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Abstract: This study focuses on the synthesis of silver nanoparticles (AgNPs) at different high con-
centrations and investigates their physicochemical properties, antimicrobial activity, and cytotoxicity.
AgNPs were synthesized using the alcohol reduction process, involving the reduction of AgNO3 and
its subsequent stabilization via PVP at 80 ◦C for 4 h. The AgNO3/PVP molar ratio and the average
molecular weight were modified in this study. Characterization analyses revealed that the synthesized
AgNPs exhibited characteristic surface plasmon resonance absorption peaks at approximately 415 nm,
as observed in the UV–Vis spectrum. The results presented in X-ray diffractograms confirmed the
face-centered cubic structure of metallic Ag in the nanoparticles. The nanoparticles demonstrated uni-
form size and shape, with controllable dimensions ranging from 3 to 800 nm. Regarding antimicrobial
activity, the MIC solutions exhibited higher potency against the planktonic cells of Candida albicans. The
determination of inhibition halos indicated that the silver nanoparticles had an impact on the microor-
ganisms Streptococcus mutans, Candida albicans, and Actinomyces israelii. Furthermore, lower-concentration
compositions showed reduced cytotoxic effects compared to higher-concentration particles. Based on
the findings, it was concluded that the AgNO3/PVP molar ratio plays a crucial role in the production of
AgNPs. These synthesized nanoparticles exhibit desirable physicochemical properties and demonstrate
potential antimicrobial activity and controlled cytotoxicity.

Keywords: silver nanoparticles; alcohol reduction process; Ostwald ripening; size control; antimicrobial
properties

1. Introduction

In recent years, metallic nanoparticles have been widely investigated with respect
to their ability to serve as replacements for antibiotics due to the increasing number of
microorganisms acquiring resistance to these drugs [1–3]. The use of silver nanoparticles
(AgNPs) is an alternative approach for treating microbial infections caused by antibiotic-
resistant strains [4–6]. In particular, AgNPs have been used in several medical applications
such as sunscreens, burn treatment, wound dressings, textiles, dental materials, bone
implants, and medical device coatings [7–11].
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AgNPs exhibit a broad range of antimicrobial activity against various microorgan-
isms [12–15], and their antimicrobial activities, which are characteristic of silver ions (Ag+),
present a great affinity for nucleophilic atoms such as sulfur and phosphorus, which form
structures in the cell membrane and inside cells [16]. Hence, the interaction between Ag-
NPs and these biological structures can deregulate the cellular respiration process and
interrupt the activity of adenosine triphosphate (ATP) [17] molecules and the cause of
damage to deoxyribonucleic acid (DNA) replication in cell division, leading to the death of
a microorganism [18,19].

The properties are very sensitive to the size, size distribution, and shapes of silver
nanoparticles, so it is crucial to prepare silver nanoparticles of controllable, monodisperse
sizes [20–23]. Currently, it is possible to synthesize AgNPs with good control of their
sizes and structures. However, there are few chemical [24], physical [25], or biological [26]
methods capable of producing uniformly sized and highly concentrated AgNP dispersions.

Surfactants and polymers are employed to control the shapes and sizes of nanoparti-
cles [27]. The stabilization of AgNPs using a polymer is known as the steric method [28], in
which a solution is achieved by binding polymeric molecules containing long alkyl chains
to the particle surface [29]. This mechanism generally produces spherical particles due to
their low surface energy [30].

The most common synthetic procedure for obtaining AgNPs was described by Turke-
vich et al. (1951) [31]. Dubbed the Turkevich Method, it is an effective method for the
synthesis of nanoparticles using sodium citrate as a reducing agent for Ag+ ions [32]. The
disadvantage of Turkevich method is that it only permits the acquisition of particles at
low concentrations and with a broad size distribution [33]. New methodologies are being
described to solve this problem, and the reduction of silver ions using alcohol has attracted
significant scientific interest [34–36]. Liz-Marzán et al., 1996 [37], Hah and Koo (2003) [38],
and Almatroudi (2020) [39] showed that Ag+ ions can be reduced via ethanol in the pres-
ence of different surfactants, resulting in particles with a narrow size distribution, reduced
toxicity, and improved biomedical activities [40].

Some advantages have been reported regarding the synthetic method for the develop-
ment of AgNPs in an alcohol reduction process. Javed et al. 2020 [41] mentioned that the
use of poly(vinylpyrrolidone) (PVP) as a stabilizing agent and ethyl alcohol as a reducing
agent can improve the monodispersing of the nanoparticles and enhance the reduction
process of Ag+ to Ag0. In addition, PVP plays an important role in controlling the sizes of
nanoparticles since this polymer acts as both a protective and coordinative agent [42]. The
synthetic procedure employing the alcohol reduction process can be classified as a green
chemistry strategy when the solvent used is also a reducing agent, as this decreases the
number of reactants.

Currently, it is possible to produce AgNPs with good control of their sizes and struc-
tures. However, there are very few methods capable of producing high-concentration
non-aqueous dispersions of uniform AgNPs with sizes below 10 nm. Since most alcohol-
based wet chemical methods are heterogeneous nucleation processes, it is difficult to
prepare AgNPs at high concentrations with monodisperse small sizes in one reaction
system [43].

