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Abstract: Earthquake precursors are the indicators that appear before an earthquake. The release
of radon gas, ionospheric disturbances, anomalous animal behavior, and so on are examples of
seismic and aseismic events. Ionospheric perturbations can be proved to be a reliable method in
earthquake prediction. The GNSS data detect changes in the ionosphere through the time lag of the
transmitted GPS signals recorded at the Earth-based receivers. A negative TEC anomaly is caused
by the stress released from the rocks before the earthquake, which elevates positive ions or p-holes
in the atmosphere and decreases the ions in the ionosphere. A positive TEC anomaly follows this
because of the increase in ions in the ionosphere. The ionospheric disruption in the Himalayan region
is examined before five random earthquakes. For this, data from 15 separate GNSS stations are
investigated using IONOLAB-TEC. A promising total electron content (TEC) data estimate with a
temporal resolution of 30 s was analyzed. The results of the TEC data analysis depict the anomaly a
month before the five earthquakes, followed by the later perturbation in the earthquake preparation
zone. TEC anomalies are enhanced more by the uniform spatial distribution of GNSS stations in
the epicentral region than by randomly distributed stations. The results of IONOLAB-TEC and the
widely used GPS-TEC software were compared. Owing to its temporal resolution, IONOLAB-TEC
has edge over the GPS-TEC software in that it can identify even the slightest negative anomalies
before an earthquake.
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1. Introduction

An earthquake precursor is the anomalous behavior observed before an earthquake
in the form of either radon gas emission, ionospheric disturbances, or anomalous animal
behavior. Much literature has studied animal behavior changes before a major earthquake.
The works of [1–9] observed the changes in animal behavior vis-à-vis geomagnetic and iono-
spheric perturbations. It has been suggested that ground vibrations, humidity, temperature,
atmospheric pressure changes, electromagnetic field (EMF) emissions, and gas/chemical
emissions prior to earthquakes could be sensed by animals through a seismic escape be-
havioral system [2–7]. Prior to an earthquake, the build-up of stress causes changes in
rock pressures and fluid convective flows [10]. The fault displacement of rock mass under
that tectonic stress opens various pathways to the surface and unusual quantities of radon
emission through fractures [10,11]. The stress released from the rocks perturbs their peroxy
bonds, and their breakup leads to the release of positively charged particles, known as
p-holes. These p-holes then reach the Earth’s surface and migrate toward the atmosphere.
They drag electrons downward as soon as they reach the lower ionosphere. This alters
the ionosphere’s vertical distribution of ions and electrons, and the satellite signals are
impacted by these changes in the ionosphere. The significance of ionospheric perturbations
as an earthquake precursor is addressed in the literature [12–19]. Global navigation satellite
system (GNSS) for ionospheric precursor studies has also been used in the high seismic
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regions of the world, such as Chile and Japan. The study of the 2011 Japan earthquake of
Mw 9.0 by Yao [20] investigates pre-earthquake ionospheric anomalies and their temporal
and spatial characteristics using data from GNSS and ionosonde stations near the epicenter.
It depicts that the ionospheric anomaly was detected three days before the earthquake,
considered a promising anomaly for the impending earthquake. The work of Báez et al. [21]
presented the state-of-the-art methods and products of the Chilean GNSS network, with
a focus on the applications to real-time detection of coseismic deformation and rapid re-
sponse capabilities for moderate-to-large earthquakes. The spatial density of the GNSS
networks is also increasing for their use in early warning systems for earthquakes and
tsunamis [21]. The successful implementation of IONOLAB-TEC in the earthquake precur-
sor studies of various earthquakes around the globe is addressed in the literature [22,23].
Inyurt et al. [22] utilized IONOLAB-TEC along with GIM-TEC to acquire TEC values for
respective stations. They observed numerous positive TEC anomalies due to solar and
geomagnetic activities. In order to investigate whether the anomalies before, on the day
of, and after the earthquake was caused by the earthquake, the (Kp·10), Dst, and F10.7 cm
indices, which provide information on the geomagnetic and solar activity for the days, were
examined, in which anomalies were detected [22]. Differentiating it from the anomalies of
the earthquake became a difficult task. Therefore, they suggested a multidisciplinary study
to identify ionospheric changes as an earthquake precursor under disturbed space weather
conditions [22]. Contadaet al. al. [23] analyzed the TEC variations over the Mediterranean
through IONOLAB-TEC using discrete Fourier analysis during the earthquake of 12 Octo-
ber 2013, which occurred west of Crete, Greece. They observed that the TEC variations that
ensued might be due to the earthquake. However, the lithosphere–atmosphere–ionosphere
coupling (LAIC) mechanism through acoustic or gravity waves could explain the accurate
phenomenon behind the TEC variations.

