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Abstract: The flow field around a straight chain of multiple slip spherical particles rotating steadily in
an incompressible Newtonian fluid about their line of centers is analyzed at low Reynolds numbers.
The particles may vary in radius, slip coefficient, and angular velocity, and they are permitted to be
unevenly spaced. Through the use of a boundary collocation method, the Stokes equation governing
the fluid flow is solved semi-analytically. The interaction effects among the particles are found to be
noteworthy under appropriate conditions. For the rotation of two spheres, our collocation results for
their hydrodynamic torques are in good agreement with the analytical asymptotic solution in the
literature obtained by using a method of twin multipole expansions. For the rotation of three spheres,
the particle interaction effect indicates that the existence of the third particle can influence the torques
exerted on the other two particles noticeably. The interaction effect is stronger on the smaller or less
slippery particles than on the larger or more slippery ones. Torque results for the rotation of chains of
many particles visibly show the shielding effect among the particles.

Keywords: axisymmetric rotation; multiple slip particles; creeping flow; hydrodynamic torque

1. Introduction

The translation and rotation of small particles in Newtonian fluids at low Reynolds
numbers play important roles in a variety of technological and industrial processes, such as
centrifugation, sedimentation, aggregation, microfluidics, suspension rheology, and aerosol
technology. The analysis of this subject was initiated by Stokes [1,2] on the motions of an
isolated nonslip spherical particle in a viscous fluid. The phenomena that viscous fluids
in creeping flow can frictionally slip at particle surfaces occur for numerous situations,
such as a colloidal particle with lyophobic surface [3–7], an aerosol particle in low-density
gas [8–10], and a porous particle [11,12]. The slip velocity is presumably proportional to
the shear stress of the fluid at the particle surface with the proportionality constant β−1 as
the slip coefficient [13–15].

The hydrodynamic torque exerted on a slip sphere of radius a rotating with angular
velocity Ω in a fluid of viscosity η was obtained by Basset [13] as follows:

T(0) = −8πηa3Ω
1

1 + 3η/βa
, (1)

where η/β signifies a slip length. In the limiting case of the stickiness/slip parameter
βa/η = 0, the particle is perfectly slip (like a gas bubble in a liquid) and T(0) = 0. In the
other limit βa/η → ∞ , the particle is nonslip and Equation (1) becomes the Stokes result.
More recently, the creeping flow rotation of slip particles has been examined for a slightly
deformed sphere [16,17], an axisymmetric particle, such as spheroid [18,19], and a circular
cylinder [20].

In many technical applications, slip particles are not isolated. Thus, it is imperative
to determine if the attendance of adjoining particles [21,22] or the proximity of confining
walls [23–25] meaningfully affects the particle movement. Through an exact representation
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in spherical bipolar coordinates, the axisymmetric slow translation of two slip spherical
particles was investigated semi-analytically and numerical results were calculated for the
cases of identical spheres with equal magnitude of velocities [26] and arbitrary spheres with
arbitrary velocities [27]. On the other hand, the translational and rotational motions of two
arbitrarily oriented spheres with arbitrary radii and slip coefficients were analyzed using a
method of twin multipole expansions [28]. Subsequently, the creeping flow around two
arbitrary slip spheres translating along and rotating about their line of centers was studied
by using a boundary collocation method [29]. It was found from these investigations that
the two-sphere interaction effect decreases with increasing slip coefficients of the particles,
may be pronounced as the distance between particle surfaces approaches zero, and is
greater on the smaller particles than on the larger ones.

For a concentrated suspension, the interaction amongst multiple particles may be
important. The objective of this article is to analyze the slow rotation of a chain of coaxial
slip spherical particles about the axis. The particles may vary in radius, slip coefficient,
and angular velocity, and they are permitted to be unevenly spaced. Through the use of
the boundary collocation method, the Stokes equation is solved semi-analytically, and the
torques exerted on the particles by the fluid are obtained with excellent convergence. For the
simple case of rotation of two spherical particles, our collocation solutions for the torques
agree well with the asymptotic solutions resulting from the method of twin multipole
expansions [28] and with some numerical calculations [29]. These results may contribute
significantly to the area of determining the rotational electrophoretic, diffusiophoretic, and
thermophoretic mobilities of uniformly charged, non-uniformly charged, or uncharged
particles [30–32].

