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Abstract: The need to understand the process by which particles, including solar wind and coronal
ions as well as pickup ions, are accelerated to high energies (ultimately to become anomalous cosmic
rays) motivate a multi-fluid shock wave model which includes kinetic effects (e.g., ion acceleration) in
an electromagnetically self-consistent framework. Particle reflection at the cross-shock potential leads
to ion acceleration in the motional electric field and thus anisotropic heating and pressure in the shock
layer, with important consequences for the multi-fluid dynamics. This motivates development of a
multi-fluid model of solar wind electrons and ions treated as fluid, coupled self-consistently with a
small population of ions (e.g., pickup ions) dynamically treated as individual particles. Consideration
of both the time dependent and steady state regimes, indicate that such a multi-fluid approach is
necessary for resolving the, Debye scale, particle reflecting cross-shock potential and subsequent
dynamics. To study charge separation effects in narrow, supersonic wave layers we consider a
reduction of the system to the steady state for cold ions and hot electrons and find two types of
solitary waves inherent to the reduced two-fluid system in this limiting case.

Keywords: solitons; electrostatic solitary waves; pickup ions; perpendicular shock waves;
multi-fluid plasma

1. Introduction

Investigations of multiply reflected ion (MRI) acceleration at perpendicular shocks, where ions
are treated as test particles, with detailed trajectories calculated from the Lorentz force equation,
have found MRI to be an efficient mechanism capable of energizing ions up to energies on the
order of ∼100 keV, as needed for injection into diffusive shock acceleration mechanisms [1–5] which
further accelerate them to become the so-called anomalous component of cosmic rays. Much of
this work treats the electromagnetic fields as fixed and ions as test particles. For an improvement,
we have presented a two-fluid solar wind (SW) simulation with pickup ions (PUIs) coupled quasi
self-consistently via inclusion of the PUI anisotropic pressure—calculated directly from their precisely
tracked trajectories [6]. Continuing this work, here we consider a self-consistent inclusion of the
back-reaction, due to ion acceleration, including their action on the electromagnetic fields as well
as their anisotropic pressure. The possibility of self-consistently including ions, treated as particles
(in a manner similar to particle-in-cell or PIC codes), using a 1-fluid MHD (magnetohydrodyamics)
model, with source terms included to account for shock accelerated ions, has been rejected because,
as considered below, only a multi-fluid plasma treatment can resolve important charge separation
effects in supersonic wave layers.

When charge separation gives rise to particle reflecting electrostatic fields, resolution on electron
Debye scales is necessary to include important plasma dynamics. For example, studies of adiabatic
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solitary waves [7] and shock surfing at a two-fluid plasma model [8], indicate that the cross-wave
electrostatic field structures form on electron Debye scales. At such a fine scale, electric fields provide
important force sights where suprathermal ions gain energy by acceleration along the motional electric
field after reflection from an electrostatic cross-shock potential (CSP), thus providing a dissipation
mechanism for super-critical collisionless shocks, which can explain some observations. For example,
reflected and accelerated pickup ions can explain the cooler than expected solar wind observed by
Voyager 2 downstream of the heliospheric termination shock [1,2,4,9,10].

Such observations and simulations indicate that electrostatic solitary waves (ESWs) are
dynamically coupled to shocks in multi-fluid plasmas [11–13]. In this context, we pursue the
development of a self-consistent fluid dynamics model that can incorporate the effects of reflected
particles, in particular for shock-surfing pickup ions. Indeed, our two-fluid hybrid model, including
dynamically coupled ions, treated as test particles [6], required a multi-fluid treatment without the
common assumption of quasi charge-neutrality (e.g., used consistently in [Tidman and Krall, 1971] [14])
since particle reflecting electrostatic structures arise from charge separation when ion and electron
densities are perturbed from balance in narrow wave layers.

As an illustrative simplification of the complex multi-fluid system, we treat the special case of cold
ions and hot electrons in the steady state of the wave frame, while noting that such plasma conditions
may be appropriate e.g., for modeling electrostatic solitary waves (ESWs) in the electron foreshock
region of Earth’s bow shock where intense Langmuir waves are observed to be generated there by
suprathermal electrons [11]. By solving the resulting coupled set of ordinary differential equations
(ODEs), via numeric parameterization of the set, we find both accelerating and decelerating solutions
of ESWs associated with both electrostatic potential hills and wells, much like the two types of ESWs
observed by Geotail near Earth’s bow shock [11].

Motivation for the Development of a Multi-Fluid Plus Kinetic Ions Plasma Model

The need for development of multiple-scale plasma simulation methods has become increasingly
evident [15,16]. For example, in heliospheric plasma, resolution over multiple scales is necessary
to describe events where large amounts of electromagnetic energy is converted, over short times,
into kinetic energy. Such events are ubiquitous throughout space and occur e.g., at magnetic
reconnections such as those observed in Earth’s magnetosphere during magnetic storms. The diffusion
processes (visible as the aurora Borealis) that cut and reconnect magnetic field lines during these events
occur on electron kinetic scales [17] and yet transfer explosive amounts of kinetic energy into the plasma
particles, driving the large scale physics of magnetohydrodynamics (MHD). In addition, diffusion
processes at shock waves, such as shock drift acceleration (SDA) [18] and shock surfing acceleration
(SSA) [2,3], discussed above, serve as pre-acceleration for efficient injection into Fermi-acceleration
and ultimately effect global, MHD scale structures. Meanwhile, proper descriptions of the thermal
diffusion at collisionless shocks by SDA and SSA requires resolution across electron up through ion
kinetic scales.

For heliospheric scales, where regions of interest are on the order of astronomical units,
plasma simulations are typically computed with MHD codes [19]. Although such high resolution
MHD methods are very computationally efficient and allow for step-jumps e.g., at shocks, these codes
invariably assume local charge neutrality and some form of idealized Ohm’s law, so that Alfven waves
and magnetosonic waves dictate the characteristic scales of MHD.

On the other end of the computational spectrum from MHD, electron kinetic scales, characterized
by the electron Debye length and plasma frequency, can be well simulated with PIC codes, such as
VPIC (Vector Particle-In-Cell), which was employed to study the nonlinear evolution of ion ring-beam
distributions in low beta plasmas [20]. As multi-threaded computational power increases, PIC codes
may well emerge as the best way to model plasma evolution throughout the global helioshere.
Nonetheless, PIC codes are essentially brute force methods where every superparticle is tracked and
their kinetics simulated via the interaction of their trajectories under the Lorentz force, with Maxwell’s
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equations. Thus, the simplicity and fine scale resolution of PIC comes at the high cost of computational
burden. In other words, PIC code simulations require lots of computer power and time to run. Thus,
we seek to develop a multi-fluid method suitable for modeling SSA, and the like, across the large
scale termination shock (TS,) a method that through the use of fluid equations is less computationally
expensive than PIC, but that can properly resolve important ion dynamics which cannot be resolved
by MHD.