While the synthesis of AgNPS is a well-established topic in academic literature, the
alcohol reduction process continues to hold promise for new discoveries. When combined
with its cost-effectiveness and utilization of an eco-friendly solvent (i.e., aligning with the
principles of green chemistry). Thus, the objective of this study was to obtain stable AgNPs
in high concentrations with a controlled size, a narrow size distribution, and controllable
structural and morphological properties as well as antimicrobial activity and cytotoxicity.

2. Materials and Methods
2.1. Synthesis of Silver Nanoparticles (AgNPs)

AgNPs were prepared by the alcohol reduction process. This method consists of the
reduction of the silver precursor in an alcoholic medium and its subsequent stabilization by
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polymer as described by Lee and Oh (2015) [44]. The detailed methodology can be found
in the Supplementary Materials.

To evaluate the influence of the concentration and the average molecular weight (MW)
on the AgNP synthesis process, triplicate experiments were performed regarding the initial
reaction conditions (AgNO3 and PVP 90 mmol L−1), in which molar proportions of 1:4, 1:2,
2:1 and 4:1 AgNO3:PVP (Ag:PVP) were prepared using PVP with MW = 10.000, 40.000 and
360.000 (10 K, 40 K e 360 K).

2.2. Physicochemical Characterization

The optical, structural, morphological, and microbiological properties of AgNPs were
characterized by the following techniques: UV–Vis spectroscopy (UV–Vis), X-ray diffraction
(XRD), dynamic light scattering (DLS), zeta potential, high-resolution transmission electron
microscopy (HRTEM), Scanning Electron Microscopy (SEM), inhibition halo, minimum
inhibitory concentration (MIC) and cellular viability.

XRD: AgNPs were characterized in the 2θ range from 35 to 85◦ by X-ray diffraction
(XRD) using a Shimadzu XRD 6000 diffractometer with CuKα radiation operating at
30 kV and 30 mA and with a step scan of 0.02◦ and a scan speed of 0.2◦ min−1. To collect
the patterns, nanoparticles were deposited on the silicon substrate by dripping the alcoholic
colloidal dispersion onto the substrate at room temperature and waiting for the solvent to
evaporate.

UV–Vis: AgNPs were transferred to a 1.0 cm path length quartz cuvette, and the
measurements were made on a Jasco V 660 UV–Vis spectrometer. A typical experiment
scanned the wavelength range from 300 to 800 nm. Background adjustments were made
using anhydrous ethanol as a blank.

DLS and Zeta Potential: Particle size measurements of the AgNP mixture were con-
ducted with a zetasizer (Nano-ZS90, Malvern, UK) in disposable cuvettes and the average
hydrodynamic diameter was determined by taking an arithmetic average of 3 runs. DLS
experiments were performed at room temperature and a fixed angle of 173◦ equipped with
a 50 MW 533 nm laser and a digital autocorrelator. In this method, the number-average
values obtained were compared to the size distributions of the AgNPs. The surface charge
of AgNPs was determined by zeta potential measurements with the same equipment.
All experiments were carried out in triplicate and the results presented are the average
measurements of the runs with standard deviation.

SEM: SEM images were recorded at 5 kV using a FEG Zeiss Supra 35-VP. The sam-
ples were prepared by placing three drops of the diluted colloidal dispersion in anhy-
drous ethanol onto carbon-coated copper grids (200 mesh, PELCO® Center-Marked Grids,
Hawthorne, CA, USA) and dried at room temperature for one day.

HRTEM: The size and morphology of AgNPs synthesized were investigated by the
HRTEM TECNAI F 20 Microscope operating at 20 kV. Samples were deposited by plac-
ing one drop of dilute colloidal dispersion on a carbon-coated grid and drying at room
temperature for one day.

2.3. Evaluation of Antimicrobial Activity
2.3.1. Definition of Inhibition Halo

The disk diffusion method was performed in accordance with the National Committee for
Clinical and Laboratory Standards (Performance standards for antimicrobial disk susceptibility
tests; Approved Standard—Eighth Edition. NCCLS 13 document M2-A8, 2003a.) with
modifications by Hosida et al., 2018 [45]. The strains of Candida albicans (C. albicans) (ATCC
10231), Streptococcus mutans (S. mutans) (ATCC25175), Lactobacillus casei (L. casei) (IAL#523),
Enterecoccus faecalis (E. faecalis) (ATCC51299) and Actinomyces israelli (A. israelli) (ATCC
12102) were reactivated in SDA agar (Sabouraud Dextrose, Difco, Le Pont de Claix, France)
and BHI (Difco) for 48 h at 37 ◦C in aerobiosis and microaerophilia, respectively, for each
microorganism. Then, 5 colonies of each species were placed in BHI broth individually and
incubated at 37 ◦C for 18–24 h. An aliquot of 300 µL of each bacterial suspension (optical
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density of 0.6 and absorbance of 550 nm) was homogenized with 15 mL of BHI-agar at 45 ◦C.
After gelling of the culture medium, sterilized paper discs were placed on the surface of the
agar medium. A 5 µL aliquot of AgNP solution (Ag:PVP (1:1) and Ag:PVP (4:1)) was placed
on the paper discs. For each experiment, a 0.2% chlorhexidine gluconate (CHX) solution
was also used as a positive control. The plates were kept for 2 h at room temperature to
enable diffusion of the solutions and then incubated at 37 ◦C for 24 h. Two measurements
of each inhibition halo were measured with the aid of a digital caliper and the averages
were calculated. The inhibition halo data (agar diffusion test) were heterogeneous and
were submitted to Student–Newman–Keuls analysis.