2. Analysis

As shown in Figure 1, we consider the steady slow rotation of a straight chain of N
neutrally buoyant spherical particles in a boundless, quiescent, incompressible Newtonian
fluid of viscosity η about the line through their centers (z axis), where the fluid may slip
frictionally at the particle surfaces. The spherical coordinates (ri, θi, φ) are measured from
the center of particle i (with radius ai) for i = 1, 2, . . ., and N, and the origin of the circular
cylindrical coordinates (ρ, φ, z) is set at the center of particle 1. The particles may vary in
size, surface slippage, and angular velocity, and they are permitted to be unevenly spaced.
The purpose is to obtain the correction to Equation (1) for the rotational motion of each
particle owing to the presence of the other ones.
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Figure 1. Geometric sketch for the rotation of a chain of coaxial slip spheres about their axis.

The Stokes equation governing the creeping flow around the rotating particles is [25]

(∇2 − ρ−2)vφ =
1

ri
2 {

∂

∂ri
(ri

2 ∂vφ

∂ri
) +

∂

∂θi
[

1
sin θi

∂

∂θi
(vφ sin θi)]} = 0, (2)
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where vϕ(ri, θi) or vφ(ρ, z) is the ϕ (only nontrivial) component of the fluid velocity profile
(with r1 ≥ a1, r2 ≥ a2, . . ., and rN ≥ aN), the continuity equation is satisfied, and the
dynamic pressure is constant everywhere. In Equation (2), any coordinate system (ri, θi, φ)
can be chosen. Because the slip velocity is proportional to the nontrivial tangential stress
locally at each particle surface [13], the fluid velocity satisfies the boundary conditions
as follows:

ri = ai: vφ = Ωiai sin θi +
1
βi

τriφ, i = 1, 2, . . . , and N, (3)

(ρ2 + z2)
1/2 → ∞ : vφ = 0, (4)

where Ωi is the angular velocity of particle i,

τri ϕ = ηri
∂

∂ri
(

vϕ

ri
), (5)

which is the relevant shear stress, and 1/βi is Navier’s slip coefficient of the particle i.
We can express a sufficiently general solution of the fluid velocity in the form

vφ =
N

∑
j=1

∞

∑
n=1

Ajnrj
−n−1P1

n(cos θj), (6)

where P1
n is the associated Legendre function of the first kind of order n and degree 1, and

Ajn are the unknown constants to be determined. The boundary condition (4) is satisfied
immediately by Equation (6), in which the solutions in N spherical coordinate systems
can be superimposed due to the linearity of Equation (2). Substituting Equation (6) into
Equation (3), we obtain

N

∑
j=1

∞

∑
n=1

Ajn{rj
−n−1[1 + (n + 2)

η

βirj
]P1

n(cos θj)}ri=ai = Ωiai sin θi, i = 1, 2, . . . , and N. (7)

To express Equations (6) and (7) in a single coordinate system, one can use the conversion
formulas between the coordinates (rj, θj) and (ρ, z),

rj = [ρ2 + (z− d1j)
2]

1/2
, (8)

cos θj = (z− d1j)/rj, (9)

where dij is the distance between the centers of particles i and j (thus djj = 0).
The satisfaction of the boundary conditions in Equation (7) on the particle surfaces

requires the solution of the unknown constants Ajn. The collocation technique [25,33,34]
permits these boundary conditions to be imposed at M points along the longitudinal arc of
each sphere and the infinite series in Equation (6) is truncated after the M terms, leading to
NM simultaneous algebraic equations in the truncated form of Equation (7). For sufficiently
large number of M, these equations can be numerically solved to yield the NM constants
Ajn required in the truncated form of Equation (6). The details of the adopted boundary
collocation arrangement were given in an early article on the translation of a chain of fluid
spheres along their line of centers [35].

The hydrodynamic torque acting on the particle i is the integral of the product of the
shear force τriφ(ri = ai)a2

i sin θidθidφ exerted on a differential surface element and the lever
arm ai sin θi of that element over the particle surface, resulting in

Ti = 8πηAi1,i = 1, 2, . . . , and N. (10)
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The previous formula shows that only the lowest-order constants Ai1 contribute to the
hydrodynamic torques Ti.

The torque results can be expressed as follows:

Ti =
N

∑
j=1

gijT
(0)
j , (11)

with

T(0)
j = −8πηaj

3Ωj
β jaj

β jaj + 3η
, (12)

which is the torque acting on the isolated particle j given by Equation (1). The torque
correction parameters gij are functions of the scaled radii, separation distances, and surface
slippages of the particles. When the separation distances are infinite, obviously, gij equals
unity if j = i and zero if j 6= i.