The analysis of GNSS data using IONOLAB-TEC was chosen to study the five earthquakes
in the Himalayan region. The first objective of this study is to prepare the earthquake prepara-
tion zones of five earthquakes and to determine three GNSS base stations for each earthquake
within the preparation zone. The second objective is to acquire data using IONOLAB-TEC for
two months. The third objective is to calculate the upper and lower bound TEC values using
the equations given by [24]. The TEC values outside the limits will be considered anomalies
and, therefore, considered as a precursor of the earthquake in that region.

2. Study Area

The Himalayan belt, created by the collision of the Indian and Eurasian plates around
50 million years ago, is one of the most earthquake-prone regions. It broadly consists
of four major regions. The Sub-Himalaya and Lesser Himalaya abruptly rise above the
Ganga valley, the Lesser Himalaya gradually gains altitude, the Lesser Himalaya and the
High Himalayan range are connected by a steep slope, and the High Himalayan range
is characterized by a consistent elevation of around 5 km. The faults associated with
them are the hosts of devastating earthquakes. The earthquakes chosen for the analysis of
TEC variations are 2015 Nepal (Mw 7.3), 2016 Imphal (Mw 6.7), 2020 Myanmar (Mw 5.9),
2020 Nepal (Mw 4.9), and 2020 Manipur (Mw 5.2) (Table 1). These three regions have
complex lithology and geological structures. Owing to the continuous movement of the
Himalaya, these regions have numerous faults, fractures, and lineaments with sheared,
weak, and metamorphosed rocks that host numerous earthquakes of varying magnitudes.
The Central Himalayan crystalline rocks in Nepal are laced with dense faults and fractures.
Because of this, Nepal experiences devastating earthquakes of considerable magnitude and
shallow depth. With its original basin topography of ridges and furrows, Manipur (India)
is a part of the vast geosynclines. Being close to the Indo-Myanmar arc, Manipur frequently
experiences earthquakes of diverse magnitudes. Myanmar is located at the confluence
of the Alpine-Himalayan Orogenic Belt and the Indonesian Island Arc System [25]. In
northern Myanmar, the orogenic belt is bent around the Eastern Himalayan Syntaxis in a
north-south direction. It passes southward through the Indo-Myanmar Ranges [25–28] into
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the Andaman and Nicobar Islands, Sumatra, and Indonesia’s Sunda and Banda arcs [25].
The mountain ranges in northern Myanmar are clear evidence of the collision of the Indian
and Eurasian plates, leading to frequent earthquakes in the region. Figure 1 shows the
DEM image of parts of Central and Eastern Himalaya displaying five earthquake epicenters
along with the significant seismogenic thrusts of the Himalayas, i.e., Himalayan Frontal
Fault (MFT), Main Boundary Thrust (MBT), and Main Central Thrust (MCT), with MCT
being the main thrust region for the earthquakes of higher magnitude.

Table 1. Earthquakes and IGS stations used for TEC analysis.

Epicentre Location Magnitude Depth (km) Date Time
(UTC)

Strain
Radius (km) Station Used

19 km SE of
Kodari, Nepal

27.809◦ N
86.066◦ E 7.3 15 12 May 2015 07:05:19 1377.21 SYBC, NAST,

CHLM

30 km W of
Imphal, India

24.804◦ N
93.651◦ E 6.7 55 3 January 2016 23:05:22 760.33 RMJT, RMTE,

SYBC

38.2 km from
Falam, Myanmar

22.782◦ N
94.025◦ E 5.9 10 16 April 2020 11:45 344.35 TEDM, KLAY,

KLAW

29 km SSE of
Kodari, Nepal

27.705◦ N
86.064◦ E 4.9 10 12 May 2020 18:08:38 12.94 JIR2, KUGE,

SYBC

13 km SSW of
Kakhing, India

24.391◦ N
93.921◦ E 5.2 55.1 25 May 2020 14:42:17 172.19 TEDM, KLAY,

KLAW
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3. Data and Method
3.1. Data Used

The base station located within the epicenter’s earthquake preparation zone provided
the data for the study of the ionospheric perturbations. The National Oceanic and Atmo-
spheric Administration (NOAA) provides information for negating geomagnetic disruption.
Geomagnetic activity is classified using the NOAA classification. The day is geomagnet-
ically stormy if the Ap index consists of values between 29 and 100. A minor storm is
predicted if Ap index values are between 29 and 50. A significant storm is determined
when 50 ≤ Ap < 100, and a severe storm is predicted when Ap ≥ 100.