Multiplying the continuity equations (see e.g., [21]) for electrons and ions by their fundamental
electron charge e and summing yields the charge continuity relation

∂q
∂t

+∇ ·~j = 0

where q and~j are the total charge density and current. The usual neglect of the displacement current
in magneto-hydrodynamics (MHD) yields

∇× ~B =
4π

c
~j

in Ampere’s law implying that ∇ ·~j = 0 and thus that the charge density q is everywhere constant,
meaning that a 1-fluid MHD approach, which assumes charge neutrality everywhere, cannot resolve
the cross-shock potential (CSP) inducing charge separation in the shock layer. As outlined below,
in order to resolve charge separation, we present a two-fluid plasma model which includes a third
population, composed of candidate ions which we term as shock accelerated particles (SAPs) likely
to be MRI accelerated, to be treated kinetically as quasi-test particles–meaning that for the duration
of a time-step (on the plasma fluid scale) the electromagnetic fields are fixed and the trajectories of
the SAPs, along with their associated stress and energy tensors, are calculated. The SAP tensors are
then fed step-wise into the 2-fluid plasma model as source terms. A brief description of shock surfing
acceleration, with implications for source terms follows.

Multiply reflected ion (MRI) acceleration can occur when plasma is suddenly decelerated at a
shock wave where the more massive ions on average, having more momentum, are able to penetrate
further into the density pile-up immediately downstream of the shock than do the less massive
electrons. The subsequent charge separation results in the formation of a cross-shock potential (CSP)
which acts as an electrostatic barrier to incoming ions. Some ions incident at the shock with insufficient
shock-normal component of velocity to overcome the CSP will be reflected. Reflected ions, which can
be thought of as kicked out of the SW frame where electric fields are negligible, are acted on by the
motional electric field (directed tangentially to the surface of a perpendicular shock) and can thus be
significantly energized by MRI acceleration.

As illustrated in Figure 1 (which illustrates a shell distribution where the entire portion of the
shell satisfying vx < vspec =

√
2eΦ/m has undergone a single reflection) ion reflection can occur when

1
2

mv2
x < eΦ,

i.e., when the ion’s x-component of velocity is insufficient to overcome the CSP barrier. For a PUI
distribution incident on a simple step-function shock structure with a vanishingly narrow ramp width
(such as considered by [2]), the entire portion of the distribution satisfying the reflection condition
will undergo one or more reflections, resulting in very strong energization of the downstream PUIs.
On the other hand, the main ion population, the SW ions which lie on a relatively cold Maxwellian
core distribution (the heavy central dot depicted in Figure 1) are transmitted downstream of the
shock with virtually no reflection. In a recent article [1] we have performed a test-particle simulation
of the termination shock (TS) showing that MRI acceleration can also be important at shocks with
fairly large ramp widths but that still posses sufficiently narrow fine structure to support reflection.
An example of a single PUI undergoing shock surfing acceleration (SSA) in the fine structure of
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the quasi-perpendicular TS ramp is illustrated in Figure 2, which shows how some ions experience
multiple reflection and thus strong energization due to SSA in the ramp. Thus motivated by the
important role the shock structure plays in ion acceleration, we seek a 2-fluid plasma model that will
allow us to resolve fine details of the electric and magnetic fields in the local vicinity of the shock.
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Figure 1. Illustration of the idealized initial ion distribution, in the shock frame, before and just after
reflection. (a) The unreflected initial distribution is composed of a pickup ions (PUIs) which reside on a
shell in velocity space of radius u0 (the solar wind (SW) speed) and SW ions residing in a core located
at (u0, 0, 0). The dashed portion of the PI shell to the left of vspec on the vx-axes (vertical dashed line)
has an insufficient x-component of velocity to over come the cross-shock potential (CSP, Φ) and will
be reflected. (b) The ion distribution immediately following refection is composed of the specularly
reflected fractional part of the PUI shell and the remainder which, along with the SW core, is convected
downstream without reflection. Not illustrated by this figure is the stretching along motional electric
field (~E = ~u× ~B) direction that the reflected partial shell will undergo during the energization process.
It is evident that the reflected PUI partial shell has gained energy after a single reflection, with respect
to the fluid frame where the SW core is at the origin.

-Hlr+lf L -lr lv

1

2

3

4.5

0

x

BH
xL
�B
¥

y�
R
¥

Figure 2. A test-particle ion (lower black curve) shock surfing through a model of the termination
shock (upper blue curve). The fine structure in the ramp (not clearly visible in this figure) provides
multiple possible reflection sights.
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There are several important features of MRI acceleration that the 2-fluid plus source terms model
must include. For example, as depicted in Figure 3, ion reflection at the shock ramp is expected
to perturb state variables such as pressure and density (represented by the arbitrary perturbation
quantity gi(x, t) in Figure 3). Furthermore, our simulations [1] have shown that PUI pressure behind
the termination shock can be highly anisotropic.

Figure 3. Depiction (for illustration purposes) of a perturbed quantity such as ion density, ion pressure,
etc. represented along the verticle axis by gi(x, t0) at some arbitrary time t0 shown together with the
cross-shock potential (CSP) where x is the distance along the flow (measured along the horizontal axis.)
The qualitative plots for these two functions are superimposed over a qualitative sketch of an ion
trajectory. The illustration shows how some incoming ions are trapped by reflection from the CSP
and accelerated in the motional electric field (~E = −~u × ~B) before being convected downstream.
This trapping leads to a small ion density increase which is accounted for by the nonzero value of gi in
a small region centered around the shock front.

Figure 4 illustrates ion distributions ahead of and just behind the TS model. Note that virtually
none of the upstream Maxwellian SW distribution lies to the left of the velocity vspec, whereas a
significant portion of the upstream PUI filled-shell does lie to the left of vspec (i.e., in the reflecting
region of velocity space). We have shown, in test-particle calculations, that (cold) Maxwellian
distributions incident on a narrow, perpendicular shock pass downstream virtually unreflected,
as expected. This justifies the assumption employed below in the construction of our numerical
model that the 2-fluid SW is Maxwellian and isotropic everywhere. The right hand panel of Figure 4 is
the phase-space density plot of an MRI accelerated PUI distribution just behind the TS-model and it is
clear that this distribution is anisotropic with important non-zero off-diagonal terms in the associated
PUI pressure tensor.
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Figure 4. (left) Cold Maxwellian solar wind distribution in the shock frame. (middle) Initial pickup ion
filled-shell distribution in the shock frame. (right) Downstream multiply reflected ion (MRI) accelerated
filled-shell distribution in the fluid frame.

The up and downstream, normalized PUI (or SAP) pressure tensors associated with the middle
and right-hand panels of Figure 4 are

Pa
up =

 0.166 0 0
0 0.166 0
0 0 0.166

 , Pa
dn =

 0.130 0.002 0
0.002 0.535 0

0 0 0.166


respectively, which shows MRI enhancement of the pa

yy component as well as the formation of shear
pressure terms pa

xy = pa
yx.