3. Results for Two Particles

In this section, we present the boundary collocation results for the rotation of two
slip spheres (N = 2) about their line of centers. Once the unknown constants A1n and
A2n in Equation (6) for the fluid velocity are solved from the truncated form of Equation
(7), Equation (10) can be used to calculate the torque exerted by the fluid on each particle.
The numerical results of the four torque correction parameters g11, g12, g21, and g22 in
Equation (11) are presented in Table 1 for the case of two identical spheres (a1 = a2 = a,
β1 = β2 = β, g11 = g22, and g12 = g21) with various values of the stickiness/slip parameter
βa/η and spacing parameter 2a/d12. In Table 2, the collocation solutions of the torque
correction parameters g11, g12, g21, and g22 for the axisymmetric rotation of two nonslip
spheres ( β1 = β2 → ∞ ) with different radii (choosing a2/a1 equal to 2 and 5) at various
values of the spacing parameter (a1 + a2)/d12 are given. In Table 3, we list the typical
collocation results of these torque correction parameters for cases of two slip spheres
differing in either size or slippage at various values of the spacing parameter (a1 + a2)/d12.
All of our results converge to at least five digits after the decimal point.

Table 1. The torque correction parameters g11, g12, g21, and g22 for the axisymmetric rotation of two
identical spheres (a1 = a2 = a, β1 = β2 = β). The asymptotic solution is calculated from Equations
(13)–(19) for comparison.

βa
η

2a
d12

Collocation Solution Asymptotic Solution

g11=g22 g12=g21 g11=g22 g12=g21

1

0.2 1.00000 −0.00033 1.00000 −0.00025
0.3 1.00000 −0.00123 1.00000 −0.00084
0.4 1.00001 −0.00322 1.00000 −0.00200
0.5 1.00006 −0.00691 1.00002 −0.00391
0.6 1.00023 −0.01306 1.00005 −0.00675
0.7 1.00079 −0.02260 1.00011 −0.01072
0.8 1.00247 −0.03676 1.00026 −0.01600
0.9 1.00738 −0.05761 1.00052 −0.02278
0.99 1.02224 −0.08900 1.00092 −0.06064
1.0 1.02693 −0.09567 1.00098 −0.06250
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Table 1. Cont.

βa
η

2a
d12

Collocation Solution Asymptotic Solution

g11=g22 g12=g21 g11=g22 g12=g21

10

0.2 1.00000 −0.00079 1.00000 −0.00077
0.3 1.00001 −0.00271 1.00001 −0.00260
0.4 1.00005 −0.00653 1.00004 −0.00615
0.5 1.00020 −0.01295 1.00014 −0.01202
0.6 1.00068 −0.02273 1.00043 −0.02077
0.7 1.00199 −0.03674 1.00109 −0.03298
0.8 1.00529 −0.05612 1.00242 −0.04923
0.9 1.01351 −0.08313 1.00491 −0.07010
0.99 1.03508 −0.12286 1.00870 −0.01971
1.0 1.04120 −0.13103 1.00925 −0.02031

∞

0.2 1.00000 −0.00100 1.00000 −0.00100
0.3 1.00001 −0.00338 1.00001 −0.00338
0.4 1.00007 −0.00800 1.00007 −0.00800
0.5 1.00030 −0.01563 1.00030 −0.01563
0.6 1.00097 −0.02704 1.00096 −0.02703
0.7 1.00273 −0.04306 1.00268 −0.04301
0.8 1.00702 −0.06485 1.00669 −0.06451
0.9 1.01727 −0.09494 1.01539 −0.09280
0.99 1.04336 −0.13974 1.03082 −0.12569
1.0 1.05097 −0.14943 1.03320 −0.12988

Table 2. The torque correction parameters g11, g12, g21, and g22 for the axisymmetric rotation of two
no-slip spheres ( β1 = β2 → ∞ ). The values in parentheses are the asymptotic solution calculated
from Equations (13)–(19) for comparison.

a2
a1

a1+a2
d12

g11 g12 g21 g22

2

0.5
1.00024 −0.00463 −0.03705 1.00019

(1.00024) (−0.00463) (−0.03705) (1.00019)

0.6
1.00086 −0.00801 −0.06406 1.00058

(1.00084) (−0.00801) (−0.06406) (1.00058)

0.7
1.00271 −0.01275 −0.10197 1.00153

(1.00250) (−0.01273) (−0.10187) (1.00152)