3.2. IONOLAB-TEC

IONOLAB-TEC is the executable software that employs the Reg-est algorithm. The
regularized-estimation (Reg-Est) algorithm is a new alternative for the estimation of robust
TEC values by combining GPS/GNSS measurements of 30 s resolution obtained from
the satellites above the 10◦ elevation limit, ‘in press’ [29]. This software is successfully
used in various works in the literature for various earthquakes. The M 7.4 earthquake
in Mexico on 23 June 2020 was investigated using IONOLAB-TEC. This paper observed
the air temperature, total electron content, and air relative humidity as precursors of
earthquakes. The atmospheric air temperature and outgoing longwave radiation (OLR)
indicate significant positive anomalies above the epicenter of the earthquake prior to the
major earthquake occurrence [30]. The atmospheric relative humidity shows a significant
negative anomaly above the epicenter of the earthquake prior to the major earthquake
occurrence [30]. These TEC perturbations before the earthquake during quiet geomagnetic
storms and inactive solar flux conditions were locally observed and can be considered
the precursor of an impending earthquake. Another study has been carried out for the
M 6.3 Abruzzo earthquake of 6 April 2009. The results showed that the TEC variations
occurred randomly over several hundred kilometers from the earthquake [31]. The high-
frequency oscillations indicated the location of the earthquake but with limited accuracy.
This algorithm is also significant because it is a key substitute for monitoring ionospheric
irregularities and sudden disturbances. Receiver Independent Exchange (RINEX) data,
Differential Code Bias (DCB) data, Standard Product (SP3) data, and Ionosphere Map
Exchange (IONEX) data were used to determine the slant TEC (STEC) and vertical TEC
(VTEC) values. The Reg-Est algorithm derives TEC values by combining the VTEC for
each satellite in the least square sense while using a weighting function to minimize the
multipath effects [29]. The method used for the computation of STEC, VTEC, and the
mapping function is provided below. STEC is converted to VTEC using the mapping
function M. The instrumental biases here are in time units.

STECm
u (n) =

1
A

f12f22

f12 − f22

[
Pm

4,u(n) + c(DCBm + DCBu)
]

(1)

VTECm
u (n) = STECm

u (n)/M(εm(n)) (2)

M(εm(n)) =

[
1 −

(
Rcosεm(n)

R + h

)2
]− 1/2

(3)

where,
P4 = geometry free linear combination of pseudorange values (P4 = P2 − P1)
A = constant = 40.3 m3/s2

DCBm = frequency-dependent satellite instrumental bias
DCBu = frequency-dependent receiver instrumental bias
M = mapping function
E = satellite elevation angle
m = satellite
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u = receiver
n = time

3.3. Method of Analysis of TEC Data

The analysis of ionospheric perturbations from five earthquakes in the Himalayas uses
three IGS base stations for each earthquake to determine the ionospheric perturbations
(Table 2). The strain radius was calculated based on Dobrovolsky’s equation: Strain radius
(p) = 100.43M km (where M = magnitude) [32]. The work is carried out by acquiring two
months’ worth of data for 15 IGS stations. It has been observed that the ionosphere’s
variability increases locally within the earthquake preparation zone a few days before
the seismic event [24]. This fact has been considered in the present study to estimate the
variation in TEC in the ionosphere [24]. It varies from 1337 km for the Mw 7.3 Nepal 2015
earthquake to 127.94 km for the Mw 4.9 Nepal 2020 earthquake. Table 2 shows the distances
between the epicenters of these earthquakes and the GNSS and receiver stations used in
this analysis.

Table 2. Receiver station and their epicentral distance.