2.3.2. Minimum Inhibitory Concentration (MIC)

The microdilution method was performed according to Clinical Laboratory Standards
Institute guidelines (CLSI: M27-A2 and M07-A9). AgNP samples were diluted in deionized
water in geometric progression, from 2 to 1024 fold. Subsequently, each AgNP was diluted
(1:5) in RPMI 1640 medium (Sigma-Aldrich) for C. albicans (ATCC 10231), and in Brain
Heart Infusion (BHI, Difco, Le Pont de Claix, France) for S. mutans (ATCC 25175). The 24 h
culture inoculateswase was adjusted to the standard turbidity equivalent of 0.5 McFarland
in saline (0.85% NaCl) [46]. The suspensions of each strain were diluted (1:5) in NaCl
(0.85%) and further diluted (1:20) in RPMI 1640 for C. albicans or BHI broth for S. mutans.
Each microorganism suspension (100 µL) was added to the wells of microtiter plates
containing 100 µL of each nanocomposite concentration. Microtiter plates were incubated
at 37 ◦C, and MICs were determined visually with the lowest concentration of AgNPs
without microorganism growth after 48 h [47]. After 48 h, the contents of each well were
plated on SDA (for C. albicans) or BHI agar (for S. mutans) to determine the minimum
fungicidal concentration (MFC) and the minimum bactericidal concentration (MBC) of
the solutions against the strains tested. Assays were performed in triplicate on three
independent occasions.

2.3.3. Cytotoxicity of AgNPs

NIH/3T3 fibroblast cells were cultured under standard cell culture conditions in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), penicillin, and streptomycin, at 37 ◦C, 100% humidity, 95% air and 5% CO2. Cells
were subsequently seeded into 96-well plates (104 cells/well) and incubated for 24 h
under standard cell culture conditions to enable cells to adhere before adding the solutions.
Afterward, several dilutions of the silver solutions in sizes of Ag: PVP (1:1) and Ag:PVP (4:1)
were applied to the cells. Cell viability was evaluated by the assay of 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) after 24 and 48 h. For this purpose, the
culture medium and the dilution of the solutions were removed from each well and 100 µL
of MTT solution (0.5 mg/mL) in DMEM without FBS (1:10) was added to each well. The
MTT solution was removed after 4 h of incubation, the formazan crystals were dissolved in
100 µL of isopropyl alcohol. The plate was left at room temperature in a dark chamber for
30 min on a rotary shaker. The absorbance of the plates will be evaluated at 570 nm using
an Elisa reader (Expert 96, Asys Hitch, Eugendorf, Austria).

2.3.4. Statistical Analysis

Statistical analyses were performed using SigmaPlot (SigmaPlot 12.0, Systat Software
Inc., San Jose, CA, USA). Data passed normality (Shapiro Wilk’s test) and were submitted
to a two-way analysis of variance, followed by Fisher’s LSD test, adopting a significance
level of 5%.

3. Results and Discussions
3.1. Mechanism of Formation of AgNPs

The main reducing agents used in the reduction of Ag+ ions in aqueous and non-
aqueous solutions are sodium citrate (Turkevich method), sodium borohydride (NaBH4),
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NN-dimethylformamide (DMF), hydrazine, glucose, and alcohols [48]. Among others,
the most used for the synthesis of AgNPs is the alcohol reduction process, due to greater
morphological and size control [49]. In this method, alcohol acts as a solvent and reducing
agent, forming AgNPs (Equation (1)) [50]:

Ag+ +
1
2

CH3CH2OH
Heating−−−−→ Ag0 + H+ +

1
2

CH3CHO (1)

n Ag++x reducing agent →
(

Ag0
)

n
+oxidation products (2)(

Ag0
)

n
+Ag+ →

(
Ag0

)
n+1

(3)

According to Tatarchuk et al., 2013 [51], the formation of AgNPs occurs through the
reduction of Ag+ ions with the transfer of an electron from the reducing agent to the metallic
ion (Equations (2) and (3)), which is then followed by nucleation and growth of particles.
The step described in Equation (2) occurs with rapid nucleation, in which, in the first
minutes of the synthesis process, a percentage of the Ag+ ions is reduced and transformed
into nuclei or particles. The step described in Equation (3) consists of the coalescence of
particles, followed by their growth. This increase in particle size occurs with a decrease in
the reduction process due to a smaller amount of Ag+ ions, suggesting that coalescence or
Ostwald maturation is the main growth process of these particles (Figure 1).

Figure 1. Schematic representation of the mechanism of formation of AgNPs.

