalbetzalel /notimagenet32, accessed on 25 May 2024).

Using this test-bed we train various likelihood models and evaluate their KL-divergence
and reverse KL-divergence. While our interest is implicit models, we experiment with
likelihood models as they have alternative well-understood metrics for comparison. This
allows us to compare the well-understood divergences to empirical metrics such as FID and
evaluate their capabilities. We expect our results to transfer to implicit models as metrics
such as FID and IS are not tailored to a specific kind of model. We observe that while the
empirical metrics correlate nicely to these divergences, they are much more volatile, and
thus, might not be well suited for fine-grained comparison.

To better structure our investigation, and to clarify the scope of this study, we have
delineated specific research questions and compiled the key findings that emerged from
our experimental work. These elements are summarized below, highlighting both the focus
of our research and the implications of our results:

e  Research Questions:

1. How do empirical metrics like the inception score (IS) and Fréchet inception
distance (FID) compare with probabilistic f-divergences such as KL and RKL in
evaluating generative models?

2. What limitations exist in using popular metrics like IS and FID for model evalua-
tion across diverse datasets and model types?

3.  Can a synthetic dataset provide a controlled environment to better evaluate and
understand these metrics?

¢  Key Findings:

1.  Empirical metrics, while commonly used, exhibit considerable volatility and do
not always align with f-divergence measures.

2. Inception features, although useful, show limitations when applied outside of
the ImageNet dataset, impacting the reliability of IS and FID.

3. The introduction of a high-quality synthetic dataset, NotImageNet32, helps in
evaluating these metrics more consistently, offering a new pathway for robust
generative model assessment.

2. Background

Given the popularity of GANs and other implicit generative models, many heuristic
evaluation metrics have been proposed in recent years. We give a quick overview of the
most common metrics and probabilistic KL-divergences.

2.1. KL-Divergence
One common measure of the difference between probability distributions is the Kull-

back-Leibler (KL) divergence KL(p||q) = Ex~p {log<%>}; noting that it is not sym-
metric. We refer to KL(Paatal|Pmoder) as the KL-divergence and KL(pyoder||Pdata) as the
reverse KL (RKL)-divergence, where p,,;, denotes the real data distribution, and p;;og.
denotes the approximated distribution, learned by the generative model. Minimizing
the log-likelihood is the same as minimizing the KL-divergence between p .1, and pyo4e1
up to a constant, hence it can be performed even when pg,;, is unknown. It is impor-
tant to note that the KL-divergence is biased towards “inclusive” models, where the

model “covers” all high-likelihood areas of the data distribution and punishes harder
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when paaia (%) > proder (x) (Figure 1, left). The RKL has a bias toward “exclusive” models,
where the model does not cover low-likelihood areas of the data distribution and punishes
harder when p .1, (%) < Pioder (x) (Figure 1, right). While an exclusive bias might be more
appropriate in some applications, such as out-of-distribution detection, we cannot optimize
it directly without access to p,,. As these divergences measure complementary aspects,
we believe that examining both of them simultaneously gives us a well-rounded view of
the generative model behavior. A limitation of KL-divergence is that it does not consider
the metric properties of the sample space, as opposed to Wasserstein distance; therefore, it
is less suitable for GAN training since it uses samples directly in the training process [13].
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Figure 1. Optimizing p,,,4.; with KL criteria pushes the model to cover all aspects of p4,,, hence it is
more exclusive, while optimizing it with reverse KL criteria encourages the model to cover the area
with the largest probability, hence it is more inclusive.

2.2. Inception Score

Inception score (IS) is a metric for evaluating the quality of image generative models
based on the InceptionV3 network pre-trained on ImageNet. It calculates

IS = exp (Ex~p,00 [KL(po (y]x)|Ipe(y)])

where x ~ p401 i @ generated image, pg(y|x) is the conditional class distribution com-
puted via the inception network, and pg(y) = [, po(y|X)Pmoder (X)dx is the marginal class
distribution. The two desired qualities that this metric aims to capture are (i) The generative
model should output a diverse set of images from all the different classes in ImageNet,
i.e., pg(y) should be uniform. (ii) The images generated should contain clear objects so the
predicted probabilities pg(y|x) should be close to a one-hot vector and have low entropy.
When both of this qualities are satisfied, then the KL distance between py(y) and py(y|x) is
maximized. Therefore, the higher the IS is the better.