Epicentre Station
ID Name Location Epicentral

Distance (km)

19 km SE of
Kodari, Nepal

CHLM Chilime 28.207◦ N, 85.314◦ E 86
NAST NAST_SciTec_2013 27.656◦ N, 85.327◦ E 74.9
SYBC Syangboche 27.814◦ N, 86.712◦ E 63.7

30 km W of
Imphal, India

RMJT Rumjartar 27.305◦ N, 86.550◦ E 759.46
RMTE Ramite 26.990◦ N, 86.597◦ E 745.08
SYBC Syangboche 27.814◦ N, 86.712◦ E 764.97

38.2 km from
Falam,

Myanmar

KALW kalw_myanmar2018 23.197◦ N, 94.304◦ E 53.89
KLAY klay_myanmar2018 23.192◦ N, 94.064◦ E 45.35
TEDM tedm_myanmar2018 23.354◦ N, 93.649◦ E 73.73

29 km SSE of
Kodari, Nepal

JIR2 JIR2 27.657◦ N, 86.186◦ E 13.41
KUGE KUGE_NGN_NEP2018 27.618◦ N, 85.538◦ E 53.07
SYBC Syangboche 27.814◦ N, 86.712◦ E 65.09

13 km SSW of
Kakhing, India

KALW kalw_myanmar2018 23.197◦ N, 94.304◦ E 141.04
KLAY klay_myanmar2018 23.192◦ N, 94.064◦ E 136.57
TEDM tedm_myanmar2018 23.354◦ N, 93.649◦ E 120.02

To identify seismo-ionospheric signals, we examined the behavior of VTEC for 120 run-
ning days using statistical methods [14,24,31]. The median of 15 running days was com-
puted to construct the upper and lower bounds [24]:

Upper Bound = X + 1.34σ (4)

Lower Bound = X − 1.34σ (5)

where X is the median and σ is the standard deviation [24]. VTEC values above the upper
bound or below the lower bound are considered an anomaly.

4. Results
4.1. 2015 Nepal Earthquake

The Mw 7.3 Nepal earthquake occurred on 12 May 2015 at 07:05:19 UTC. GNSS data
from the base stations SYBC, NAST, and CHLM were prepared between 26 March and
27 May 2015 to determine TEC variations between 10 April and 27 May 2015. Figure 2
depicts data from the CHLM station, located 86 km from the epicenter. The GNSS data
processing revealed negative and positive anomalies (Table 3). One month before the
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occurrence, on 11 April, the first negative anomaly was observed. Additionally, a negative
anomaly was observed on 11 May, the day before the earthquake. Then for seven days,
from 19 May to 25 May, a consistent and significant negative anomaly was observed after
the event. Likewise, on 14 April, the first positive anomaly was observed. On the day of
the event, a positive anomaly was also observed, and the peak value was recorded at 08:02
UTC with a TEC value of 88.52 TECU. According to the geomagnetic data, there were light
storms on 10 April and 16 April, and 13 May, with corresponding Ap indices of 34, 43, and
45, respectively (Figure 7). The geomagnetic activity was, therefore, responsible for the
positive anomalies seen on these three days.

Table 3. TEC anomalies observed a month prior to and after the earthquake in the earthquake
preparation zone.