The two part description of the total ion distribution considered above comes from basic ideas
about how PUIs are formed from interstellar neutrals ionized in the SW [2,22], and should suffice for
the simulation model considered here. The numerical generation of more realistic initial conditions,
however, could be readily deployed from kappa-distributions by noting that the MRI acceleration
candidate ions (such as PUIs) must reside in the high energy tail of the ion kappa-distribution,
whereas the cooler, isotropic SW component must come from lower velocity, Maxwellian like,
interior of the kappa-distribution. Evidently, such kappa-distribution types occur naturally, since more
energetic plasma particles in the SW also have further reduced ‘collision’ frequencies for scattering
via Coulomb interactions [23]. Thus, instead of being thermalized onto Maxwellian distributions
(as with a typical gas), the high energy portions of populations are generally known, instead, to be
well described by (and remain on) power laws having the form f ∝ v−α for the high velocity regime
(or power law tail) of their distributions [24]. The description of the SW environment, as characterized
by kappa-distributions, has been shown to be consistent with a statistical mechanics based fluid
description of ‘collisionless’ plasmas, making this approach highly attractive and theoretically well
supported [25]. For Example, the validity of both theory and observations of kappa-distributions
in the SW has been supported by Yoon, who develops a kinetic treatment including electrostatic
Langmuir turbulence, and finds by rigorous implication, that SW electrons can be well described by
kappa-distributions, consistent with observations of the quiet time SW at 1 AU [24].

Widely in the literature, it is evident that charged particles in the SW environment tend to
follow a ‘rich get richer’ scheme whereby the more energetic particles are the ones risen to even
higher energies by a wide variety of acceleration mechanisms including MRI acceleration and SDA
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and various other stochastic acceleration mechanisms to name several. Furthermore, the shock
accelerated particle (SAP) candidates for MRI, as considered above, need not be PIUs necessarily.
The SAPs need only reside initially within the high energy tail the ion distribution. Since the SW
environment in general is well described by kappa-type distributions, while prescribing an initial,
isotropic plasma as given by a Maxwellian core (corresponding to the interior or low energy regime of a
kappa-distribution) together with a suprathermal tail (corresponding to the high energy regime or tail
of a kappa-distribution,) we can note the model considered here could also be applicable for simulating
ion acceleration at interplanetary shocks, such as coronal mass ejection driven shocks or planetary
bow shocks, though here we are interested in MRI acceleration of PUIs at the quasi-perpendicular TS.
Thus, with these ideas in mind, we seek to include the formation of an anisotropic ion distribution in
the shock layer via the inclusion of source terms in a two-fluid plasma model as described below.

2. Materials and Methods

2.1. Two-Fluid Solar Wind Plus Kinetically Treated Shock Acceleration Candidate Kinetic Ions Numeric Model

We develop a quasi-self-consistent system composed of a core two-fluid plasma solar wind
(SW) background, which is acted on by a small population of ions to be dynamically treated as
super-particles (similarly to the way are ions are treated in particle-in-cell (PIC) codes where the
term super-particle implies that each PIC particle represents, on average, an arbitrary number of real
particles) that are self-consistently coupled to the core SW. We are interested in the case where a small,
energetic population, denoted as shock acceleration particles (SAPs) which comprise the population
of candidates that can experience multiply reflected ion (MRI) acceleration due to reflection from
a cross-shock potential (CSP) leading to ion acceleration in the motional electric field. A two-fluid
description is derived to calculate the back reaction on the fields, in essence creating a feedback loop
between suprathermal shock accelerated particles (SAPs) with SW electron and ion fluids.

There are two distinct characteristic scale regimes involved in this development: long time and
length scales (δt, L) associated with the description of the two-fluid core SW plasma, and short
time and length scales (δta, l) associated with SAP dynamics (particularly within the narrow shock
structure). The prescription here, for constructing a closed system that can be solved numerically,
is to treat the electric and magnetic field ~E and ~B as constant for each time period δt during which we
solve the motion of the SAP candidate ions (treated in a manner much like particle-in-cell (PIC) codes);
the pressure and heat flux tensors resulting from the detailed ion trajectories are then feed into the
2-fluid plasma equations as source terms; the 2-fluid equations are used to update the values of ~E and
~B over the longer time scale and the process is iterated. Below we present a system ready for such a
numerical treatment.

The derivation of the plasma fluid equations is followed from Boyd and Sanderson,
Plasma Dynamics [21], Chapter 3 (from now on referred to as B&S), however instead of treating
the system as two groups of particles, ions and electrons (labeled in B&S by ‘+’ and ‘−’, respectively),
we treat the system as composed of three groups of particles, labeled {s, a, e}, which are solar wind (SW)
ions, shock acceleration candidate ions and electrons, respectively. The shock acceleration candidate
ions (e.g., pickup ions (PUIs)) may compose between 0 to 20% of the total ion population and are kept
separate since they will be treated as SAP superparticles.

Definition 1. Ion number density composed of the SW ions plus SAP candidates is

n+ = ns + na (1)

and the electron density is ne.

The charge density is
q = en+ − ene (2)
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and ion fluid velocity is

~u+ =
mns~us + mna~ua

mns + mna
(3)

The current density is
~j = ens~us + ena~ua − ene~ue (4)

Here m is the ion mass (which for now is a proton mass), e is the electron/proton charge. The random
(thermal) velocity of each species is

~ca = ~va − ~u+

~cs = ~vs − ~u+ (5)

~ce = ~ve − ~ue

Pressure tensors are defined as
pij = mn

〈
cicj
〉

(6)

and the heat tensors are
qijk = mn

〈
cicjck

〉
(7)

where, as per the B&S convention, species labels are suppressed to simplify the notation.
Since, in (5), both SW ions and SAP ions have thermal velocities defined with respect to

the common ion bulk velocity, the total ion pressure tensor can be written as the sum of two
partial pressures

p+ij = ps
ij + pa

ij (8)

We make the closure assumption that SW ions and electrons can be treated everywhere as thermalized,
isotropic distributions such that

ps
ij = δij ps (9)

pe
ij = δij pe (10)

and
qs

ijk = qe
ijk = 0.

The shock accelerated particle (SAP) pressure is taken to be composed of an isotropic and anisotropic
part,

pa
ij = δij pa + πa

ij. (11)

and has a nonzero heat tensor qa
ijk. All fluid equations are constructed from the transfer equation

∂

∂t
(n 〈ψ〉) + ∂

∂~r
· (n 〈~vψ〉) = ne

m
~E ·
〈

∂ψ

∂~v

〉
+

ne
mc

〈
(~v× ~B) · ∂ψ

∂~v

〉
(12)

where the closure assumption that collision terms are negligible has been made. Continuity equations
result from (12) when ψ = 1.