However, the processes described in Equations (2) and (3) lead to the agglomeration
of AgNP clusters that can be avoided with the use of a stabilizing agent, which adsorbs
on the surface of the nanoparticles, forming a layer that prevents coalescence [52]. For
this purpose, it is possible to use PVP that has nucleophilic atoms (Lewis bases) with high
affinity for electrophilic atoms (Ag+ Lewis acids), and sufficiently long organic chains since
these properties enable the creation of steric impediment, preventing interactions between
the particles [53].

PVP is commonly used as a stabilizing agent that selectively induces the formation of
AgNPs and stabilizes the colloidal suspension through steric stabilization [54]. In addition,
there is a displacement of the electron pair from the nitrogen atom to the oxygen atom in
the carbonyl group (C=O), forming a partial negative charge located on the oxygen atom
and a partial positive charge located on the nitrogen atom as shown in Figure 2a.

The reaction mechanism occurs through the coordination of silver ions with the
non-bonding electrons of the nitrogen/oxygen atom of the pyrrolidine ring [55,56]. Sub-
sequently, there is a chemical reduction between the metallic ion and the PVP in which
the Ag+ ion receives an electron from the carbonyl group and forms AgNPs as shown in
Figure 2b [57]. In this method, the Ag+ interacts with PVP, forming Ag (PVP)+.

Due to these interactions, metallic particles will cap upon nucleation and Ag+ ions
will stabilize with the complex compound. This stabilization of silver ions reduces the
nucleation process and produces larger particles [58]. The key role of the surfactant is to
prevent the aggregation of AgNPs. The steric effect arising from the long polyvinyl chain
of PVP on the surface of AgNPs may contribute to their anti-agglomeration, as shown in
Figure 2c [59].
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Figure 2. Stabilization of AgNPs by PVP. (a): Representation of the displacement of the electron pair
from the nitrogen atom to the oxygen atom in PVP. (b): Mechanism for the formation and protection
of AgNPs by PVP. (c): AgNPs coated by PVP.

3.2. Physicochemical Properties of AgNPs

Qualitative analysis of the presence of AgNPs in the solution can be achieved using
UV–Vis analysis. The interaction of particles with electromagnetic radiation provides
information such as the stability of colloidal solutions, and structural, morphological, and
size distribution parameters.

In this context, white light is composed of various shades of red, orange, yellow, green,
blue, indigo, and violet light. Therefore, the colors are the result of the species absorbing
selected portions of the visible light spectrum. For example, the solution of AgNPs is
yellow and strongly absorbs light at 410–440 nm (purple and blue light) (Figure 3b) [60].

Figure 3. Optical result of colloidal solutions of AgNPs (a) surface plasmonic resonance effect of
AgNPs; (b) UV–Vis spectra of AgNPs (at molar ratio of 1:1 Ag:PVP).

Figure 3b shows a symmetric surface plasmonic resonance (SPR) band with maximum
absorption at 410 nm characteristic of spherical AgNPs (see Supplementary Material Figure S2).
Studies reported by Hah et al., 2003 [38] and Lee & Oh (2014) [44] also demonstrated that the
maximum UV absorbance of AgNPs at 410 nm.

This result confirms that the Ag+ ions were reduced to Ag0 by the alcohol reduc-
tion process. According to Mie’s Theory, only one SPR band is expected in the absorp-
tion spectrum of spherical nanoparticles, while two or more SPR bands are expected for
anisotropic nanoparticles, depending on the specific shapes of the particles. In addition,
the symmetrical shape of the plasmon band can indicate a relatively sharp particle size
distribution [61–63].
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The solution of the synthesized AgNPs exhibited strong radiation absorption near
the wavelengths of 410 to 450 nm due to the s-p (conduction band) and d-s (interband)
transitions of electrons, respectively. The s-p transitions depend on the shape and size of
the particle. This is a unique property of nanoparticles that is because the s-p (conduction)
electrons are largely free to move throughout the nanoparticle, and their energies are
therefore sensitive to the shape and size of the box that contains them [64,65].

The excellent light-trapping and local electromagnetic-field-enhancing properties of
surface plasmons have been further researched in the field of plasmonics [66], opening
a wide range of applications in cancer therapy, photovoltaic devices, catalytic activity,
sensors, etc. [67–69].

The structural and morphological results of AgNPs coated with PVP with a stoichiom-
etry of 1:1 Ag:PVP are shown in Figure 4. X-ray diffraction (XRD) in Figure 4a of the
sample with a molar ratio of 1:1 Ag:PVP shows peaks at 38.2◦, 44.4◦, 64.7◦, 77.6◦, and 81.7◦,
which can be indexed to the (111), (200), (220), (311), and (222). Different samples showed
diffraction peaks related to the face-centered cubic (FCC) structure of metallic Ag (PDF
card 04-0783) [70] (see Supplementary Materials Figure S3).

Figure 4. Structural and morphological results of colloidal solutions of AgNPs (1:1 Ag:PVP). (a) XRD
pattern of AgNPs; (b) transmission electron microscopy micrographs of AgNPs; (c) histogram of trans-
mission electron microscopy of AgNPs; (d) size distributions by the number of silver nanoparticles
by DLS technique.