Earthquake Station Epic. Dist.
(km) Negative Anomaly Positive Anomaly

Nepal 7.3
19 km SE of

Kodari, Nepal
12-May-15

CHLM 86
(11, 28, 29) April

(3, 21, 22, 23, 24, 25)
May

(12, 15) May

NAST 74.9
(11, 30) April

(3, 19, 21, 22, 23, 24,
25) May

(12, 15) May

SYBC 63.7 11 April (21, 22, 23,
24) May (12, 15) May

Imphal 6.7
30 km W of

Imphal, India
03-Jan-16

RMJT 759.46 (4, 31) December (20, 22, 31) December
(12, 13, 16) January

RMTE 745.08 (4, 31) December (20, 22, 31) December
(12, 13, 16) January

SYBC 764.97 (4, 8, 31) December (20, 22, 31) December
(12, 13, 16) January

Myanmar 5.9
38.2 km from

Falam, Myanmar
16-April-20

KALW 53.89 (9, 16, 22, ) April (2, 3, 4, 29) April 1 May

KLAY 45.35 (9, 16) April
(21, 31) March

(2, 3, 4, 29) April
1 May

TEDM 73.73 (9, 16) April (2, 3, 4, 29) April 1 May

Nepal 4.9
29 km SSE of

Kodari, Nepal
12-May-20

JIR2 13.41 (10, 12, 18) May (13, 20, 26) April
(1, 21, 25) May

KUGE 53.07 (10, 12, 14, 18) May (13, 26) April
(1, 4, 19, 21) May

SYBC 65.09 (10, 12, 18) May (13, 26) April
(1, 4, 21) May

Manipur 5.2
13 km SSW of

Kakching, India
25-May-20

KALW 141.04 (10, 11, 12, 14, 18, 29,
31) May 9 June

29 April 1 May (2, 4)
June

KLAY 136.57 (10, 11, 12, 18, 29, 31)
May 9 June

29 April (1, 30) May
(2, 4) June

TEDM 120.02
(10, 14, 18, 29, 31)

May
9 June

29 April 1 May
(2, 4, 7) June
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Figure 2. Variation in TEC data for the earthquake in Kodari, Nepal, from 10 April 2015 to 27
May 2015.

4.2. 2016 Imphal Earthquake

On 3 January 2016, at 23:05:22 UTC, there was an earthquake in Imphal measuring Mw
6.7. GNSS data from the IGS stations SYBC, RMJT, and RMTE from 18 November 2015 to 18
January 2016 were compiled to calculate TEC variations from 3 December 2015 to 18 January
2016. The data obtained from the station RMTE, located 745.08 km from the epicenter, are
displayed in Figure 3. In Table 3, the anomalies discovered using GNSS data are listed. On
4 and 3 December, the first negative and positive anomalies, respectively, were noticed (one
month before the event). A second positive anomaly was observed on 31 December at 8:54
UTC. The geomagnetic environment was calm, except for 21 December and 31 December
2015 (Figure 7). The Ap index observed was 38 and 43 respectively, contributing to the
minor storm and high electron content. Thus, geomagnetic activity accounts for the positive
anomalies recorded on these days. This anomaly is a true earthquake precursor because
the negative anomaly was also detected on 31 December.
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January 2016.

4.3. 2020 Myanmar Earthquake

The Mw 5.9 Myanmar earthquake occurred on 16 April 2020 at 11:45 UTC. From 1
March to 2 May 2020, GNSS data from IGS stations KALW, KLAY, and TEDM were prepared
to derive TEC variations from 16 March to 2 May 2020. Figure 4 shows the data acquired
from the station KLAY, which is 45.35 km from the epicenter. Table 3 shows negative and
positive anomalies in the processed GNSS data. The first negative anomaly was observed
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on 22 March, 25 days before the event. The negative anomalies were also observed on the
day of the event at 5:37:45 UTC. The first positive anomaly was observed on 21 March,
26 days before the event. Throughout the duration, the geomagnetic conditions were calm.
No geomagnetic activity was observed in the acquired data (Figure 7).
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4.4. 2020 Nepal Earthquake

The Mw 4.9 Nepal earthquake occurred on 12 May 2020 at 18:08:38 UTC. From 26
March to 27 May 2020, GNSS data from IGS stations JIR2, KUGE, and SYBC were pro-
cessed to derive TEC variations from 10 April to 27 May 2020. Figure 5 shows the data
acquired from station JIR2, which is 13.41 km from the epicenter. The processed GNSS data
revealed negative and positive anomalies, as shown in Table 3. The first negative anomaly
was observed on 13 April, one month before the event. The first positive anomaly was
observed on 13 April, a month before the earthquake. A continuous positive anomaly was
observed for 19 – 20 April, 26 April, 29 April, and 1 May. Throughout the duration, the
geomagnetic conditions were calm. No geomagnetic activity was observed in the acquired
data (Figure 7).
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4.5. 2020 Manipur Earthquake

The Mw 5.2 Manipur earthquake, located at 24.391◦ N and 93.921◦ E, occurred on 25
May 2020, at 14:42:17 UTC. From 10 April to 10 June 2020, GNSS data from IGS stations
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KALW, KLAY, and TEDM were processed to derive TEC variations from 25 April to 10 June
2020. Figure 6 shows the data acquired from the station TEDM, 120.02 km from the epicenter.
The processed GNSS data revealed negative and positive anomalies (Table 3). The first
negative anomaly was observed on 25 April, one month before the event. The first positive
anomaly was observed on 29 April and 30, 27, and 26 days before the earthquake (Figure 6).
Throughout the duration, the geomagnetic conditions were calm. No geomagnetic activity
was observed in the acquired data (Figure 7).
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5. Discussion
5.1. Compatibility of IONOLAB-TEC