2.3. Fréchet Inception Distance

The FID metric is based on the assumption that the features computed by a pre-trained
inception network, for both real and generated images, have a Gaussian distribution. We
can then use known metrics for Gaussians as our distance metric. Specifically, FID uses the
Fréchet distance between two multivariate Gaussians, which has a closed-form formula.
For both real and generated images we fit Gaussian distributions to the features extracted
by the inception network at the pool3 layer and compute

FID = ||py — pg|? + Tr(Zy + g — 2(Z,Zg)1?)

where NV (py, Z,) and N ( Mg, Zg) are the Gaussians fitted to the real and generated data,
respectively. The quality of this metric depends on the features returned by the inception
net, how informative are they about the image quality, and how reasonable is the Gaussian
assumption about them.
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2.4. Kernel Inception Distance

The kernel inception distance (KID) [14] aims to improve on FID by relaxing the
Gaussian assumption. KID measures the squared maximum mean discrepancy (MMD)
between the inception representations of the real and generated samples using a polynomial
kernel. This is a non-parametric test so it does not have the strict Gaussian assumption,
only assuming that the kernel is a good similarity measure. It also requires fewer samples
as we do not need to fit the quadratic covariance matrix. The motivation for this is the bias
of the FID and IS.

2.5. FIDy, IS0, and Clean FID

In [15], the authors show that the FID and IS metrics are biased when they are estimated
from samples and that this bias depends on the model. As the bias is model-dependent, it
can skew the comparison between different models. The authors then propose unbiased
versions of FID and IS named FIDe, / ISe. As the input to the inception network is fixed-
size, generated images of different sizes need to be resized to fit the network’s desired input
dimension. The work in [16] investigates the effect of this resizing on the FID score, as the
resizing can cause aliasing artifacts. The lack of consistency in the processing method can
lead to different FID scores, regardless of the generative model capabilities. They introduce
a unified process that has the best performance in terms of image processing quality and
provide a public framework for evaluation.

2.6. Ranking Correlation Methods

To compare the different scoring methods, we evaluate how they differ in ranking
different models. This allows us to focus on their main purpose of ranking different models.
For this we will use ranking correlation metrics.

2.6.1. Spearman Correlation

The Spearman correlation coefficient is defined as the Pearson correlation coefficient
between the rank variables. For n elements being ranked, the raw scores X;, Y; are converted
to ranks R(X;), R(Y;). The Spearman correlation coefficient 7 is defined as

cov(R(X),R(Y))
IR(X)IR(Y)

T's = PR(X),R(Y) =

p denotes the usual Pearson correlation coefficient, but applied to the rank variables,
cov(R(X),R(Y)) is the covariance of the rank variables, oy x) and og(y) are the standard
deviations of the rank variables.

2.6.2. Kendall’'s T

Kendall’s [17] correlation coefficient assesses the strength of association between pairs
of observations based on the patterns of concordance and discordance between them. A
consistent order (concordance) is when x; — x; and vy, — y; have the same sign.

Inconsistently order (discordant) occurs when a pair of observations is concordant if

xp — x1 and ¥, — y1 have opposite signs. Kendall’s 7 is defined as T = Czn]))c, where C is

2
the number of concordance pairs in the list and DC is the number of discordant pairs.