The HRTEM analysis of the sample (Figure 4b) showed that the AgNPs have a uniform
spherical shape and it is also possible to verify that the PVP forms a layer around the AgNPs,
making them more dispersed and preventing them from agglomerating. However, a small
number of aggregates is formed during the reduction process, and a smaller amount of
polymeric chain interacts with the surface of the formed nanoparticles.

These particles have an average size of 3.9 nm and a narrow particle size distribution
(Figure 4c). PDI data confirm the formation of uniform particle sizes when the values
were below to 0.7 [71]. The results obtained were expected, since the addition of the
PVP stabilizer protected the nanoparticles from possible agglomeration and growth. The
methodology used resulted in nanoscale particles, with narrow size distribution and
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crystalline phases whose results are in agreement with those described by Lee et al.,
2015 [44] (see Supplementary Materials Figures S4 and S5).

Based on the results, it can be stated that not only can the appropriate concentration
of PVP prevent AgNP agglomeration due to the amount of reduction of [Ag+] but also
particle growth inhibition, once PVP is strongly adsorbed on the nanoparticle surface. This
process can be described according to the nucleation and growth theory of nanoparticles.
Liu et al., 2020 [72] suggest that the period for seed formation is a factor for nanoparticle
size and size distribution. When seeds are formed rapidly over a brief period, the size of the
nanoparticle becomes small, and the size distribution becomes narrow. Radicals are species
more reactive than aldehydes (Equation (1)) for the reduction process, seeds are formed
and a rapid seed formation in ethanol could lead to the formation of small nanoparticles
and a narrow size distribution.

In this study, we present a comprehensive comparison of the key characteristics of
silver nanoparticles (AgNPs) obtained through various synthesis methods. The table
displays information on particle size, observed morphology, and, notably, the concentration
of AgNPs. The samples with different proportions of Ag:PVP prepared in our work were
compared with published data, as shown in Table 1.

Table 1. Comparison of size, morphology, and concentration of AgNPs, and reaction conditions for
different methodologies applied to the synthesis of silver nanoparticles in this study with published data.

Method Size Particle/nm Morphology Solution
Concentration Reference

Alcoholic 3.9 ± 1.0 Spherical 45 mM This study
Alcoholic 651 ± 91 Spherical 180 mM This study

Polyol 48.8 ± 3.3 Nanocubes 16 mM [6]
Alcoholic 4.6 ± 0.8 Spherical 40 mM [73]
Alcoholic 10–15 Spherical 1 mM [66]
Turkevich 30 ± 3.9 Spherical 7 mM [23]

Polyol 15.6 ± 8.30 Spherical 6 mM [17]
Turkevich 21 Spherical 4 mM [42]

Green synthesis 25 ± 2.0 Spherical 0.3 mM [74]
Green synthesis 20 Spherical 1 mM [75]
Green synthesis 27.8 ± 3.13 Spherical 1 mM [76]

Turkevich 40 Spherical 0.25 mM [77]

Silver nanoparticles have attracted significant interest due to their unique properties
and versatile applications across diverse fields. In our research, we have developed a highly
promising synthesis method that distinguishes itself from other approaches by producing
silver nanoparticles with precise size control and high concentrations.

Attaining silver nanoparticles with a controlled size and a high concentration is
paramount for tailoring AgNPs to specific applications. Our proposed synthesis method
overcomes challenges faced by traditional approaches, ensuring uniformity in particle size
and facilitating the generation of concentrated AgNP suspensions. This enhanced control
over size and concentration enables us to fully exploit the potential of silver nanoparticles in
various practical applications. Our findings contribute to the advancement of nanoparticle
synthesis and pave the way for impactful applications in diverse fields.

Complementary analyses to determine the size were performed using DLS analysis
and the results obtained showed particles with a size of 3.1 ± 1.0 nm (Figure 4d) similar
to HRTEM analysis (see Supplementary Materials Figures S6–S8). The explanation for
this result is related to the fact that a lower Ag:PVP stoichiometry forms a thicker layer
on the surface of metallic nanoparticles, preventing aggregation and resulting in smaller
particles [78].

To evaluate the effect of different MW (10 K, 40 K and 360 K) and molar concentrations
(Ag:PVP) (1:4, 1:2, 1:1, 2:1 and 4:1) on the average size values of AgNPs, the DLS technique
used is shown in Figure 5. The results show that the MW did not influence the size of
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particles obtained in the same Ag:PVP stoichiometric condition. Chou et al., 2004 [79]
obtained results that also showed no influence on of AgNP particle size when different
PVP MW were used. Du et al., 2008 [80] explained that due to the newly formed AgNP
presented for the same PVP mass per unit area covering their surface, there are the same
interactions between Ag+ ions and the carbon atoms oxygen/nitrogen, avoiding greater
nucleation and growth. Thus, polymeric chain size does not influence the particle size if
the stoichiometric condition is maintained [81,82].

Figure 5. Average hydrodynamic diameters of AgNPs obtained by the DLS technique with different
average molecular weights of PVP and in different conditions of Ag:PVP molar ratio.