∂n+

∂t
+∇ · (n+~u+) = 0 (13)

∂ne

∂t
+∇ · (ne~ue) = 0

Ion momentum, ψ = m~v, (i’th component)

∂

∂t
(mn+u+

i ) +
∂

∂xj

[
ps

ij + pa
ij + mn+u+

i u+
j

]
= en+Ei +

en+

c

(
~u+ × ~B

)
i

(14)
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where for ions 〈
vivj

〉
=

pij

mn
+ uiu+

j + u+
i uj − u+

i u+
j (15)

(species labels s, a suppressed) Electron momentum (i′th component)

∂

∂t
(meneuei) +

∂

∂xj

[
pe

ij + meneueiuej

]
= −eneEi −

ene

c

(
~ue × ~B

)
i

(16)

where for electrons 〈
vivj

〉
=

pij

mn
+ uiuj (17)

Taking me → 0, (16) becomes
∂pe

∂xi
= −eneEi −

ene

c

(
~ue × ~B

)
i

(18)

Ion energy

∂

∂t

(
1
2

p+ii +
1
2

mn+u2
+

)
+

∂

∂xj

[
1
2

qa
iij +

1
2

p+ii u+
j + p+ij u+

i +
1
2

mn+u2
+u+

j

]
= en+~E · ~u+ (19)

where for ions we have used

〈
v2vi

〉
=

qjji

mn
+

pjju+
i

mn
+

2piju+
j

mn
+ 2uju+

j u+
i + uiu+

j u+
j − 2u+

i u+
j u+

j (20)

Electron energy

∂

∂t

(
1
2

pe
ii +

1
2

meneu2
e

)
+

∂

∂xi

[
1
2

pe
jjuej + pe

ijuei +
1
2

meneu2
e uei

]
= −ene~E · ~ue (21)

where for electrons 〈
v2vi

〉
=

pjjui

mn
+

2pijuj

mn
+ uiujuj

since qe
ijk = 0. Taking me → 0, (21) becomes

∂

∂t

(
3
2

pe

)
+

∂

∂xj

[
5
2

peuej

]
= −ene~E · ~ue (22)

With the Maxwell curl equations,

∇× ~E = −1
c

∂~B
∂t

(23)

∇× ~B =
1
c

∂~E
∂t

+
4π

c
~j (24)

Equations (13), (14), (18), (19), (22) plus (23) and (24) form a set of 16 equations in the 16 unknowns
{n+, ne,~u+,~ue, ps, pe,~E,~B} to be solved numerically by a fluid code, and the included sources terms
pa

ij and qa
ijk are to be determined by a kinetic treatment of the SAP candidate ions.

2.1.1. Conservation Form of the Two-Fluid Plasma Equations

Summing the momentum Equations (14) and (18) yields

∂

∂t

(
mn+u+

i +
(~E× ~B)i

4πc

)
+

∂

∂xj

[
δij(ps + pe) + pa

ij + mn+u+
i u+

j − Tij

]
= 0 (25)

where we have used
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qEi +

(
~j× ~B

)
i

c
=

∂Tij

∂xj
− ∂

∂t

(
(~E× ~B)i

4πc

)
and the Maxwell stress tensor is defined as:

Tij =
BiBj + EiEj

4π
− δij

(
E2 + B2

8π

)
.

Summing the energy Equations (19) and (22) yields

∂

∂t

(
1
2

pa
ii +

3
2
(ps + pe) +

1
2

mn+u2
+ +

B2 + E2

8π

)
+

∂

∂xj

[
1
2

qa
iij +

1
2

pa
iiu

+
j + pa

iju
+
i +

5
2
(psu+

j + peue
j ) +

1
2

mn+u2
+u+

j +
c

4π
(~E× ~B)j

]
= 0 (26)

where we have used
~j · ~E = − ∂

∂t

(
B2 + E2

8π

)
− c

4π
∇ · (~E× ~B).

An alternate form of the electron energy equation can be formed by taking (18) multiplied by uei
and subtracting the result from (22) yielding

u2/3
ei

∂pe

∂t
+

∂

∂xi

[
peu5/3

ei

]
= 0 (27)

2.1.2. Dimensionless Forms of The Equations

To prepare the equations for numerical discretization define the following dimensionless variables:

x̄ =
x
L

t̄ =
u∞

L
t ~U =

~u+

u∞
~u =

~ue

u∞

N =
n+

n∞
n =

ne

n∞
Ēx =

Ex

E∞
Ēy =

Ey

E∞
(28)

B̄z =
Bz

B∞
Pij =

p+ij
mn∞u2

∞
pij =

pe

mn∞u2
∞

Qa
ijk =

qa
ijk

mn∞u3
∞

where L is an arbitrary length scale and, as justified below,

E∞ =
u∞

c
B∞

and the ∞ label indicates the constant far upstream (boundary) values for the state variables.
In addition, note that the dimensionless ion pressure can be expressed in terms of ion partial pressures

Pij = δijPs + Pa
ij.

The dimensionless derivatives of dimensionless state variables ψ̄(x̄, t̄) = ψ/ψ∞ take the form

∂ψ

∂t
=

ψ∞u∞

L
∂ψ̄

∂t̄
∂ψ

∂x
=

ψ∞

L
∂ψ̄

∂x̄
(29)

To simplify the notation for the two-fluid plasma system expressed in dimensionless form, it is
useful to define the following dimensionless plasma parameters

α1 =
Ω∞

ωp
α2 =

u∞

c
α3 =

α1

α2
α4 =

L
R∞

(30)
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which are expressed in terms of the far upstream ion gyro-frequency, ion plasma frequency and ion
gyro-radius defined as

Ω∞ =
eB∞

mc
ωp =

√
4πn∞e2

m
R∞ =

u∞

Ω∞
(31)

respectively. In writing the following dimensionless equations it is convenient to drop over-bars
and take it as understood that all variables and derivatives dimensionless. In addition, note that the
components of the dimensionless bulk velocities for the ions and electrons are given by

~U = (U, V, W) and ~u = (u, v, w)

respectively. In dimensionless form the continuity Equations (13) become

∂N
∂t

+∇ · (N~U) = 0 (32)

∂n
∂t

+∇ · (n~u) = 0

Ion momentum (14) becomes, (i′th component)

∂

∂t
(NUi) +

∂

∂xj

[
δijPs + Pa

ij + NUiUj

]
= α4N

(
Ei + (~U × ~B)i

)
(33)

Electron momentum (18) becomes, (i′th component)

∂p
∂xi

= −α4n
(

Ei + (~u× ~B)i

)
(34)

Ion energy (19) becomes

∂

∂t

(
1
2

Pa
ii +

3
2

Ps +
1
2

N~U2
)
+

∂

∂xj

[
1
2

Qa
iij +

1
2

Pa
iiUj + Pa

ijUi +
5
2

PsUj +
1
2

N~U2Uj

]
= α4N~E · ~U (35)

Electron energy (22) becomes

∂

∂t

(
3
2

p
)
+

∂

∂xj

[
5
2

puj

]
= −α4n~E · ~u (36)

The the total momentum Equation (25) becomes

∂

∂t

(
NUi + α2

1(~E× ~B)i

)
+

∂

∂xj

[
δij(Ps + p) + Pa

ij + NUiUj − Tij

]
= 0 (37)

where the dimensionless Maxwell stress tensor is

Tij = α2
3

(
BiBj + α2

2EiEj −
δij

2
(α2

2E2 + B2)

)
.