2.7. Related Works

In addition to previously mentioned works that defined empirical metrics, other
works looked into the evaluation of generative models. Bond-Taylor et al. [18] performed a
comparative review of deep generative models. Borji [19] provides an extensive overview
of methods for estimating generative models. Theis et al. [20] examine likelihood-based
models and demonstrate through toy examples the independence of various evaluation
methods. We endorse this view and conduct an in-depth empirical analysis using real
datasets to compare contemporary evaluation techniques for generative models. Ref. [9]
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first pointed out issues in IS. Ref. [21] inspects the distribution of the inception latent
feature and suggests a more accurate model for evaluation purposes. Ref. [22] performs
an empirical study on an older class of evaluation metrics of GANs and mentions that
KID outperforms FID and IS. Ref. [23] shows IS’s high sensitivity to the dataset trained by
the backbone network (in this example, ImageNet and CIFAR-10). Ref. [24] shows FID’s
sensitivity to layers and features of the backbone network and mode dropping.

Another line of works [25-28] utilize the classification score of generated data to
evaluate models’ performances. Despite its usefulness, a classification score is not foolproof.
During adversarial attacks, for example, the image may appear perfect, but its classification
score will be poor.

The latest works propose precision and recall as a way to disentangle the quality of
generated samples from the coverage of the target distribution [29,30].

3. Method

As the first step of our method, we train an autoregressive model to approximate the
information distribution. Using the model, whose distribution we know, we create a high-
quality synthetic dataset, and then, examine the performance of other likelihood-based
models against the synthetic data. The following Algorithm 1 and Figure 2 are the steps
involved in the method:

Algorithm 1 Creating Synthetic Dataset With Known Likelihood

: Train likelihood-based generative model® on dataset X

: Generate X, N samples from p,,(x) with known likelihood

: Split X to train set and test set

. Train likelihood-based generative model? with the train set

. Evaluate p,040(X) on test set from model?

: Measure KL(pata (X) || Prioder (X)) and KL(Pyoder (X) || Paata(X)) on test set
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Figure 2. Tllustration: X are ImageNet images; X are synthetic images sampled from image-GPT;
Paata(X) is ground truth likelihood from image-GPT for synthetic images; and p,,oq.; (X) is likelihood
estimation of p;,, (X), calculated by the evaluated model, in this case, PixelSnail.

In this article, we created an auxiliary realistic dataset by sampling images from the
Image-GPT model that has been trained on ImageNet32: the ImageNet dataset that was
resized to 32 x 32. Image-GPT was chosen as a reference for being a powerful AR model
with 1 M epochs of training checkpoints available (https:/ /github.com/openai/image-gpt,
accessed on 25 May 2024). We split the dataset into a training set (70 K images) and a test
set (30 K images), similar in size to CIFAR10, a common benchmark. Image-GPT’s ability
to generate quality and realistic samples is demonstrated qualitatively in Figure 3 and
quantitatively by the high results in linear probability scores. As this is a synthetic version
of ImageNet32 we name our dataset NotImageNet32.
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Figure 3. Examples of photos that are generated by image-GPT. Each photo’s explicit likelihood can
be measured.

We note that Image-GPT clusters the RGB values of each pixel into 512 clusters and
predicts these cluster indexes. This means that instead of each pixel corresponding to an
element of {0, ...,255}3 it belongs to {0, ...,511}. We can map these cluster values back to
RGB, as in Image-GPT, for visualization.

This scheme is not restricted to NotImageNet32, which is used as an example for a
single use case. In general, we advocate for using high-quality synthetic datasets to bridge
the gap between real data on which performance is hard to evaluate and toy problems that
do not necessarily represent real challenges. This can be utilized for ranking state-of-the-art
(SOTA) generative models and finding hyper-parameters of the data generation process
such that they produce the least amount of inconsistencies across measurements.

To evaluate and understand current heuristic generative model metrics we train a set
of models on NotImageNet32. One set of models is based on the PixelSnail model [31]. We
use PixelSnail as it is a strong autoregressive model, but not as powerful as the pixel-GPT
that generated the data. From this, we expect it to be able to fit the data well, but not
perfectly. For diversity, we also measure a VAE model, based on VD-VAE [32] (we use
IWAE [33] to reduce the gap between the ELBO and the actual likelihood). We note that all
models were adjusted to our dataset and output the clustered index instead of RGB values.
Supplementary details on the models architecture in this experiment can be found in the
Appendixes A-D section.