The results of different molar concentrations show that there is an influence on the
size of particles formed. Figure 5 shows that the increase in silver concentration in solution
(1:4, 1:2, 1:1, 2:1, and 4:1 Ag:PVP), resulting in an increase in the particle size of AgNPs.
Therefore, with this methodology, it was possible to control particle sizes and generate
particles with an average particle size of 3.20 ± 0.41, 3.50 ± 0.30, 3.40 ± 0.40, 24.8 ± 3.27,
and 822 ± 113 nm, respectively. This result shows that there is no linear growth and a 4:1
Ag:PVP composition had a larger average particle size compared to other compositions as
well as a wide particle distribution.

Figure 5 shows the tested range of silver concentrations in the solution, as indicated in
“A1–A3” (1:4, 1:2, 1:1 Ag:PVP), did not show any statistically significant differences in the
size of silver nanoparticles. This suggests that within this molar ratio range, the monomer
of polymer PVP (polyvinylpyrrolidone) did not significantly influence the size of the silver
nanoparticles.

However, when we extended our investigation to the "A3-B-C" solution range (1:1, 2:1,
and 4:1 Ag:PVP), a noticeable trend emerged. As the Ag:PVP ratio increased, the size of the
silver particles also increased. This indicates that a higher concentration of silver ions in
relation to the monomer of PVP led to the formation of larger silver particles. The observed
increase in particle size can be attributed to the availability of excess silver ions, promoting
their aggregation and subsequent growth. These findings underscore the importance of the
Ag:PVP ratio in controlling the size of the produced silver nanoparticles, offering insights
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into the optimal conditions for nanoparticle synthesis and their potential applications in
various fields.

In the 4:1 Ag:PVP group, where there is a smaller amount of PVP, the AgNO3 precursor
dissolves faster in ethanol. When the reduction process is fast, PVP molecules do not
have sufficient time to coat these newly formed AgNPs, thus preventing agglomeration
and resulting in large particle sizes. This can be explained by nucleation and growth
mechanisms based on La Mer’s model. Nishimoto et al., 2018 [83] reported a schematic
representation of the nucleation and growth mechanisms at various PVP concentrations.
Nucleation only occurs when the concentration of Ag exceeds the critical supersaturation
level. When the concentration of the monomers falls below the critical supersaturation level,
only particle growth occurs. With a higher concentration of silver particles in the Ag:PVP
(4:1) sample, there is more interaction between silver ions and the PVP polymer molecule,
and the surface of the nanoparticles was not covered by a capping agent. Therefore,
nanoparticle aggregation and uncontrolled particle growth occurred. As a result, irregularly
shaped and large size particles were obtained.

3.3. Antimicrobial Properties of AgNPs

To perform the microbiological and cytotoxic tests, two samples were chosen (1:1 and
4:1 Ag:PVP and MW 10 K) because they were statistically different in size (p < 0.05). These
samples were Ag:PVP (1:1) with a concentration of 7.6 g L−1 and Ag:PVP (4:1) with a
con-centration of 30.4 g L−1.

The antimicrobial effect of AgNPs was evaluated using the minimum inhibitory
concentration test (MIC), in which the lowest concentration of a chemical responsible for
limiting the visible growth of a bacterium, that is, which has bacteriostatic activity, is
verified. Concomitantly, the agar diffusion test was performed, in which a microorganism
is challenged against a biologically active substance in a solid culture medium and relates
the size of the challenged microorganism’s growth inhibition zone to the concentration of
the tested substance.

Figure 6 shows the average results of the inhibition zone formed by the microorganisms
Enterecoccus faecalis (E. faecalis), Lactobacillus casei (L. casei), Streptococcus mutans (S.
mutans), Candida albicans (C. albicans) and Actinomyces israelii (A israelli) formed by the
Ag:PVP (1:1) and Ag:PVP (4:1).

Figure 6. Means and standard deviation (bars) of the diameters of the step halos for different
microorganisms. Different letters show difference statistics between groups.



Colloids Interfaces 2023, 7, 66 11 of 19

The results showed the antimicrobial effect of AgNPs against different microorgan-
isms (S. mutans, C. albicans and A. israelii) since inhibition halos were observed for these
microorganisms and the antimicrobial potential of the nanoparticles is proportional to the
size of the halo of inhibition formed [84].

The choice of microorganisms occurred because Enterococcus faecalis is a persistent
organism that, despite constituting a small proportion of the flora in untreated root canals,
plays an important role in the etiology of persistent periradicular lesions after endodontic
treatment [85]. Lactobacilli sp. represent a characteristic group of oral bacteria that numer-
ically comprise a minor component of the oral microbiota. Despite these low numbers
of lactobacilli in the oral cavity, initial findings show that lactobacilli may be correlated
with caries formation [86,87]. Streptococcus mutans is one of the many etiological factors of
dental caries, as it is a microorganism capable of acquiring new properties that enable the
expression of pathogenicity determinants, determining its virulence in specific environ-
mental conditions [88]. Candida albicans, which causes candidiasis, is a common infection
of the skin, oral cavity and esophagus, gastrointestinal tract, vagina and vascular system
of humans; and, lastly, Actinomyces sp. has been frequently cultured from the root canals
of teeth with primary and post-apical periodontitis treatment [89,90]. These bacteria are
thought to be associated with persistent extraradicular infections, lack of periradicular
healing, and cases of failed endodontic therapy [91–93].