The total energy Equation (26) becomes
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∂

∂t

(
1
2

Pa
ii +

3
2
(Ps + p) +

1
2

N~U2 +
α2

3
2
(B2 + α2

2E2)

)
+

∂

∂xj

[
1
2

Qa
iij +

1
2

Pa
iiUj + Pa

ijUi +
5
2
(PsUj + puj) +

1
2

N~U2Uj + α2
3(~E× ~B)j

]
= 0 (38)

The Maxwell Equations (23) and (24) can also be expressed in dimensionless form as

∇× ~E = −∂~B
∂t

(39)

∇× ~B = α2
2

∂~E
∂t

+ α5(N~U − n~u) (40)

where
α5 =

α4

α2
3

The Poisson’s equation (∇ · ~E = 4πq) can also be expressed in dimensionless form as

∇ · ~E =
α4

α2
1
(N − n) (41)

2.2. Special Case: Quasi-One Dimensional, Exactly Perpendicular Shock

As an initial case, limit variations to the shock normal direction (x-direction) so that

∇ → x̂
∂

∂x
.

Consider an exactly perpendicular shock configuration, with

~B = (0, 0, Bz) (42)

~E = (Ex, Ey, 0) (43)

where the plasma flow at the far left (upstream) boundary is

~u+ = ~ue = x̂u∞

as x → −∞. The assumption of charge neutrality can be imposed at the left boundary so that the
dimensionless boundary conditions at x → −∞ are

N = 1, n = 1, U = 1, u = 1, Bz = 1, Ey = 1

V = 0, v = 0, Ex = 0. (44)

The fluid plus Maxwell’s equations can now be expressed in the dimensionless form

∂U
∂t

+
∂F
∂x

= S (45)

where the state vectors in (45) are
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U =



N
n

N U
N V

1
2

(
Pii + N~U2

)
3
2 p
Bz

Ex

Ey


, F =



N U
n u

Pxx + NU2

Pxy + NU V
1
2

(
Pii + N~U2

)
U + PxxU + PxyV +

Qa
iix
2

5
2 u p
Ey

0
c2

u2
∞

Bz


,

S =



0
0

L
R∞

(NEx + NVBz)
L

R∞

(
NEy − NUBz

)
L

R∞

(
NUEx + NVEy

)
− L

R∞

(
nuEx + nvEy

)
0

− L
R∞

ω2
p

Ω2
∞
(NU − nu)

L
R∞

ω2
p

Ω2
∞
(nv− NV)


where ~U2 = ~U · ~U. The two remaining equations are

∂p
∂x

= − L
R∞

(nEx + nvBz) (46)

Ey = uBz (47)

from the electron momentum (34). Thus, Equation (45) plus (46) and (47) form a complete system
ready for the construction of a numerical solution. For example, (46) and (47) can be used to eliminate
the electric field components directly. Furthermore, since none of the plasma state variables depend
on the z-components of velocity, we assume w = 0 and W = 0. In fact examination of the steady
state system (presented below) indicates that if W = w = 0 at the left boundary (x → −∞) then the
z-component of bulk velocity will remain zero, i.e., we can view the z-direction as ignorable for the
special case under consideration.

An alternate ‘quasi-conservative’ form of system (45) plus (46) and (47), expressed as

∂V
∂t

+
∂G
∂x

= 0 (48)

can be formed by swapping out the ion momentum and energy equation with the total momentum
and energy equations in the conservation forms given by (37) and (38), where state vectors in (48) are
written as

V =



N
n

NU + α2
1EyBz

NV − α2
1ExBz

1
2 Pa

ii +
3
2 (Ps + p) + 1

2 N~U2 +
α2

3
2 (B2 + α2

2E2)

Bz


,
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G =



N U
n u

Pa
xx + Ps + p + NU2 +

α2
1

2 (E2
y − E2

x) +
α2

3
2 B2

z
Pa

xy + NUV − α2
1ExEy

1
2 Qiix +

1
2 Pa

iiU + Pa
xxU + Pa

xyV + 5
2 (PsU + pu) + 1

2 N~U2U + α2
3EyBz

Ey


.

The above system must be supplemented by the electron equations

∂p
∂x

= −α4n (Ex + vBz) (49)

Ey = uBz (50)

u2/3 ∂p
∂t

+
∂

∂x

(
pu5/3

)
= 0 (51)

where (51), the quasi-conservative form of the electron energy, results on summing the x-component
electron momentum (46) and the electron energy equation. Additionally, the system (48) must be
supplemented by the remaining non-conservative components of Maxwell’s written as

∂Ex

∂t
= −α4

α2
1
(NU − nu) (52)

∂Ey

∂t
+

1
α2

2

∂Bz

∂x
=

α4

α2
1
(NV − nv) (53)

In the above treatment, the system is taken to be composed of three constituents: the core
SW electron fluid and two ion components, including core SW ion fluid with SAP candidate ions
interacting and interlaced over two time scales. Here, the core SW fluid components are assumed to be
dynamically amenable to longer simulation time steps δt. Whereas resolution of the SAP dynamics
could require shorter time steps δta so that δt/δta = n, where n = 1, 2, 3 · · · . The SAP population is to
be treated in the model as superparticles with their trajectories governed by the Lorentz force as is done
in PIC codes, and here using δta as the SAP simulation time step. In view of Equations (1) through
(8), which are consistent with the total ion pressure being treated as the sum of ion partial pressures,
the model is technically just that of a two-fluid plasma. So how is the ‘third’ fluid component, for the
SAP candidates, to be included in the simulation model through their treatment as superparticles?
These same defining equations provide the answer. After each time step evolution of the fluid over the
longer scale δt, The fluid and electromagetic field parameters can be held fixed while the SAPs are
iterated through n time steps as test particles. Thus, SAPs are evolved step-wise through the longer
time step δt, after which their fluid parameters can be directly calculated from their superparticle
distribution averages. These directly averaged SAP fluid parameters (na, ~ua, etc.) can be incorporated
or fed into the two fluid plasma description, at the beginning of each long scale time step, through use
of the fluid definitions as prescribed by Equations (1) through (8). Although, to minimize the effects
of unnatural distortion that may arise from the prescribed use of superparticles essentially as source
terms in a two-fluid model, the anisotropic SAP candidate population should perhaps be kept small.
For example, taking PUIs at the TS to be 10% of the total ion population, a reasonable lower bound
estimate [26], then the initial normalized ion density would be N = 0.9 + 0.1 = 1, as required by our
normalizations. Even lower percentages of SAP candidate ions could be reasonable, especially if we
consider interplanetary shocks on the order of 1 AU or so from the Sun where we might assume that
even lower ion percentages reside in the suprathermal tail of the total ion distribution.
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Steady State Equations for 1D Case with Perpendicular Magnetic Field

In the steady state ∂/∂t→ 0 and (48) reduces to

∂G
∂x

= 0 (54)

From which it is seen that several integrals of the motion are readily obtained. It turns out that for the
special case under consideration there are nine algebra relations (i.e., 9 integrals of the motion) that can
be obtained from the plasma system in the steady state (SS). The variables of the special case system
under consideration are (n, N, u, U, v, V, p, Ps, Ex, Ey, Bz) for a total of 11 unknowns. This means that,
in principle, the SS system can be determined from a coupled pair of ODEs in two of the unknowns.
Having solved the coupled ODEs, the remaining unknowns can be found from the algebra relations
and the system thus completely determined. The first four algebra relations are

NU = 1, nu = 1, Bzu = 1, Ey = 1. (55)