To produce a diverse set of models with varying degrees of quality, each set was
trained several times with different model sizes. We save a model for comparison after
every five epochs of training. As a result, the models we compare are a mix of strong and
weak models. After the training procedure, we can compute for each image in the test set
its likelihood score (or the IWAE bound) for each model.

We then measure the difference between p,,(x) and po4 (x) by using Monte Carlo
approximation of two divergence function: Kullback-Leibler (KL) KL(pga14||Proder) and
reverse KL (RKL) KL(Pyodel || Pdata)- As these divergences measure complementary aspects,
one inclusive and one exclusive, we believe that this, although unable to capture all the
complexities of a generative model, gives us a well-rounded view of the generative model
behavior. KL-divergence has been thoroughly investigated in the fields of probability and
information theory, and its properties along with what it measures are well known. Thus,
comparing it to heuristic methods such as FID will shed light on these empirical methods.

A limitation of this test-bed is that it can be applied only to likelihood-based models,
so implicit models like GAN are not able to take advantage of it.

4. Comparison between Evaluation Metrics
4.1. Volatility

We first train four PixelSnail variants on our NotlmageNet32 dataset and plot the KL,
RKL, FID, and IS (we plot the negative IS, so lower is better for all metrics) along with the
training for test set in Figures 4 and 5. It can easily be seen that after 15-20 epochs both KL
and RKL change slowly, but the FID and IS are much more volatile. Each dot in the graph
represents a score that has been measured on a different epoch on a different model. To
assess the variance in the results we used the jackknife resampling method [34]. The error
bars are small (10~3 scale in most cases), hence they are unnoticeable. One can see from
this figure that as we increase the model capacity, the KL score improves. Model-generated
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samples are included in Appendix D. Interestingly, the KL and RKL have a high agreement,
even if they penalize very different mistakes in the model. In stark contrast, we see that the
FID, and especially IS, are much more volatile and can give very different scores to models
that have very similar KL and RKL scores.
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Figure 4. Test of KL and RKL of PixelSnail models through training.
FID IS
-1.8
130 =+ ch 128 psb 2 resb 4 atval 64 attk 8 =+ ch 128 psb 2 resb 4 atval 64 attk 8
=== ch 128 psb 4 resb 4 atval 64 attk 8 -2 === ch 128 psb 4 resb 4 atval 64 attk 8
120 { ch 128 psb 8 resb 4 atval 64 attk 8 b ch 128 psb 8 resb 4 atval 64 attk 8
=+ ch 256 psb 8 resb 4 atval 128 attk 16 22k =+ ch 256 psb 12 resb 4 atval 128 attk 16
110 |
100
n 90F
o
80
70
60
50 [
40 b
0 5 10 15 20 25 30 35 40 45 "o 5 10 15 20 25 30 35 40 45
Epoch Epoch

Figure 5. Test of FID and negative IS of PixelSnail models through training. We plot the negative
inception score, so lower is better for all metrics. Details on the hyper-parameters summarized in the
legend are in the Appendix B.

For another perspective, we plot in Figure 6 the FID and negative IS vs. KL and RKL.
We observe a high correlation between FID/IS and KL and a weaker correlation between
these metrics and the RKL. IS and FID also seem ill-suited for fine-grained comparisons
between models. For high-quality models, e.g., light-blue dots in Figure 6, one can obtain
a significant change in FID /IS without a significant change to KL/RKL. This can be very
problematic, as when comparing similar models, e.g., testing various design choices, these
metrics can imply significant improvement even when it is not seen in our probabilistic
metrics. We add zoomed-in versions of this plot to Appendix A for greater clarity.
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Figure 6. Evaluation metrics through the training of four PixelSnail and two VD-VAE models of
varying sizes. (a) FID vs. KL, (b) -IS vs. KL, (c¢) FID vs. RKL, (d) -IS vs. RKL. We plot the negative
inception score, so lower is better for all metrics.