0.8
1.00795 −0.01917 −0.15335 1.00363

(1.00673) (−0.01908) (−0.15262) (1.00358)

0.9
1.02335 −0.02800 −0.22396 1.00809

(1.01667) (−0.02737) (−0.21897) (1.00769)

0.99
1.06197 −0.04126 −0.33012 1.01787

(1.03560) (−0.03691) (−0.29532) (1.01444)

1.0
1.09395 −0.04449 −0.35606 1.02075

(1.03861) (−0.03812) (−0.30497) (1.01544)

5

0.5
1.00007 −0.00058 −0.07234 1.00004

(1.00007) (−0.00058) (−0.07234) (1.00004)

0.6
1.00030 −0.00100 −0.12504 1.00013

(1.00027) (−0.00100) (−0.12503) (1.00013)

0.7
1.00110 −0.00159 −0.19873 1.00033

(1.00086) (−0.00159) (−0.19862) (1.00033)

0.8
1.00412 −0.00238 −0.29764 1.00074

(1.00247) (−0.00237) (−0.29679) (1.00074)

0.9
1.01743 −0.00344 −0.43050 1.00156

(1.00653) (−0.00339) (−0.42353) (1.00152)

0.99
1.09830 −0.00508 −0.63487 1.00318

(1.01468) (−0.00453) (−0.56594) (1.00274)

1.0
1.14324 −0.00556 −0.69390 1.00368

(1.01601) (−0.00467) (−0.58361) (1.00291)
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Table 3. The torque correction parameters g11, g12, g21, and g22 for the axisymmetric rotation of two
spheres differing in size or slippage.

a1+a2
d12

g11 g12 g21 g22

a2/a1 = 1, β1a1/η = 1, β2 → ∞

0.2 1.00000 −0.00033 −0.00100 1.00000
0.3 1.00000 −0.00123 −0.00338 1.00000
0.4 1.00003 −0.00322 −0.00800 1.00003
0.5 1.00014 −0.00691 −0.01563 1.00013
0.6 1.00049 −0.01307 −0.02702 1.00046
0.7 1.00155 −0.02263 −0.04298 1.00140
0.8 1.00449 −0.03688 −0.06453 1.00387
0.9 1.01258 −0.05814 −0.09382 1.01021

0.99 1.03642 −0.09147 −0.13622 1.02710
1.0 1.04514 −0.09962 −0.14624 1.03280

a2/a1 = 2, β1a1/η = 3, β2 = β1

0.2 1.00000 −0.00016 −0.00169 1.00000
0.3 1.00000 −0.00055 −0.00588 1.00000
0.4 1.00002 −0.00134 −0.01438 1.00002
0.5 1.00011 −0.00271 −0.02901 1.00009
0.6 1.00042 −0.00482 −0.05184 1.00028
0.7 1.00143 −0.00788 −0.08532 1.00079
0.8 1.00459 −0.01216 −0.13272 1.00201
0.9 1.01496 −0.01813 −0.20015 1.00479

0.99 1.05306 −0.02690 −0.30147 1.01124
1.0 1.06789 −0.02888 −0.32475 1.01311

In Tables 1–3, for all values of a2/a1, β1a1/η, and β2a2/η, the parameters g11 and g22
are positive and increase with an increase of (a1 + a2)/d12 from unity at (a1 + a2)/d12 = 0,
while g12 and g21 are negative and whose magnitudes also increase with an increase of
(a1 + a2)/d12 but from zero at (a1 + a2)/d12 = 0. These results manifest that the particles’
interaction rises with diminishing gap thickness between them. In general, this interaction
can be significant as (a1 + a2)/d12 → 1 and its influence is stronger on a smaller or less
slippery (stickier) particle than on a larger or more slippery (less sticky) one for any given
value of (a1 + a2)/d12.