The first two SS relations, expressed in (55) above, follow from the continuity relations (i.e., first two
components of (54)) and the boundary conditions (44). The remaining two constants of the plasma
system, expressed by (55) follow from the Faraday relation given by the last component of (54) along
with the y-component of electron momentum expressed by (50). The third, fourth and fifth components
of (54) express conservation of total momentum and energy in the SS as

Pa
xx + Ps + p + U +

α2
3

2
B2

z −
α2

1
2

E2
x = 1 + P∞ +

α2
3

2
(56)

Ex =
1
α2

1

(
V + Pa

xy

)
(57)

1
2
(U2 + V2) +

5
2
(PsU + pu) +

(
1
2

Pa
ii + Pa

xx

)
U

+Pa
xyV + α2

3Bz +
Qa

iix
2

=
1
2
+ α2

3 +
5
2

P∞

(58)

where (44) and (55) have been applied and P∞ = P∞
s + P∞

a + p∞ is the total (dimensionless) pressure
at the upstream boundary which is taken to be completely isotropic there. The equation of state for
adiabatic electrons

p = p∞nγ, γ = 5/3 (59)

follows from (51) and (55). Using algebra relation (57) in Poisson’s’ Equation (41) yields

∂

∂x

(
V + Pa

xy

)
= α4(N − n) (60)

which, upon using (55), is also given by the y-component of the ion moment i.e., the fourth component
of Equation (54). This demonstrates explicitly that the Poisson’s equation is a corollary of the plasma
fluid equations and the Maxwell curl equations. Several additional relations can be obtained by
systematic substitution of the algebra relations (55)–(58) back into the SS forms of the non-conservative
equations given by (45). As mentioned, this process recovers the Poisson’s Equation (60) above along
with several ODEs in the electron density
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dn
dx

=
−α4(Ex + NV)

α2
3 + γp∞nγ−2

(61)

dn
dx

=
−α4

γp∞nγ−2 (Ex + vBz) (62)

dn
dx

= α5(nv− NV) (63)

from which we can recover an additional algebra relation

Ex + NV =
1
α2

3
(α2

3 + γp∞nγ−2)(NV − nv) (64)

where γ = 5/3. Using (55), (60) and (61) can be written as

dn
dx

=
−α4(

V+Pa
xy

α2
1

+ V
U )

α2
3 + γp∞nγ−2

(65)

d
dx

(
V + Pa

xy

)
= α4

(
1
U
− n

)
By using (56) and (58) to find U = U(n, V), the coupled set of ODEs (65) can (in principle) be solved
numerically and the steady state solution thus determined.

3. Results

3.1. Steady State, 1D Two-Fluid Plasma System with Cold Ions

Though reduced to the steady state, the above coupled set of ODEs, nonetheless, represents a
considerable challenge for use in evaluating valid solutions. Thus, as an initial step, we consider
a further simplification to the case of cold ions and hot electrons. Previously we have solved such
a simplified two fluid system as an integral over a single component of the plasma velocity [27],
which has the advantage of providing an exact (albeit numerical) solution of the wave structure.
Here we solve for the wave structure by introducing a parameterization of the coupled ODEs.
Though this coupled ODEs method might not be exact as the integral form, it has the advantage
of being extensible for use in more complex cases, such as the coupled set of ODEs presented in the
previous section. Furthermore, unlike the integral solution which only resolves decelerating solutions,
the parameterization method used here finds both decelerating and accelerating solutions (termed here
as lower and upper solutions) of the two fluids associated with potential wells and spiked potential
hills of the electrostatic potential. This is an important improvement over the integral form, in the sense
that the parameterized solutions can explain Geotail observations of ESWs associated with plasma
flows beaming in both the upstream and downstream directions from the bow-shock [11].

The solutions of the two-fluid plasma system presented below show that the plasma reacts
very strongly to perturbations from an upstream neutral background state (NBS) where complete
charge neutrality and zero electric field is assumed. The plasma response to perturbation from
the NBS is the formation of solitary waves over which the electric field (induced by strong
charge-imbalance) prevents the runaway acceleration of fluid velocities. Two types of solitons are
identified. The classical case, where both proton and electron velocities dip below then return to their
NBS values, is labeled as a lower solution. The lower solution is considered in many papers including
Zank and McKenzie, 1988 [28] and McKenzie 2002 [29], as well as [27], and is characterized by an
upward electrostatic potential hill. As we demonstrate below, setting the electron mass to zero is an
excellent approximation for lower solutions and has little effect on either the strength or structure
of soliton waves in this case. The second solitary wave type presented his is labeled as an upper
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solution, where both proton and electron velocities accelerate above then return to their NBS values.
Unlike lower waves, upper waves depend critically on a nonzero electron mass to prevent unbounded
wave growth.

We consider the steady state, two-fluid plasma system, viewed in the wave frame such that
∂/∂t → 0, where ion pressure and magnetic field are taken to be zero. The 1D continuity equations
can be expressed as

npup = neue = n0u0 (66)

which assumes upstream charge neutrality and co-moving electrons and ions in the upstream NBS.
The momentum equations and Poisson’s equation are

∂

∂x
(pe + men0u0ue) = −eneEx (67)

∂

∂x
(
mpn0u0up

)
= enpEx (68)

∂Ex

∂x
= 4πe(np − ne) (69)

The energy equation for adiabatic electrons is

peuγ
e = pe0uγ

0 (70)

where the 0-subscript implies a constant, neutral background state (NBS) taken to exist somewhere
upstream (as x → −∞). The system can be put in dimensionless form by introducing

N = np/n0, n = ne/n0, U = up/u0, u = ue/u0, (71)

p = pe/pe0, Ex → Ex/E0,
∂

∂x
→ 1

l
∂

∂x
, (72)

where all variables (u, U, p, Ex, x) are now dimensionless. In dimensionless form, the continuity
Equations (66) simplify to

NU = nu = 1 (73)

Equations (68) and (69) using (70) can be put in the dimensionless form:

(uγ+1 − c2
e0/u2

0)
∂u
∂x

= −
(

leE0

meu2
0

)
uγEx (74)

U
∂U
∂x

=

(
leE0

mu2
0

)
Ex (75)

∂Ex

∂x
=

(
l4πn0e

E0

)
u−U

uU
(76)

where
c2

e0 =
γpe0

men0
.

Taking the arbitrary length-scale factor to be the Debye length l = λD, where

λD =

√
kTe0

4πn0e2
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and setting

α0 = me/mp α1 =

√
α0

γM2
e0

E0 =
kTe0

eλD
, (77)

Equations (74)–(76) become

(uγ+1 − 1/M2
e0)

∂u
∂x

= −
α2

1
α0

uγEx (78)

U
∂U
∂x

= α2
1Ex (79)

∂Ex

∂x
=

u−U
uU

(80)

where Me0 = u0/ce0 is the constant upstream, electron sound speed Mach number. The dimensionless,
coupled set of ODEs (78)–(80), contain the conservation of total momentum and total energy integrals,
which can be expressed as

U + α0u + α2
1u−γ −

α2
1

2
E2

x = 1 + α0 + α2
1 (81)

which expresses conservation of momentum, and

U2 + α0u2

2
+

γα2
1

γ− 1
u1−γ =

1 + α0

2
+

γα2
1

γ− 1
(82)

which expresses conservation of energy. Note that in the above conservation laws (81) and (82) we
assume that the undisturbed upstream plasma is charge neutral, so that the steady state system should,
somewhere upstream, pass through the state (u = U = 1, Ex = 0) which we denote as the neutral
background state or NBS. It is clear that the NBS is a fixed point (meaning that the right hand side of
the equations are zero) of the steady state system (SSS): (78)–(80).