4.2. Ranking Correlation

To better quantitatively assess our previous observations, we compare how the metrics
differ in their ranking of the various trained models. This is of great importance, as
comparing different models is the primary goal of these metrics. To compare the ranking
we compute Kendall’s T ranking correlation (Table 1). We perform the correlation analysis
for models that were trained for 15-45 epochs and ignore the first iterations of the training
procedure. This is to focus more on the fine-grained comparisons.

Table 1. Kendall’s T correlation between different metrics. A correlation score indicates the degree of
agreement between two scoring methods.

KL RKL FID IS IS KID FID Clean FID

KL 1 0.8895 0.7027 0.5889 04681 0.7770  0.8095 0.7909
RKL 0.8895 1 0.6337 0.5244 04314 0.7105 0.7267 0.7198
FID 0.7027  0.6337 1 0.7979  0.7189  0.8513  0.8002 0.8699

IS 0.5889  0.5244  0.7979 1 0.8281  0.7329  0.6818 0.7236

ISeo 04681 04314 0.7189  0.8281 1 0.6167  0.5749 0.6074
KID 0.7770  0.7105  0.8513  0.7329  0.6167 1 0.8606 0.9675
FIDeo 0.8095 0.7267  0.8002  0.6818  0.5749  0.8606 1 0.8746

CleanFID  0.7909 0.7198 0.8699 0.7236  0.6074 0.9675  0.8746 1

The highest score in both ranking correlation methods is between KL and reverse KL

with 0.889 Kendall’s 7 (in bold). This may be surprising since these two methods measure
different characteristics of the data. Confirming our previous observation, the FID and
IS ranking scores are low, with FID outperforming IS. However, the extensions of FID do
achieve better scores.
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Another observation is the relatively low correlation between many of the different
rankings. All of the inception ranking correlations, except one (KID and clean FID), indicate
that one can obtain significantly different rankings by using a different metric.

Among the inception-based metrics, FID« has the highest correlation with KL and
RKL, which indicates that it is a more reliable metric than the others. IS/IS. has the lowest
ranking correlation of all the other models.

5. Discussion

This study contributes to the evolving field of generative model evaluation by intro-
ducing a novel evaluation protocol that utilizes a high-quality synthetic dataset, NotIma-
geNet32, to compare probabilistic f-divergences like KL and RKL with empirical metrics
such as FID and IS. Our findings indicate that while empirical metrics like FID and IS are
widely used and correlate with some aspects of model performance, they exhibit consider-
able volatility and do not always align with changes observed in f-divergence metrics. This
discrepancy underscores the complexities and potential limitations of using single metrics
for model evaluation.

5.1. Comparison with Existing Literature

Our results align with previous studies that have critiqued the reliability of popular
metrics like IS and FID, particularly in terms of their consistency and ability to generalize
across different datasets and model types. For instance, the use of inception features
has been shown to perform variably across non-ImageNet benchmarks, suggesting a
need for more versatile and robust evaluation tools. Our study extends this narrative by
demonstrating similar volatility and recommending the adoption of newer metrics like
FIDo, and the exploration of multiple metrics to provide a more comprehensive evaluation.

5.2. Implications of Findings

The observed volatility in empirical metrics, especially in high-stakes areas like gen-
erative model deployment in medical imaging or autonomous driving, could lead to
misguided conclusions about model performance. By advocating for a combination of
metrics and the introduction of a synthetic dataset as a standardized test-bed, our study
proposes a pathway towards more reliable and interpretable evaluations. This approach
could help mitigate risks associated with deploying under-evaluated or overestimated
models in critical applications.

5.3. Limitations

The primary limitation of this study is its reliance on a single synthetic dataset, NotIm-
ageNet32, which, while providing a controlled environment for model evaluation, may not
capture the diversity and complexity of real-world data. Additionally, our conclusions are
based on the performance of likelihood-based generative models, which may not directly
translate to implicit models such as GANs and diffusion models.