Using a method of twin multipole expansions, Keh and Chen [28] analytically obtained
the following power-series formulas of the torque correction parameters g11, g12, g21, and
g22 for the axial rotation of two spheres with β1a1 = β2a2 = βa:

g11(s, λ) = g22(s, λ−1) =
∞

∑
k=0

f2k(λ)(1 + λ)−2ks−2k, (13)

g12(s, λ) = g21(s, λ−1) = −8
∞

∑
k=0

f2k+1(λ)(1 + λ)−2k−4s−2k−1, (14)

where
s =

2d12

a1 + a2
, (15)

λ =
a2

a1
, (16)

f1 = f2 = f4 = f5 = f7 = 0, (17)

f0 = 1, f3 = 8λ3 βa
βa + 3η

, f6 = 64λ3(
βa

βa + 3η
)

2
. (18)
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Thus, there are two independent torque correction parameters to be determined for 0 ≤
λ < ∞ and 2 ≤ s < ∞. Alternatively, we could determine all four parameters in the range
1 ≤ λ < ∞ and 2 ≤ s < ∞. In the particular case of β1 = β2 → ∞ (two nonslip spheres),
more terms of fk(λ) are available [36]:

f8 = 768λ5, f9 = 512λ6, f10 = 6144λ7, f11 = 6144(λ6 + λ8). (19)

The asymptotic solutions for the torque correction parameters obtained from the
previous formulas are also listed in Tables 1 and 2 for comparison. It is found that our collo-
cation results are in good agreement with these asymptotic solutions as (a1 + a2)/d12
is small; however, the errors of these asymptotic solutions become significant when
(a1 + a2)/d12 gets close to unity. Note that the method of twin multipole expansions
can be used to deal with the rotational and translational motions of two slip spheres in an
arbitrary (axisymmetric or asymmetric) configuration.

Using the reciprocal theorem of Lorentz [15] for the axisymmetric rotation of any two
slip spheres with β1a1 = β2a2, we obtain

g21

g12
= (

a2

a1
)

3
. (20)

The collocation results in Tables 1 and 2 satisfy Equation (20) and the relations g11 + g21 ≤ 1
and g12 + g22 ≤ 1 (with g11 and g22 being positive and g12 and g21 negative), indicating that
the rotation of one particle is enhanced (its hydrodynamic torque is reduced) by another
nearby particle rotating with a comparable or larger angular velocity in the same direction
but is hindered (the resisting torque is augmented) by another particle rotating with an
arbitrary angular velocity in the opposite direction.

4. Results for Multiple Particles

We now present the boundary collocation results for the rotation of a chain of three
or more slip spheres about their line of centers. From Equation (11), the general problem
requires nine torque correction parameters to represent the hydrodynamic torques on
the three-sphere chain. For the sake of brevity, here we only consider the rotation of
three coaxial spheres with the same slip coefficient (β1 = β2 = β3 = β) in a symmetric
configuration, i.e., the spheres at both ends have equal radii (a3 = a1) and are equally
distant from the central sphere (d23 = d12 = d). For this symmetric case, it is clear that the
torque correction coefficients

g11 = g33, g12 = g32, g23 = g21, g31 = g13. (21)

In Table 4, the collocation results of the torque correction parameters in Equation (11)
for the axisymmetric rotation of three identical slip spheres (a1 = a2 = a3 = a) with
different values of the stickiness parameter βa/η and spacing parameter 2a/d are offered.
In Table 5, the numerical results of the torque correction parameters for the rotation of three
nonslip spheres ( β→ ∞ ) for two typical cases of relative particle sizes (a2/a1 equal to 2
and 1/2) at various values of the spacing parameter (a1 + a2)/d are given. In Table 6, we
list the results of the torque correction parameters for the rotation of three slip spheres
(with βa2/η = 1 and a2/a1 equal to 2 and 1/2) at various values of (a1 + a2)/d. In general,
particle interactions increase with a decreasing gap thickness between two adjacent particles.
When the central particle (particle 2) is greater than the end ones, however, the torque
correction parameters g13 and g31 for the interaction between the end particles are not
always monotonical functions of (a1 + a2)/d. Again, Equation (20) holds in Tables 4 and 5
for the axisymmetric rotation of the three-sphere chain and the effect of particle interactions
on the hydrodynamic torques is greater for smaller or less slippery particles than for larger
or more slippery ones for a given value of (a1 + a2)/d.
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Table 4. The torque correction parameters for the axisymmetric rotation of three identical slip spheres
(a1 = a2 = a3 = a and β1 = β2 = β3 = β) with equal spacings (d23 = d12 = d).

