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Highlights:
What are the main findings?

• The predictors included in the final nomogram model were hypoproteinemia, long-term com-
bined antibiotic use, intubation times, mechanical ventilation days, and tracheotomy/intubation.

• The area under the curve (AUC) was 0.937 (95% CI: 0.902–0.972) and 0.925 (0.867–0.982) in the
training and validation datasets, respectively, suggesting that the model demonstrated effective
discrimination. Our model also demonstrated strong concordance performance and clinical
applicability.

What is the implication of the main finding?

• Using this nomogram model, clinicians can assess VAP risk in elderly ICU patients and identify
those at high risk.

• External validation of the nomogram model in larger populations is still required.

Abstract: Background: Ventilator-associated pneumonia (VAP) causes heavy losses in terms of finances,
hospitalization, and death for elderly patients in the intensive care unit (ICU); however, the risk is difficult
to evaluate due to a lack of reliable assessment tools. We aimed to create and validate a nomogram to
estimate VAP risk to provide early intervention for high-risk patients. Methods: Between January 2016 and
March 2021, 293 patients from a tertiary hospital in China were retrospectively reviewed as a training set.
Another 84 patients were enrolled for model validation from April 2021 to February 2022. Least absolute
shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis were
employed to select predictors, and a nomogram model was constructed. The calibration, discrimination,
and clinical utility of the nomogram were verified. Finally, a web-based online scoring system was created
to make the model more practical. Results: The predictors were hypoproteinemia, long-term combined
antibiotic use, intubation time, length of mechanical ventilation, and tracheotomy/intubation. The area
under the curve (AUC) was 0.937 and 0.925 in the training and validation dataset, respectively, suggesting
the model exhibited effective discrimination. The calibration curve demonstrated high consistency with
the observed result and the estimated values. Decision curve analysis (DCA) demonstrated that the
nomogram was clinically applicable. Conclusions: We have created a novel nomogram model that can
be utilized to anticipate VAP risk in elderly ICU patients, which is helpful for healthcare professionals to
detect patients at high risk early and adopt protective interventions.
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1. Introduction

Ventilator-associated pneumonia (VAP) refers to pneumonia arising more than 48 h
after tracheotomy or endotracheal intubation for mechanical ventilation. VAP also includes
pneumonia that occurs within 48 h after the removal of mechanical ventilation and extu-
bation. In intensive care units (ICUs), mechanical ventilation is commonly used to save
patients’ lives. However, VAP in ICUs is a complicated and multifaceted clinical disorder
that has been linked to high morbidity (4–61%), high mortality (40–43%), and substantial
therapeutic costs [1–4]. The occurrence of VAP exerts a financial burden on the healthcare
sector and increases the need for medical supplies [5]. The onset of VAP entails extra health
costs ranging from $5000 to $40,000 for each patient and extends hospital stays by 6–30
days [6].

Common risk factors for VAP may include sex, Acute Physiology and Chronic Health
Evaluation (APACHE) II score, hypoproteinemia, state of consciousness, prior antibiotic
therapy, age, intubation times, mechanical ventilation days, tracheotomy, and underlying
diseases such as diabetes and chronic obstructive pulmonary disease [7–11]. Furthermore,
previous studies have shown that oral care, bed elevation of 30–45◦, and continuing
aspiration of subglottic secretions might decrease VAP risk [12–14]. The number of elderly
patients admitted to ICUs is rising with the aging population. In 1992, 2007, and 2022,
the average ages of ICU patients in three extensive studies were 51, 60.7, and 64 years
old, respectively [15–17]. The incidence of VAP elevates with age. VAP risk increased
over 1.15-fold with every 1-year increase, according to Liu et al. [10]. Therefore, it is of
great significance to identify high-risk groups regarding VAP, especially in elderly patients,
because effective measures can be taken early to reduce the occurrence of VAP.

To the best of our knowledge, there are few validated tools to assess the risk of VAP in
elderly patients in the ICU. The nomogram is an intuitive and convenient predictive tool
that can quantitatively calculate the hazard ratio of individual clinical events [18–20]. It
has been widely used in various medical fields [21–23]. Consequently, the objectives of
this study were to evaluate the significant predictor variables associated with VAP among
elderly ICU patients and to construct and validate a nomogram for estimating VAP risk.

2. Methods
2.1. Study Design and Study Sample

Between January 2016 and March 2021, the data of 293 elderly ICU mechanical venti-
lation patients from the Wenzhou Hospital of Integrative Medicine were retrospectively
reviewed as a training set, and another dataset of 84 elderly ICU mechanical ventilation
patients from the same hospital between April 2021 and February 2022 was collected for
model validation. If a patient had multiple admissions, only the initial entry was evaluated.