5.4. Future Research Directions

Future studies should aim to replicate and expand upon our findings by incorporating
multiple synthetic and real-world datasets to assess the generalizability of the proposed
metrics. Further research should also explore the development and validation of new
metrics that can capture a broader range of model behaviors and better reflect real-world
performance. Additionally, exploring the integration of human perceptual studies could
provide a complementary perspective to purely computational metrics, offering a holistic
view of model effectiveness.

6. Conclusions

We generated a high-quality synthetic dataset and compared standard empirical
metrics, such as FID and IS, with probabilistic f-divergences like KL and RKL. Our analysis
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shows that although the empirical metrics generally correlate well and capture important
trends, they demonstrate considerable volatility. Not all observed improvements in these
metrics correspond to similar gains in KL- or RKL-divergences. Additionally, the inception
score and its IS, extensions tended to perform less effectively compared to other metrics.

Given the outcomes of our study and acknowledging that our analysis is based on a
single synthetic dataset, we suggest the following cautious approaches for future research
and application:

*  Consider phasing out the inception score, favoring FID,, for its reduced volatility.

e Employ a combination of metrics (such as FID«,, KID, and clean FID) to help manage
metric volatility and provide a more robust evaluation.

¢ Explore using NotImageNet32 as a potential test-bed for likelihood-based generative
models to further assess its efficacy across various generative modeling scenarios.
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Appendix A. Volatility Analysis of High-Quality Models

In Figure A1, one can see that the FID score dramatically changes although there
is not much change in the KL or in the RKL metrics. This may indicate the volatility of
this method.

,\
O

oY ) v

140

130

Reverse KL

120

40 45 50 55 60 40 45 50 55 60
FID FID

Figure A1. Evaluation metrics through the training of four PixelSnail and two VD-VAE models of
varying sizes. Zoom-in on high-quality models.

Appendix B. Technical Details on Experiment’s Generative Models” Architecture

As mentioned in Section 4, we create different models by setting different hyper-
parameters in order to compare performances between them. In order to enable accurate
reproduction capability, we describe the set of parameters we used.

Appendix B.1. PixelSnail

The PixelSnail architecture is primarily composed of two main components: a residual
block, which applies several 2D-convolutions to its input, each with residual connections;
and the attention block, which performs a single key—value lookup. It projects the input to a
lower dimensionality to produce the keys and values and then uses softmax attention. The
model is built from several PixelSnail blocks concatenated to one another, each interleaving
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the residual blocks and attention blocks mentioned earlier. We used Adam optimizer with
LR 0.0001 and multiplicative LR scheduler with lambada LR 0.999977. The loss function
changed to the mean cross-entropy over 512 discrete clusters. All the other parameters that
make up the model are described in Table A1.

Table A1l. PixelSnail hyper-parameters.

. PixelSnail Residual Attention .
Size Channels Blocks Blocks Values Attention Keys
S 128 2 4 64 8
M 128 4 4 64 8
L 128 8 4 64 8
XL 256 8 4 128 16

PixelSnail Training Procedure - NotimageMNet32 Dataset

3.0
—4— ch_128_psb_2_resb_4_atval_64_attk_8
ch_128_psb_4_resb_4_atval_64_attk_8
2.9 —}— ch_128 psb 8 resb 4 atval 64 attk 8
=—4— ch_256_psb_8_resb_4_atval_128_attk_16
2.8 1
2.7 1
-
=
2564
2.5 1
2.4
2.3+
T T T T T T
o] 20 40 60 80 100

Epoch

Figure A2. NLL score on the training set for different PixelSnail models on NotImageNet32.

Appendix B.2. VD-VAE

The VD-VAE network is built from an encoder and decoder. In the encoder, there are
regular blocks, which receive an input and output an output with the same dimension, and
down-rate blocks that receive input and output an output with a lower dimension. The
difference between these two blocks is an avg_pool2d at the end of the down-rate block.
In the decoder, there are regular blocks and mixin blocks. The regular blocks receive an
input and output an output with the same dimension. The input is fed from the previous
layer and the parallel layer in the encoder. The mixin block performs interpolation to a
higher dimension.