βa/η 2a
d g22 g11=g33

g12=g32
=g21=g23

g13=g31

1

0.2 1.00000 1.00000 −0.00033 −0.00004
0.3 1.00000 1.00000 −0.00123 −0.00013
0.4 1.00002 1.00001 −0.00322 −0.00032
0.5 1.00012 1.00006 −0.00691 −0.00063
0.6 1.00046 1.00023 −0.01305 −0.00110
0.7 1.00158 1.00080 −0.02256 −0.00171
0.8 1.00493 1.00247 −0.03666 −0.00244
0.9 1.01473 1.00739 −0.05740 −0.00322

0.99 1.04441 1.02225 −0.08866 −0.00392
1.0 1.05330 1.02724 −0.09501 −0.00399

10

0.2 1.00000 1.00000 −0.00079 −0.00010
0.3 1.00002 1.00001 −0.00271 −0.00032
0.4 1.00010 1.00005 −0.00652 −0.00075
0.5 1.00040 1.00020 −0.01293 −0.00142
0.6 1.00136 1.00069 −0.02267 −0.00232
0.7 1.00396 1.00200 −0.03660 −0.00341
0.8 1.01054 1.00531 −0.05582 −0.00461
0.9 1.02693 1.01355 −0.08259 −0.00586

0.99 1.06996 1.03511 −0.12204 −0.00695
1.0 1.08354 1.04192 −0.13082 −0.00707

∞

0.2 1.00000 1.00000 −0.00100 −0.00012
0.3 1.00002 1.00001 −0.00337 −0.00041
0.4 1.00014 1.00007 −0.00799 −0.00094
0.5 1.00059 1.00030 −0.01560 −0.00175
0.6 1.00193 1.00098 −0.02695 −0.00282
0.7 1.00545 1.00275 −0.04286 −0.00409
0.8 1.01397 1.00705 −0.06445 −0.00546
0.9 1.03439 1.01732 −0.09423 −0.00687

0.99 1.08644 1.04341 −0.13864 −0.00812
1.0 1.10321 1.05182 −0.14909 −0.00826

Table 5. The torque correction parameters for the axisymmetric rotation of three no-slip spheres
( β1 = β2 = β3 → ∞ ) with a3 = a1 and d23 = d12 = d.

a1:a2:a3
a1+a2

d g22 g11=g33 g12=g32 g21=g23 g13=g31

1:2:1

0.2 1.00000 1.00000 −0.00030 −0.00237 −0.00004
0.3 1.00002 1.00001 −0.00100 −0.00800 −0.00012
0.4 1.00009 1.00006 −0.00237 −0.01896 −0.00026
0.5 1.00037 1.00024 −0.00463 −0.03703 −0.00045
0.6 1.00116 1.00087 −0.00800 −0.06402 −0.00067
0.7 1.00306 1.00271 −0.01273 −0.10188 −0.00088
0.8 1.00726 1.00795 −0.01915 −0.15320 −0.00103
0.9 1.01616 1.02335 −0.02797 −0.22373 −0.00110

0.99 1.03572 1.07433 −0.04123 −0.32982 −0.00110
0.999 1.04058 1.09059 −0.04397 −0.35177 −0.00110
1.0 1.04136 1.09376 −0.04445 −0.35557 −0.00110

2:1:2

0.2 1.00000 1.00000 −0.00237 −0.00030 −0.00030
0.3 1.00002 1.00001 −0.00799 −0.00100 −0.00099
0.4 1.00011 1.00005 −0.01892 −0.00236 −0.00233
0.5 1.00049 1.00021 −0.03685 −0.00461 −0.00447
0.6 1.00172 1.00064 −0.06346 −0.00793 −0.00756
0.7 1.00536 1.00169 −0.10038 −0.01255 −0.01165
0.8 1.01568 1.00396 −0.14971 −0.01871 −0.01681
0.9 1.04600 1.00872 −0.21645 −0.02706 −0.02308

0.99 1.14694 1.01894 −0.31689 −0.03961 −0.02980
0.999 1.17932 1.02142 −0.33813 −0.04227 −0.03054
1.0 1.18582 1.02188 −0.34194 −0.04274 −0.03062
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Table 6. The torque correction parameters for the axisymmetric rotation of three slip spheres with
β1 = β2 = β3 = β, a3 = a1, βa2/η = 1, and d23 = d12 = d.

a1:a2:a3
a1+a2

d g22 g11=g33 g12=g32 g21=g23 g13=g31

1:2:1

0.2 1.00000 1.00000 −0.00006 −0.00083 −0.00001
0.3 1.00000 1.00000 −0.00023 −0.00322 −0.00002
0.4 1.00001 1.00001 −0.00061 −0.00865 −0.00006
0.5 1.00006 1.00004 −0.00133 −0.01896 −0.00011
0.6 1.00021 1.00017 −0.00254 −0.03657 −0.00017
0.7 1.00069 1.00067 −0.00442 −0.06463 −0.00024
0.8 1.00202 1.00254 −0.00720 −0.10748 −0.00030
0.9 1.00549 1.00977 −0.01125 −0.17256 −0.00033