The inclusion criteria included: (1) age 60 years or older; (2) complete clinical data;
(3) mechanical ventilation time > 48 h; (4) if multiple VAP infections during hospitalization
had occurred, only the first infection was included. We further excluded patients who were
admitted to the ICU with a VAP infection. In the end, 137 patients whose mechanical venti-
lation time did not meet the criteria and 1 patient whose medical record was incomplete
were excluded. Finally, 377 patients were included.

Clinical information was collected retrospectively through the real-time hospital infec-
tion surveillance system, the software program Zexin (version 3.0), and electronic medical
records. This real-time surveillance system could collect data from multiple hospital
databases and provide warnings of hospital infection through information such as positive
bacterial culture and fever. The cut-off time for the survey was 48 h after extubation in
the non-VAP group and the date of infection in the VAP group. The time range for me-
chanical ventilation days, albumin levels, state of consciousness, intubation times, and
tracheotomy/intubation values was from the start of mechanical ventilation to the end of
the investigation. The time range for antibiotic use was from admission to the end of the
investigation. APACHE II score was taken after the patient was admitted to the ICU.
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As a standard rule of thumb, when creating a predictive model for binary or time-
to-event outcomes, at minimum, ten events must be collected for each predictor variable
(i.e., each β term in the regression equation), then reviewed for inclusion in the predicting
model formula; this commonly requires at least ten events per variable (10 EPV) [24–26]. In
this study, the final model contained five predictors.

The screening flow chart is shown in Figure 1. The ethics committee of the Wenzhou
Hospital of Integrative Medicine (2022-L079) authorized this research. Due to the retrospec-
tive nature of this investigation, the requirement of informed consent was waived by the
ethics committee of the Wenzhou Hospital of Integrative Medicine.
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Figure 1. Case screening flow chart.

2.2. Assessment of Potential Predictors

Clinical information, including gender, APACHE II score, hypoproteinemia (defined as
a blood albumin concentration below 30 g per liter), long-term combined use of antibiotics,
state of consciousness, advanced age, intubation times, mechanical ventilation days, tra-
cheotomy/intubation, and basic disease status (hypertension, diabetes, cerebral infarction,
cardiac insufficiency, malignant tumor, Parkinson’s disease, Alzheimer’s disease, hepatic
insufficiency, renal insufficiency, chronic obstructive pulmonary disease, and respiratory
failure) were collected.

According to clinical significance, the cut-off points of hypoproteinemia, advanced
age, and long-term combined use of antibiotics were 30 g/L, ≥80 years old, and ≥2 kinds
and ≥7 days of usage. For mechanical ventilation days, APACHE II, and other continuous
variables, a two-piece linear regression model with a smoothing function was adopted to
evaluate the nonlinear associations of the variable with VAP. A log likelihood ratio test
was employed to contrast the one-line linear regression model with a two-piecewise linear
model.

2.3. Outcome Ascertainment

For the diagnosis of VAP, the clinicians made a preliminary diagnosis, and the hospi-
tal’s infection control staff further reviewed it. If there were any disagreements, the two
departments would discuss them further to reach a consensus. Based on the 2018 Chinese
guidelines for the diagnosis and treatment of hospital-acquired pneumonia and VAP in
adults [27], VAP refers to pneumonia arising more than 48 h after tracheotomy or endo-
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tracheal intubation for mechanical ventilation. VAP also includes pneumonia that occurs
within 48 h after the removal of mechanical ventilation and extubation. A clinical diagnosis
of pneumonia can be established via chest X-ray or CT showing new or progressive, infiltra-
tive, solid or ground glass shadows, plus two or more of the following three clinical signs:
(1) fever with temperature > 38 degrees; (2) purulent airway discharge; and (3) peripheral
blood leukocyte count >10 × 109/L or <4 × 109/L. The VAP concept was consistent with
the principles obtained from the Infectious Diseases Society of America and the American
Thoracic Society [28].

2.4. Statistical Analysis

Continuous variables that were not distributed normally were presented as medians
(interquartile range, IQR), and the Mann–Whitney U test was used to compare between-
group differences. The categorical variables were presented as n (%), and the between-group
comparison was made using the chi-square test. Due to the relatively small percentage of
missing data (<5%), this study excluded patients with incomplete data. Internal validation
was conducted via the repeated self-sampling method (bootstrap of 1000 times), and further
validation was conducted with the data of the validation set.