To understand the behavior of the system near this fixed point we examine the first order
expansion of the SSS about the NBS, which yields

d
dx

 u
U
Ex

 =

 0 0 −α2
1

α0(1−1/M2
e0)

0 0 α2
1

1 −1 0


 u

U
Ex

 (83)

where the origin of the state variables has been shifted to the NBS (i.e., U → U − 1, u → u − 1,
Ex → Ex− 0). The solution of linearized system (83) can be constructed from the Eigen-system for the
3 × 3 matrix and has the generic form

w(x) =
3

∑
i=1

cipi exp(λix) (84)

where w = (u, U, Ex), the ci are constants determined by initial conditions and λi and pi are the
eigenvalues and associated eigenvectors for the 3 × 3 matrix. The first eigenvalue appearing in
Equation (84) is λ1 = 0 which has the associated eigenvector p1 = (1, 1, 0); thus, the NBS as a constant
state is built into the two-fluid system and occurs whenever initial conditions require that c2 = c3 = 0.
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In other words, if the NBS is chosen as initial data, the solution for the SSS is just the constant NBS.
The remaining two eigenvalues for (83) can be expressed as

λ± = ±

√
1− α0(1/M2

e0 − 1))
γ(M2

e0 − 1)
(85)

from which we see λ± will be pure real whenever√
α0

1 + α0
< Me0 < 1 (86)

and pure imaginary otherwise. Thus, the linearized SSS is characterized by exponential growth or
bounded oscillation depending on the value of the Mach number.

To facilitate the numerical solution of the cold ion SSS, it is convenient to introduce a
parameterization variable t (which is not the time) and reduce the SSS to the form

du
dt

= −
α2

1
α0

uγ+1UEx (87)

dU
dt

= α2
1(u

γ+1 − 1/M2
e0)uEx (88)

dEx

dt
= (uγ+1 − 1/M2

e0)(u−U) (89)

dx
dt

= (uγ+1 − 1/M2
e0)uU (90)

The SSS, as represented by Equations (87) through (90), has a fixed point at uγ+1 = 1/M2
e0, Ex = 0.

However expansion of the SSS about this fixed point, in consideration of the integrals (81) and (82),
indicates that a constant state is the only solution for a system which must include this fixed point.
The other fixed point of the SSS occurs at uγ+1 = 1/M2

e0, U = 0, which, since here ions are
perfectly cold, could be considered a limiting physical state of infinite ion density. To understand
the interdependence between the electron and ion velocities u and U, it is useful to divide
Equation (88) by (87) which yields

dU
du

= −
α0(uγ+1 − 1/M2

e0)

uγU
(91)

Introducing the parameterization variable s, Equation (91) can be expressed as

dU
ds

= −α0(uγ+1 − 1/M2
e0),

du
ds

= uγU (92)

The interdependence between the ion and electron velocities is presented graphically in Figure 5.
A key feature to note here, for the nonzero electron mass case, is that the level curves form closed-loops,
which confine the fluid velocities to a finite range. The closed-loop curves, of the left hand panel,
are plots of U = U(u) as expressed by Equation (82). The three curves plotted correspond to three
choices of electron sound speed Mach number: (the unphysical) Me0 = 2 for the blue curve, Me0 = 0.15
for the orange curve and Me0 = 0.1 for the red curve. The solid portions of the curves correspond
to regions where E2

x > 0, as expressed by Equation (81), which we take as a necessary condition for
the solution to be physically real. The dashed portions of the curves correspond to (nonphysical)
regions where E2

x < 0 and/or U < 0. Overlaid on the U(u) curves in the left panel of Figure 5, is the
direction field of the solution space for the coupled ODE set (92) displayed as swirling red arrows.
This direction field, corresponding to the choice Me0 = 0.1 (i.e., the red U(u) curve) circles around
the stationary point (U = 0, uγ+1 = 1/M2

e0) in a fashion characteristic of harmonic oscillator type
ODE systems. To prove that this stationary point is a fixed node, meaning that no solution curves



Plasma 2020, 3 136

pass through this point, a linear expansion of the ODE set (92) about the stationary point can be
effected, which yields pure imaginary eigenvalues of the linearized system; thus the system has a
harmonic oscillator character and the fixed point is a node. The direction field corresponding to the
linearized ODE system for (92) is presented in the right panel of Figure 5. Evidently, solution curves
arbitrarily close to the fixed point (U = 0, uγ+1 = 1/M2

e0) still ‘circle’ around it in oscillator fashion,
demonstrating graphically that the fixed point is a node.
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Figure 5. Left panel: level curves for the conservation of momentum Equation (81) together with the
direction field for ODE set (92). The level curves are red for Me0 = 0.1, orange for Me0 = 0.15 and blue
for Me0 = 2. The curves are dashed on portions where E2

x < 0 and/or U < 0. All three level curves
pass through the neutral background state (NBS): (u = U = 1, Ex = 0). The red arrow stream-plot
(appearing on the same axis with the level curves in the left panel) is the direction field for ODE set (92)
with Me0 = 0.1. Note that the direction fields swirls around the stationary point (uγ+1 = 1/M2

e0, U = 0)
in the fashion of a harmonic oscillator system. Right panel: direction field for the linear expansion
of ODE system (92) about the fixed point so that ∆U = U and ∆u = u − (1/Me0)

2/(γ+1) and for
Me0 = 0.1. Inspection of the direction field, for the linearized system, indicates clearly that the fixed
point is node.

In the numerical solutions of the SSS presented, we limit ourselves to a consideration of solutions
connected to the NBS. As noted above, if the NBS is chosen as the initial data, the only solution
is the constant NBS. To find non-trivial solutions, we look for initial data nearby and connected
(via Equations (81) and (82)) to the NBS in the solution space.