0.99 1.01456 1.04047 −0.01731 −0.27461 −0.00030
0.999 1.01694 1.05118 −0.01849 −0.29502 −0.00030

1.0 1.01726 1.05328 −0.01864 −0.29841 −0.00030

2:1:2

0.2 1.00000 1.00000 −0.00114 −0.00009 −0.00013
0.3 1.00000 1.00000 −0.00417 −0.00033 −0.00046
0.4 1.00002 1.00001 −0.01070 −0.00083 −0.00113
0.5 1.00011 1.00005 −0.02252 −0.00174 −0.00228
0.6 1.00047 1.00017 −0.04185 −0.00320 −0.00406
0.7 1.00175 1.00052 −0.07142 −0.00541 −0.00658
0.8 1.00619 1.00141 −0.11479 −0.00855 −0.00995
0.9 1.02229 1.00358 −0.17814 −0.01300 −0.01428

0.99 1.08748 1.00878 −0.27514 −0.01954 −0.01910
0.999 1.10984 1.01016 −0.29470 −0.02083 −0.01964

1.0 1.11423 1.01033 −0.29798 −0.02096 −0.01970

It may be interesting to realize how much the presence of a third particle affects the
hydrodynamic torques of its two neighbors. The normalized torques Ti/T(0) of three

identical spheres (a1 = a2 = a3 = a, β1 = β2 = β3 = β, and T(0)
1 = T(0)

2 = T(0)
3 = T(0))

rotating at equal angular velocities (Ω1 = Ω2 = Ω3 = Ω) about their line of centers at
equal spacings (d12 = d23 = d) are plotted versus the spacing parameter 2a/d by solid
curves for various values of the stickiness parameter βa/η in Figure 2. For comparison, the
corresponding results of normalized torques of the first and second particles in the absence
of the third one, which agree well with those obtained by Saad [29], are plotted in the same
figure by dashed curves. Clearly, the presence of the third particle reduces the torques of
the other two particles. As expected, the reduction in torque is much more pronounced on
the center particle than on the end ones. When the particles are in contact with each other
(2a/d = 1), the presence of the third particle reduces the torque on the first (end) particle
by merely about 0.8% in the case of no-slip particles ( βa/η → ∞ ) and about 0.3% in the
case of slip particles with βa/η = 1, as shown in Figure 2a (and Tables 1 and 4). In contrast,
as shown in Figure 2b (and Tables 1 and 4), the torque on the second (center) particle is
reduced by 10.7% in the case of no-slip particles and by 7.3% in the case of slip particles
with βa/η = 1 when the particles touch each other. Note that, due to the configurational
symmetry, the torque results presented in Table 1 and Figure 2 for two identical slip spheres
a distance d apart and rotating at an identical angular velocity are the same as those for
an isolated slip sphere rotating at an equal angular velocity at a distance d/2 from a large
planar free surface (with vanishing shear stress) normal to the axis of rotation.
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Figure 2. Normalized torques on three coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the separation parameter 2a/d with various values of the
stickiness parameter βa/η: (a) the first (end) sphere; (b) the second (center) sphere. For comparison,
the dashed curves are plotted for the torques when only two spheres are present.

The solution to the problem of chains consisting of different numbers of N (up to 101)
identical slip spheres (ai = a, βi = β, and T(0)

i = T(0)) with equal spacings (di(i+1) = d),
rotating about their line of centers with equal angular velocities (Ωi = Ω), has also been
obtained by the boundary collocation method. The results of the normalized torques
Ti/T(0) for these chains with 2a/d = 0.8 are plotted against the particle number i in
Figure 3. It can be seen that the torques on the central particles decrease with an increasing
chain length, indicating a shielding effect of the particle chain. When approaching the ends
of the chain, the relative torques of neighboring particles change rapidly, demonstrating a
strong end effect. As the chain length increases for a relatively long chain, the torques on
the central particles change slowly. The torque on each particle will be the same in the limit
of an infinite chain. The dashed curves in Figure 3 represent the change in torque of the
ith particle in the chain as more particles are added to the chain. These curves are leveled
out as the chain length is increased, again demonstrating the shielding effect exhibited by
particle chains.
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Figure 3. Normalized torques on N coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the sphere number i with 2a/d = 0.8: (a) βa/η → ∞ ;
(b) βa/η = 1.
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Figure 4 represents a plot of the normalized torques Ti/T(0) versus the particle number
i for a chain of nine identical and equally spaced slip particles with 2a/d = 0.8 rotating
with equal angular velocities at different values of the stickiness parameter βa/η. These
results show that as βa/η increases, the torque on each particle in the chain decreases.
Particle interactions are strictest for no-slip particle chains and weaker for corresponding
more slippery particle chains.
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Figure 4. Normalized torques on nine coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the sphere number i with 2a/d = 0.8 and various values of
the stickiness parameter βa/η.