Feature selection and model development. We used the least absolute shrinkage and
selection operator (LASSO) regression approach to select the optimum predictors from the
training set’s ten potential predictors. Tenfold cross-validation was applied to determine
the optimum value of the penalty parameter λ. The selection criterion for the optimal
lambda parameter was lambda.1se. (maximum lambda for error mean within one standard
deviation of the minimum). Multivariable logistic regression was used to construct a
nomogram model using selected variables.

Model performance evaluation. Calibration and discrimination were used to eval-
uate the nomogram’s performance in predicting VAP risk. The discriminatory ability of
the nomogram was evaluated using the receiver operating characteristic (ROC) curve.
Generally, an area under the curve (AUC) between 0.71 and 0.90 indicates moderate dis-
crimination, while above 0.90 indicates high discrimination. The calibration capacity of
the nomogram was validated utilizing the calibration curve and the Hosmer–Lemeshow
goodness-of-fit test, which measures the level of coincidence between the predictive value
and the actual estimated values.

Clinical validity evaluation. We conducted a decision curve analysis (DCA) to assess
the clinical validity of the nomogram. DCA is a tool that evaluates the net clinical benefit
at various threshold probabilities [29,30]. By subtracting the percentage of false-positive
patients from the percentage of true-positive patients and weighing the relative harms
of not intervening with the negative consequences of unnecessary interventions, the net
benefits were calculated [29]. Moreover, the maximum Youden index was used to determine
the optimal clinical cutoff value (sensitivity + specificity-1).

Statistical analysis was conducted using R (version 3.4.3) and EmpowerStats (ver-
sion 3.0, X&Y solutions, Inc., Boston, MA, USA). All statistical tests were two-sided, and a
p-value < 0.05 was considered as statistically significant.

3. Results
3.1. Sample Characteristics

A total of 377 elderly ICU patients with mechanical ventilation were included in the
current study, and 64 had VAP. VAP was observed in 53 (18.1%) and 11 (13.1%) patients in
the training set and the validation set, respectively (Figure 1). Table 1 displays the clinical
features of the participants.
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Table 1. Comparison of general features between the training set and the validation set.

Characteristics
Total (n = 377) Training Set (n = 293) Validation Set (n = 84) p-Value

N (%) N (%) N (%)

Gender 0.532

Female 124 (32.9%) 94 (32.1%) 30 (35.7%)
Male 253 (67.1%) 199 (67.9%) 54 (64.3%)

APACHE II score 0.120
<20 points 130 (34.5%) 107 (36.5%) 23 (27.4%)
≥20 points 247 (65.5%) 186 (63.5%) 61 (72.6%)

State of consciousness 0.782
Awake 198 (52.5%) 155 (52.9%) 43 (51.2%)

Comatose 179 (47.5%) 138 (47.1%) 41 (48.8%)
Hypoproteinemia 0.067

No 247 (65.5%) 199 (67.9%) 48 (57.1%)
Yes 130 (34.5%) 94 (32.1%) 36 (42.9%)

Long-term combined use of antibiotics 0.181
≥2 kinds and ≥7 days 68 (18.0%) 57 (19.5%) 11 (13.1%)

Other situations 309 (82.0%) 236 (80.5%) 73 (86.9%)
Advanced age 0.805

<80 years old 220 (58.4%) 170 (58.0%) 50 (59.5%)
≥80 years old 157 (41.6%) 123 (42.0%) 34 (40.5%)

Intubation times 0.562
1 time 355 (94.2%) 277 (94.5%) 78 (92.9%)

≥2 times 22 (5.8%) 16 (5.5%) 6 (7.1%)
Mechanical ventilation days 0.671

≤8 days 223 (59.2%) 175 (59.7%) 48 (57.1%)
>8 days 154 (40.8%) 118 (40.3%) 36 (42.9%)

Tracheotomy/intubation 0.052
Intubation 290 (76.9%) 232 (79.2%) 58 (69.0%)

Tracheotomy 87 (23.1%) 61 (20.8%) 26 (31.0%)
Number of basic diseases 0.226

≤2 189 (50.1%) 142 (48.5%) 47 (56.0%)
>2 188 (49.9%) 151 (51.5%) 37 (44.0%)

3.2. Variable Selection

In this study, 10 variables were dimensionally reduced using LASSO regression, and
5 predictors were selected: hypoproteinemia, long-term combined antibiotics, intubation
times, mechanical ventilation days, and tracheotomy/intubation (Figure 2).
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3.3. Model Development

Hypoproteinemia, long-term combined use of antibiotics, intubation times, mechanical
ventilation days, and tracheotomy/intubation were reliable predictive variables of VAP in
ICU elderly patients independently (p < 0.05) (Table 2), and a nomogram model of VAP in
elderly ICU patients was constructed (Figure 3). To make the operation of the nomogram more
practical and convenient, we created a web-based online scoring system. Users can open the
URL (https://vapmodel.shinyapps.io/dynnomapp/) (accessed on 12 December 2023) when
needed and enter variable information or scan a QR code with their cell phone (Figure S1) to
obtain the predicted probability of VAP. For example, for an elderly patient who had undergone
mechanical ventilation for 12 days, with the combined use of two antibiotics for 10 days, and
hypoproteinemia, using the online scoring system indicated that the patient had a VAP risk of
approximately 70% (accessed on 6 November 2022) (Figure S2).