AgNPs have well-established antimicrobial activity against Gram-positive/negative
microorganisms, fungi, protozoa, and some antibiotic-resistant viruses and strains [94].
However, Gram-negative microorganisms have a greater antimicrobial effect compared to
Gram-positive microorganisms [73]. This can be explained by the difference in cell wall
thickness between Gram-positive (30 nm) and Gram-negative (3–4 nm) microorganisms,
which are mainly composed of peptidoglycan [95,96]. Moura et al., 2012 [97] showed in
their study that there was a greater halo of inhibition for the microorganism S. aureus
compared to E. coli and they associated this result with the load of AgNPs.

However, the specific response of each microorganism depends on its metabolic
activities. As the cell membrane surface of microorganisms is positively charged, there is an
electrostatic attraction between AgNPs that has a negatively charged surface (Ag:PVP (1:1):
ζ = −36.3 ± 3.80 mV; Ag:PVP (1:1): ζ = −32.4 ± 2.60 mV), thus facilitating the penetration
and diffusion of AgNPs into the microorganisms.

The antimicrobial activity of AgNPs is well established; however, its mechanism of
action is not yet fully understood. AgNPs bind and adhere to the cell membrane causing
direct damage [98], or, upon permeating the cell membrane, they dissolve and release silver
ions. Then, once inside the microorganism’s cell, AgNPs leads to DNA damage, mainly
through the production of ROS [99], and can also affect the electrochemical gradient of
protons through the respiratory process [100], interrupting ATP synthesis, leading to the
death of the microorganism cell [101].

The antimicrobial activity of the AgNP solutions was evaluated by estimating the min-
imum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC).
The results showed that AgNPs have fungicidal properties against the microorganisms
tested at low concentrations (Table 2).

Table 2. Results of MIC and MFC/MBC of silver nanoparticles with different sizes.

Species
Ag:PVP (1:1) Ag:PVP (4:1)

MIC
(mg mL−1)

MFC/MBC
(mg mL−1)

MIC
(mg mL−1)

MFC/MBC
(mg mL−1)

C. albicans 9.400 300.9 9.400 9.400
S. mutans 601.9 300.9 75.23 75.23

The greater susceptibility of planktonic cells of C. albicans compared to planktonic cells
of S. mutans can be explained mainly by structural differences in their cell membranes [102].
The membranes of bacteria are negatively charged due to anionic phospholipids, while
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the charge on the membranes of fungi is neutral. As the AgNPs synthesized in the present
study have a negative surface charge, this may explain the decreased susceptibility of S.
mutans and the need for a greater concentration to inhibit its growth [103].

Similar results were obtained by Monteiro et al., 2011 [104] and Wady et al., 2012 [105]
in which the authors observed that AgNPs exhibited fungicidal activity against C. albicans
and that AgNPs cause depolarization and fungal membrane rupture with an increase in the
release of carbohydrates such as glucose and trehalose into the intracellular environment
(compounds that protect proteins and biological membranes from inactivation by stress
conditions), leading to damage to the fungal cell structure and inhibition of the budding
process of the microorganism [106].

According to Abbaszadegan et al. 2015 [107], the antimicrobial action of AgNPs
depends on the external surface charge of the particles influenced by the stabilizers and
agents used in the synthesis. In the MIC assays (Table 1), both strains of each species
were susceptible to AgNPs. AgNPs promoted a 100% reduction in planktonic growth of
microorganisms in concentrations ranging from 9.40 to 602 mg mL−1.

These differences in the composition and especially in the cell wall thickness of each
microorganism may have contributed to the increase in MIC values and values observed
for S. mutans planktonic cells in relation to C. albicans cells.

AgNPs also have an effect against S. mutans bacteria and similar results were found
by Martínez-Robles et al., 2016 [108]. The bactericidal activity can be attributed to the high
surface areas in the nanoparticles and the ability of AgNPs to bind to membranes [109,110].
This action occurs through electrostatic interactions and through interactions with the
bacterial cell membrane adhesion system, which allows strong links between the AgNPs
with the amino, hydroxyl, and thiol groups present in the cell membrane, which leads to
the death of the microorganism.

Therefore, to try to explain the difference between microbial activities, it is necessary
to evaluate the cell walls of different microorganisms, since the cell walls of the microor-
ganisms are the first point of contact between nanoparticles and microorganisms [111]. The
cell wall of C. albicans is composed of 1,3-β-glucan, 1,6-β-glucan, chitin, and mannopro-
teins [112] and has a thickness of 25–75 nm [113], while S. mutans has a cell wall composed
of polysaccharides (rhamnose and glucose) [114] and a thickness of 300–400 nm [115].

The in vitro cytotoxicity assay is the test to assess the biocompatibility of any material
for use in biomedical devices. Cytotoxicity tests consist of placing the material directly
or indirectly in contact with cell culture and verifying cell alterations through different
mechanisms. Cell viability was determined by the MTT assay, which is one of the most
widely used tools in cell biology to measure cell metabolism [116]. The test is based on the
reduction of MTT, a yellow water-soluble salt, by the effect of cellular metabolic activity
linked to NADH and NADPH, forming insoluble formazan crystals, blue or purple in color.
Blue or purple staining is therefore a quantifier of cell viability [116].