To examine the effect of particle spacing, the normalized torques Ti/T(0) versus the
particle number i are plotted in Figure 5 for the chain containing nine identical and equally
spaced particles rotating at equal angular velocities with 2a/d as a parameter. Both the
case of no-slip ( βa/η → ∞ ) particle chains and a case of partly slip (with βa/η = 1)
particle chains are shown. The results in this figure illustrate that end effects decrease with
increasing spacing (decreasing 2a/d). As expected, the torque of each particle in the chain
decreases as the particles get closer together.
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solid curves) and slip spheres (with βa/η = 1, dashed curves) rotating at equal angular velocities
about their axis versus the sphere number i with various values of the separation parameter 2a/d.
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Although the results in Figures 2–5 about the torques variation by particle spacings,
slip conditions, and chain lengths are based on the simulations of identical particles, similar
figures for the coupling outcome with particles of different sizes can easily be plotted and
demonstrate that the effect of particle interactions on the torques is greater for smaller
particles than for larger ones. Also, the results in Figures 2–5 can be applied to the axial
rotation of a cluster of multiple spheres connected through their centers with very thin
rigid rods that make no hydrodynamic contributions.

5. Concluding Remarks

The slow rotation of a straight chain of multiple slip spheres about their line of centers
in a Newtonian fluid is analyzed in this article. The spheres may vary in radius, slip
coefficient, and angular velocity, and they are permitted to be unevenly spaced. The
boundary collocation method has been employed to obtain the fluid velocity field semi-
analytically. The solutions of the hydrodynamic torques exerted on the particles can be
obtained even when the number of particles is large and the particles touch one another.
Section 2 presents the linear algebraic collocation formulations for solving the general
axisymmetric problem of multi-sphere rotations, and numerical results of the torques for
two-sphere, three-sphere, and multi-sphere systems to correct Equation (1) are given in
Sections 3 and 4. The interaction effects among the particles are found to be noteworthy
under appropriate conditions. Although the current article is confined to the axisymmetric
rotation of straight chains of particles, the solution procedure can be extended to investigate
the slow rotation of arbitrary three-dimensional assemblages of spherical particles [30,32].

The results for the resistance problem are presented in previous sections, in which the
hydrodynamic torques Ti experienced by a chain of particles are calculated for specified
angular velocities Ωi according to Equations (11) and (12). In a mobility problem, on the
other hand, the applied torques on the particles are specified, and the resultant angular
velocities need to be determined. The presentation of the mobility problem is somewhat
awkward since the boundary conditions involve the unknowns, but in some physical
problems, the torques are the prescribed quantities, and the particles rotate accordingly.
For the axisymmetric rotation of N slip spheres, the angular velocity of particle i can be
expressed as follows:

Ωi =
N

∑
j=1

mijΩj0, i = 1, 2, . . . , andN, (22)

with

Ωj0 = −
β jaj + 3η

8πηaj
3β jaj

Tj, (23)

which is the angular velocity of particle j subject to an applied torque −Tj in the absence
of the other particles, and the mobility parameters mij are functions of the scaled radii,
separation distances, and surface slippages of the particles. For the case of two particles
(N = 2), one can use Equations (11), (12), (22) and (23) to obtain the following:

m11 = (g11 − g12g21/g22)
−1, (24)

m12 = (
a2

a1
)

3 β2a2(β1a1 + 3η)

β1a1(β2a2 + 3η)
(g21 − g11g22/g12)

−1, (25)

where the corresponding expressions for m22 and m21 can be determined from the previous
formulas by interchanging subscripts 1 and 2. The mobility parameters m11, m12, m21, and
m22 can thus be calculated from using the torque correction parameters g11, g12, g21, and
g22 obtained in Section 3 for its resistance problem.
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