Table A2. VD-VAE hyper-parameters.

Size

Encoder Decoder

S 32 x 5,32d2,16 x 4,16d2, 8 x 4,8d2,4 x 4,4d4,1 x 2 1x2,4ml,4 x 4,8m4, 8 x 3,16m8, 16 x 8, 32m16, 32 x 20
M 32 x 10,32d2,16 x 5,16d2,8 x 8,8d2,4 x 6,4d4,1 x 4 1x2,4ml, 4 x 4,8m4, 8 x 8,16m8, 16 x 10, 32m16, 32 x 30

In Table A2, x means how many regular blocks are concatenated in a row. For example,
32 x 10 means 10 blocks in a row with a 32-channel input. d means a down-rate block.
The following number is the factor of the pooling. m means an unpool (mixin) block, for
example, 32m16 means 32 is the output dimensionality with 16 layers in the mixin block.

Other hyper-parameters that were changed include the EMA rate, to 0.999, warm-up
iterations, to 1, learning rate, to 0.00005, grad clip, to 200, and skip threshold, to 300. We
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used the Adam optimizer with f; = 0.9 and B, = 0.9. Other hyper-parameters were

configured as mentioned in the VD-VAE article.

Appendix C. Supplementary Model Correlation Measurements

In Table A3, one can see that the Pearson correlation is high for most of the evaluated
methods. This is consistent with the conclusion presented in the article on the ability of the
current evaluation methods to capture trends.

Table A3. Pearson’s p correlation.

KL RKL FID IS IS KID FIDo Clean FID

KL 1 0.976 0.8217  0.7088  0.5656  0.9011 0.911 0.8962

RKL 0.976 1 0.7839  0.6559  0.5279  0.8552  0.8585 0.8493

FID 0.8217  0.7839 1 09441 09053 09771  0.9583 0.9829

IS 0.7088  0.6559  0.9441 1 0.9657  0.9047  0.8858 0.9139

ISeo 0.5656  0.5279 09053  0.9657 1 0.8301 0.799 0.8407
KID 09011 0.8552 09771  0.9047  0.8301 1 0.9825 0.998

FIDeo 0.911 0.8585  0.9583  0.8858 0.799 0.9825 1 0.9863

Clean FID  0.8962  0.8493 0.9829 09139  0.8407 0.998 0.9863 1

In Table A4, we present the Spearman’s ranking correlation, another ranking correla-
tion method that is similar to Kendall’s T and presents similar results.

Table A4. Spearman’s p ranking correlation.

KL RKL FID IS IS KID FIDo Clean FID

KL 1 09779  0.8449 0.7394 0.6064 09201  0.9353 0.9242
RKL 0.9779 1 0.8118  0.6921  0.5693  0.8828  0.8883 0.8865
FID 0.8449  0.8118 1 09238 0.8934 09587  0.9165 0.9627

1S 0.7394  0.6921  0.9238 1 0.9548  0.8904 0.847 0.8799

IS 0.6064 05693  0.8934  0.9548 1 0.799 0.7422 0.7922
KID 09201  0.8828 09587  0.8904 0.799 1 0.9656 0.9964
FID 09353 0.8883  0.9165 0.847 0.7422  0.9656 1 0.9715

Clean FID  0.9242 0.8865 0.9627 0.8799  0.7922 0.9964 0.9715 1

Appendix D. Sample Examples

These samples were generated from the different models under test in Section 4,
each subfigure was generated on a different epoch while training the models on the
NotlmageNet32 dataset. Figures A3 and A4 are samples from the large PixelSnail model
and the medium VD-VAE model, respectively. More details on the models are given in

Appendix B.
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Figure A3. PixelSnail model samples.
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Figure A4. VD-VAE model samples.
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