Table 2. Multivariate logistic analysis of VAP infection in ICU elderly patients.

Variables OR 95% CI p-Value

Hypoproteinemia 11.516 4.384–30.248 <0.001
Intubation times 8.598 1.618–45.685 0.012

Tracheotomy/intubation 4.986 1.880–13.219 0.001
Mechanical ventilation days 6.267 2.194–17.899 <0.001

Long-term combined use of antibiotics 5.249 1.938–14.221 0.001
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3.4. Model Performance

The AUC of the nomogram was 0.937 (95% CI: 0.902–0.972) in the training set (Figure 4A).
At the highest Youden index point, the optimal threshold was 0.207; the corresponding speci-
ficity was 90.00%, and the sensitivity was 84.91%. The repeated self-sampling method (bootstrap
1000 times) was used for internal validation of the nomogram, and the AUC was 0.936 (95% CI:
0.901–0.972) (Figure 4B). The AUC was 0.925 (95% CI: 0.867–0.982) in the validation set, indicat-
ing that the model had good discrimination (Figure 4C). Hosmer–Lemeshow goodness-of-fit
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test in the training set p = 0.265 > 0.05, validation set p = 0.956 > 0.05. The calibration curve
and the Hosmer–Lemeshow test showed high consistency with the observed result and the
predicted values in the training set (Figure 5A). This was further verified in the validation set
(Figure 5B).
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3.5. Application in Clinical Practice

The DCA analysis shows that the model’s threshold probabilities reached 0–0.98 and
0–0.75 in the training and validation sets, respectively, which could produce net clinical
benefits (Figure 6A,B). The optimal threshold of 0.207 for the training set was substituted
into Figure 6A, and the clinical net benefit was approximately 75%, indicating a good
clinical application value.
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4. Discussion

In this study, we constructed and validated a nomogram model combining tra-
cheotomy/intubation, intubation times, mechanical ventilation days, long-term combined
use of antibiotics, and hypoproteinemia. The area under the curve (AUC) was 0.937 (95%
CI: 0.902–0.972) and 0.925 (0.867–0.982) in the training and validation dataset, respectively.
The model will help clinicians assess the risk of VAP in elderly ICU patients and identify
high-risk patients, which is conducive to taking the necessary interventions to reduce the
incidence of VAP early.

Shuhua Li et al. [31] recently established and validated a nomogram model for
ventilator-associated pneumonia in elderly ICU patients, but the AUC for the training
and validation groups was 0.859 (95% CI: 0.828–0.890) and 0.813 (95% CI: 0.700–0.850),
respectively. Additionally, they only included variables with p < 0.05 in the univariate
analysis in the logistic regression analysis. Zahar et al. [32] developed and validated a
VAP model in ICU patients aged > 16 years, The AUC of their model in the training and
validation set was 0.881 and 0.848, respectively, but the study did not show the nomogram
and calibration curve, and there was no clinical effectiveness evaluation. Wu et al. [33]
investigated a VAP prediction model; however, their focus was acute respiratory distress
syndrome (ARDS) patients, and they performed a secondary analysis of the early versus
delayed enteral nutrition using ARDSNet. In this model, the area under the curve was
0.744, lacking internal and external validation. In elderly ICU patients, few effective tools
exist for assessing VAP risk. This research aimed to develop and validate an operable
nomogram model.

The predictors included in the nomogram model were tracheotomy/intubation, in-
tubation times, mechanical ventilation days, long-term combined use of antibiotics, and
hypoproteinemia. Based on the calibration curve and the AUC results, the nomogram
exhibited strong concordance performance as well as good discrimination. Additionally,
DCA results in our study demonstrated a good clinical utility of the prediction model.
Several studies have proved the advantages of the most recent DCA approach and support
its usage [34,35].