Given that IONOLAB-TEC has yet to be utilized in the Himalayan region, determining
its accuracy and effectiveness was essential. Therefore, the two earlier earthquakes (2015
Nepal and 2016 Imphal) with their documented anomalies were chosen for this project.
The data were then correlated with [19,24] for the earthquakes in 2015 in Nepal and
2016 in Imphal. The results showed that IONOLAB-TEC helped analyze earthquake
precursors in the Himalayan region. This software’s higher temporal resolution detected
more anomalies before and after the earthquake than with the [19,24] anomalies which
have GPS -TEC software.

5.2. Accuracy of the Ionospheric Perturbation as an Earthquake Precursor

The extra-terrestrial phenomenon can also disrupt the ionospheric system. As a result,
the precision of the outcomes produced by TEC values is related to the geomagnetic data.
Before the 2015 Nepal earthquake (M7.3), significant negative anomalies were observed.
No anomaly was observed near the 2016 Imphal earthquake. On the day of the earthquake
in 2020 in Myanmar (Falam), a negative anomaly was detected. On the day of the event, at
5:13:30 UTC, a negative anomaly was observed in the 2020 Nepal earthquake. The observed
anomalies were significant despite their small magnitude because the station was close to
the epicenter. A positive anomaly was observed on the day of the earthquake in Manipur
(Kakching) at around 04:53:30 UTC.

The ionospheric perturbation in the Imphal earthquake of 2016 has gained some
validity in the precursor study. As stated, abnormalities of both a positive and negative
nature were seen on 31 December 2015. A minor geomagnetic disturbance occurred on
that day (Figure 7). A negative anomaly with a VTEC of 14.83 TECU was observed on that
day at 03:07:00 UTC, while a positive anomaly with a VTEC of 53.4 TECU was observed
at 08:49:00 UTC. Therefore, seismic disturbances were the only reason the TEC anomaly
occurred.

5.3. TEC Variation with Respect to the Epicentral Distance

With various epicentral distances, slight variations were observed. Table 3 lists the
various stations, the distances between the five epicenters, and the detected anomalies.
Figure 8 depicts a graph of the TEC variation of the different earthquake stations. The
SYBC station, closer to the epicenter (63.7 km), provides the highest TEC values for the
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2015 Nepal earthquake. Continuous TEC variations after the quake were observed the
most with the 2015 Nepal earthquake. All stations are close to the edge of the earthquake
preparation zone for the Imphal earthquake of 2016. As a result, the difference in TEC
values among the stations could be more noticeable. All three stations are located near to
one another in the 2020 Myanmar earthquake. Consequently, TEC values were observed
to be low. This indicates that a better station distribution is recommended to calculate the
TEC variation. The JIR2 station’s value of TEC fluctuations for the 2020 Nepal earthquake
is higher owing to its proximity to the epicenter. Owing to their proximity, all three stations
provide similar TEC values for the 2020 Manipur earthquake. Compared with stations
far from the epicenter, those closer to the epicenter exhibit higher intensities and more
frequent anomalies.
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6. Conclusions

To analyze ionospheric perturbations, the analysis of GNSS data using IONOLAB-TEC
examines the TEC variation in the Himalayan region. The 30 s resolution provided by
IONOLAB-TEC detects minor anomalies better than GPS-TEC. The analysis found that
anomalies are detected one month before the earthquake, except for the 2020 Myanmar
earthquake (Mw 5.9). The TEC anomalies are detected on the day of the earthquake,
except for the 2016 Imphal earthquake (Mw 6.7). However, no regular patterns were
observed in the TEC perturbations within these five earthquakes. The TEC perturbations
were also observed after the event and were recorded to be highest in the 2015 Nepal
earthquake. Higher magnitude earthquakes show more evidence of the TEC variation’s
frequency. When a high-magnitude earthquake occurred, the TEC anomalies were noticed
for extended periods. The earthquake’s depth also impacted the TEC value. For shallower
earthquakes, larger values were reported. Better spatial distribution of the GNSS stations is
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a requirement for real-time monitoring. The clarity in the realm of earthquake prediction
requires constant observation of real-time TEC data.
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