Cell viability data are shown in Figure 7. In this study, greater cell viability was
observed for the smaller particle size Ag:PVP (1:1) compared to the larger particle size
Ag:PVP (4:1). A decrease in cell viability was identified for both AgNPs at 1, 1/2 , and 1/4

dilutions at 24 and 48 h, with no statistical difference between them. The other dilutions
(1/64 and 1/128) showed greater cell viability for Ag:PVP (1:1) when compared to the
other dilutions, but with no significant difference between them (p < 0.05), regardless of the
period evaluated.

The development of nanoparticles in the technology industry is stimulated due to
their innovative properties; however, people are still concerned about the toxicity of these
materials [117]. In Figure 7, it is possible to observe that Ag:PVP (1:1) caused a cytotoxic
effect with a significant reduction in the number of viable cells in the dilutions with a higher
concentration of silver present in relation to the other dilutions. On the other hand, Ag:PVP
(1:1) induced significant cytotoxicity from lower concentrations of these AgNPs. The PVP
polymer can bind to the surface of silver nanoparticles, resulting in a flocculation process,
due to the nitrogen atom present in its molecule [118]. Even with the flocculation process,
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the polymer molecule chain keeps the silver nanoparticles separate from each other, and
the particles can interact with cells due to their high surface energy and mobility [118].

Figure 7. Viability of NIH/3T3 fibroblasts determined by an MTT assay at 24 and 48 h. Uppercase
and lowercase letters denote the comparison between the AgNPs in each %. Different symbols denote
significant differences in AgNPs and time in each %.

El Badawy et al., 2011 [119] report in their study that the toxicity of silver nanoparticles
can be partially attributed to the presence of impurities, such as silver ions, reducing agents,
and residual stabilizers from the synthesis of silver nanoparticles, because the removal of
residual impurities had a strong impact on reducing the toxicity of silver nanoparticles. On
the other hand, the presence of the PVP polymer, which forms a core–shell structure with
silver nanoparticles [120,121], may have interfered with the interaction process of AgNPs
with cells, thus producing the lowest cytotoxic effect when in lower concentrations for
Ag:PVP (1:1) compared to Ag:PVP (4:1) due to the size of the silver particle that may have
contributed to these results.

In view of the results obtained, new tests should be carried out, given the importance
of evaluating the oxidizing activity of these new particles. Among future tests, it would be
interesting to evaluate the action of these nanoparticles on oxidative stress [122], biological
markers and others.

4. Conclusions

Our proposed synthesis method represents a significant advancement in the produc-
tion of silver nanoparticles (AgNPs), setting itself apart from other methods presented in
this study. The presence of polyvinylpyrrolidone (PVP) proved to be crucial in achieving
controlled size and high concentrations of AgNPs.

Through our investigations, we demonstrated that PVP acts as a cap, effectively
binding with silver ions and nanoparticles, and playing a pivotal role in the synthesis
process. The PVP coating effectively prevents agglomeration and disorderly growth of Ag
atoms, resulting in the formation of AgNPs with well-defined sizes and shapes.

We found that by adjusting the Ag/PVP molar ratio, we could fine-tune the character-
istics of the AgNPs. Increasing the PVP/Ag molar ratio led to enhanced coverage of Ag
atoms, yielding AgNPs with smaller sizes. Conversely, reducing the PVP/Ag ratio resulted
in fewer Ag atoms being capped, leading to the synthesis of larger-sized AgNPs.

The key advantage of our method lies in the ability to prepare AgNPs with precise
size control while achieving high particle concentrations. This level of control over size
and concentration is crucial for tailoring AgNPs to specific applications, including their
potential use as antimicrobial agents against different microorganisms.

In summary, our innovative synthesis method, leveraging the essential role of PVP,
provides a pathway to produce AgNPs with a controlled size and shape, and high concen-
trations. These tailored nanoparticles have demonstrated promising biological activities



Colloids Interfaces 2023, 7, 66 14 of 19

against various microorganisms, opening up exciting opportunities for their application in
diverse fields, such as medicine, catalysis, and environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/colloids7040066/s1, Figure S1: Schematic representation of the synthesis
of silver nanoparticles in the alcoholic medium; Figure S2: UV–Vis spectra of synthesized AgNPs at
different concentrations and average molecular weights of PVP. A: 10 K; B: 40 K; C 360 K; Figure S3:
X-ray diffractograms of AgNPs at different concentrations and average molecular weights of PVP 10 K;
Figure S4: SEM micrographs of AgNPs and particle size distribution (2:1 Ag:PVP 10 K); Figure S5: SEM
micrographs of AgNPs and particle size distribution (4:1 Ag:PVP 10 K); Figure S6: Size distribution by
number (%) of the hydrodynamic diameter at different concentrations and average molecular weights of
PVP 10 K; Figure S7: Size distribution by the number (%) of the hydrodynamic diameter at different
concentrations and the average molecular weights of PVP 40 K. Figure S8: Size distribution by number
(%) of the hydrodynamic diameter at different concentrations and the average molecular weights of PVP
360 K.
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