In the ICU, the invasive factors of VAP associated with mechanical ventilation include
tracheostomy, reintubation, and duration of mechanical ventilation. Tracheotomy impaired
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the trachea’s normal anatomical and physiological function, corresponding to a previous
systematic review performed by Ding et al. [36]. The respiratory system communicates
with the external environment immediately, bypassing typical respiratory defense systems,
including the oropharynx and cilia; this weakens the cough and reflex role of the trachea,
allowing infectious agents to easily colonize the tracheal tube and form biofilm, leading
to an increase in the opportunity for VAP infection [37–39]. Reintubation was related to
the inhalation of potentially pathogenic organisms in the oropharynx [36], and was a risk
variable for VAP [40]. The increased number of intubations would damage the airway
mucosa and reduce the cilia function, affecting the incidence of VAP. Furthermore, the
prevalence of VAP increased from 5% in patients who experienced one day of mechanical
ventilation to 65% in patients who experienced 30 days of mechanical ventilation [41].
Moreover, long-term mechanical ventilation would cause damage to the airway mucosa
and local cilia function of patients. As mechanical ventilation duration increased, the
frequency of procedures, including sputum suction, was elevated, the airway mucosa of
patients was damaged more seriously, the cough reflex of patients would be weakened,
the barrier function of the respiratory tract was damaged, and the risk of VAP increased.
Therefore, reducing invasive operations related to mechanical ventilation, testing the
weaning scheme, and minimizing mechanical ventilation time are essential measures to
control VAP.

In addition to invasive operations, prior long-term combined use of antibiotics was
also a potential independent risk variable for VAP, similar to some prior investigations. The
ICU houses the majority of severely ill patients, and the chance of antibiotic administration
is extremely high. Antibiotic overuse may modify the infestation of normal microorganisms,
resulting in invasion by opportunistic pathogens or drug resistance formation in numerous
bacteria strains, hence raising the prevalence of VAP [42,43]. Therefore, it is suggested
that care providers follow the principle of antibacterial drug use, carry out a antimicrobial
drug susceptibility test before using antibacterial drugs, use antibacterial drugs rationally
according to the antimicrobial drug susceptibility test results, and pay attention to the
concentration and dosage of antibacterial drugs.

Among patients with VAP, malnutrition plays a key role in addition to medical factors.
Albumins are incorporated into all predicting–nutritional variables, and hypoproteinemia
is pointed out as a factor of malnutrition, as well as indicating a serious chance of complica-
tions [44]. Elderly patients have more underlying diseases than young patients, often have
gastrointestinal dysfunction, and are more prone to albumin reduction. Hypoproteinemia
may lead to lymphocytopenia, which reduces the immune system’s defensive capacity [45],
and in patients with decreased immune resistance, the promotion of the proliferation of
drug-resistant bacteria is easy, inducing infection; in particular, severe hypoproteinemia
accompanied by pulmonary infection generally had a poor prognosis [46]. The recom-
mendations of the European society for clinical nutrition and metabolism validate the
use of nutritional therapy [47]. The variables finally included in this model had clinical
significance and a sufficient theoretical basis.

The current study has several advantages. First, the nomogram model was used
to establish a diagnostic model for the occurrence of VAP in elderly ICU patients, and
a web-based online scoring system was used, which was more intuitive, practical and
operable, and conducive to early intervention. Second, a comprehensive evaluation of
the model was carried out in all aspects: in addition to the ROC curves showing strong
concordance performance, we also used calibration and DCA curves to reflect the model’s
calibration degree and clinical validity. Third, internal verification was performed: repeated
self-sampling method (bootstrap 1000 times) and verification data divided by the time
were used for verification. Temporal validation is a prospective evaluation of a model
independent of the modeling data and the modeling process, so it can sometimes be viewed
as an external validation [48]. Fourth, it is easy for clinicians to obtain information on
the five predictors in our model through electronic medical records. There is no need to
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increase the patient’s additional examination items or the doctor’s other recording work;
these features made our nomogram a useful clinical tool.

However, this study still had limitations. First, this study was a single-center retrospec-
tive investigation that excluded a small number of patients with incomplete records, which
might be subject to selection bias, and only temporal validation was performed without
external validation. Therefore, multicenter prospective studies and external validation
should be carried out later. Second, the count of predictors was limited, and only a few
readily available and actionable predictors were selected. Although the sample size of
this study meets the minimum sample size requirements, the sample sizes of the training
set and the verification set were generally small. Third, although the diagnosis of VAP
was made by a senior clinician and infection control practitioner to avoid bias caused by
misclassification, misdiagnosis and missed diagnosis might still have occurred.

5. Conclusions

Our nomogram model showed strong concordance performance, good discrimination,
and clinical application value. Using this nomogram model, clinicians can assess VAP risk
in elderly ICU patients and identify those at high risk. However, external validation of the
nomogram model in larger populations is still required.
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