Figure 6 presents plots of curves E2
x = E2

x(u) which simultaneously satisfy both Equation (81) and (82)
and helps to illustrate graphically how initial data can be chosen that is near and connected to
the NBS in the domain of physically real solutions. The curves of the left panel correspond to
Me0 = 0.1 (thick red curve), the limiting case Me0 = 1 (orange curve) and Me0 = 2 (dashed blue
curve). The curves of the right panel correspond to Me0 = 0.03 (thick red curve), the limiting case
Me0 =

√
α0/(α0 + 1) = 0.0233304 (orange curve) and Me0 = 0.01 (dashed blue curve). Assuming that

physically real solutions require E2
x > 0, then initial data should be chosen from curves E2

x = E2
x(u) that

are concave up where they connect to the NBS. Evidently the condition for finding initial conditions
associated with physically real solutions is√

α0

1 + α0
< Me0 < 1 (93)
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which is identical to the condition (86) which specifies the region in which the SSS linearized about
the NBS posses pure real eigenvalues. In other words if E2

x > 0 when Ex ∼ 0 then the eigenvalues λ±,
associated with Equation (83), are real-valued, yielding a linearized solution space characterized by
exponential growth. A further implication of the identical conditions (86) and (93) is that the oscillatory
(Langmuir wave type) solutions, associated with imaginary λ±, are unobtainable unless we relax the
condition that the initial data must be chosen such that solutions pass through the NBS.
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Figure 6. Level curves for E2
x = E2

x(u), satisfying both conservation of momentum (81) and energy
(82), are plotted on the same axes for several choices of Mach number. The left panel plots are for
Me0 = 0.1 (thick red curve), Me0 = 1 (orange curve) and Me0 = 2 (dashed blue curve). The right
panel plots are for Me0 = 0.03 (thick red curve), Me0 =

√
α0/(α0 + 1) = 0.02333 (orange curve) and

Me0 = 0.01 (dashed blue curve). Note that all curves pass through the neutral background state (NBS)
where u = U = 1 and Ex = 0. Assuming that physically real solutions require E2

x > 0, then only curves
which are concave up where they touch the NBS (e.g., the thick red curves) can be associated with
physical solutions. This limits the range of Mach numbers that can support the physical connection of
the plasma to the NBS to

√
α0/(α0 + 1) < Me0 < 1.

We present numerical solutions of the SSS where initial data is chosen such that solution curves
are physically connected to the NBS by ensuring that the condition (93) is satisfied. Two distinct classes
of solutions (or solution types) become apparent: One type of solution is denoted as an upper solution,
meaning that the plasma velocity at the wave center has increased from its initial value. The other
solution type presented is denoted as a lower solution, where the plasma velocity decreases from its
initial value at the center of the wave.

An upper solution of the SSS Equations (87) through (90), for the choice Me0 = 0.571631, is plotted
in Figure 7. The solid blue curves are parametric plots of the form (x(t), u(t)). The dashed red curves
are plots of the corresponding solution (84), w = w(x), of the linearized SSS (83). As evidenced by
inspection of Figure 7, the state variables (u, U, Ex), for the nonlinear case, are double valued in the
region on the x-axis sandwiched between the sonic points where uγ+1 = 1/M2

e0 and ∂u/∂x → ∞
(see Equation (78)). A natural question to ask is can a unique, single-valued solution be constructed
from the double-valued parametric solution?
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Figure 7. Illustrating the double valued nature of the solution for (u(x(t)), U(x(t)), Ex(x(t))). The case
plotted here is for an upper wave—where the velocity u rises above then returns to the NBS value,
and for Me0 = 0.5716 (i.e., Mep = 24.5). The red dashed curves are the corresponding linearized
solutions given by Equation (84); as expected, the linearized solutions well approximate the fully
nonlinear solution curves (solid curves) for values near the NBS. Although double valued, the structure
of the plasma variables is compatible with the ODEs (78)–(80). For example, the slope u′ → ∞ at the
sonic points where uγ+1 − 1/M2

e0 = 0 and the slopes u′ = U′ = 0 at the point where Ex = 0.

Inspection of Figure 8 indicates how a unique solution can be constructed from the double valued
parametric solution. The left panel of the figure shows the solution curve for (x(t), u(t)) (blue curve)
plotted on the same axis with (x(t), U(t)) (black curve—nonphysically scaled-up for visual clarity).
The vertical, dashed, green lines are tangent to the u-curve at the sonic points where uγ+1 = 1/M2

e0
and u′(x)→ ∞. As required by Equation (82) (and illustrated graphically in Figure 5), the sonic points
are also locations where U = U(x) must reach a maximum. Note that at the bisector between the sonic
points the slopes u′(x) = 0 and U′(x) = 0, which, by inspection of the SSS, requires that Ex = 0 at the
bisector also. The value of x = xc at the bisector (or wave center) can found from the plot of x = x(t)
(blue curve) shown in the right panel of Figure 5. This plot shows that x is everywhere increasing
with decreasing parameterization variable t, except in the region near the sonic points, where x(t) is
double valued. To construct the unique solution, note that a horizontal line x = xc drawn between
the two sonic points (dashed, black, horizontal line of the right panel) separates the double valued
x(t) regions into two lobes of equal area. This suggests that (analogous to Van der Waals isothermal
construction) a single-valued solution can be formed by removing the lobes and joining the x(t) curve
along the horizontal, dashed, line segment. This equal area construction requires that the line segment
be inserted precisely at the bisector value of x = xc, directly in the center of the symmetrical wave
structure and effectively ‘scissor-cuts’ the top, double-valued lobes off of the u and U curves and joins
the lower parts of the curves together with an infinitesimally narrow horizontal line along which
the slopes u′(xc) = U′(xc) = 0 and Ex(xc) = 0. This solution is unique since there is only one point
on the x-axis where the segment is inserted such that it is entirely compatible with the original SSS
equations. Note that at the point where the horizontal segment is inserted the charge density of the
plasma behaves like a delta function since dEx(xc)/dx → ∞.
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Figure 8. Illustration of how a unique, single valued solution can be constructed. The left panel gives a
view of both velocities plotted on the same axis, the blue curve for u(x) and the black curve for U(x)
(which has been nonphysically scaled up for illustration purposes). The dashed, green, vertical lines,
placed on the x-axis at the sonic points where uγ+1 = 1/M2

e0, are tangent to the u(x) solution curve
and are also the locations where U(x) reaches a maximum, as illustrated by Figure 5 and required by
Equation (82). The associated solution for x = x(t), where t is the parameterization variable (not the
time), is plotted in the right panel. A horizontal dashed line has been inserted at the value of x = xc

which separates the curve into equal area lobes. This value xc is also the bisector between the sonic
points and the location where both the velocity curves (left panel) intersect themselves. A single valued,
upper solution of the SSS can be constructed by cutting off the top, closed-loop portions of the velocity
curves and joining them together with an infinitesimally narrow, horizontal segment at the point
where the solution curves intersect at x = xc. This construction requires that u′ = U′ = Ex = 0 for
compatibility with the SSS equations and since the insertion location xc is the only place where such a
compatible insertion can be made—the solution is unique.

The sharply peaked upper solution for the choice Me0 = 0.572, is presented in Figure 9. In terms
of the collective Mach number

Mep =
Me0√

α0
,

this choice corresponds to Mep = 24.5. The electron velocity (top left panel), evidently possesses a
substantially stronger amplitude then the ion velocity (top right panel). The density difference N − n
(governing Possion’s equation), plotted in the lower left panel, reaches a maximum of ∼14% also at
the sonic point bisector; however note that the insertion of the unique solution implicitly requires
that N − n be a delta type function at x = xc, but this behavior has not been included in the plot.
The single valued solution for Ex (lower right panel) is constructed by joining the positive and negative
solution branches with a vertical line inserted at the sonic point bisector, where it is implied that
Ex = 0, and removing the double valued curve portions that extend beyond this line. The construction
of the single valued solution highlights the importance of the sonic point uγ+1 = 1/Me02 , the existence
of which implies a location x = xc: the point where flow-rate that would otherwise be growing
exponentially gets choked off and forced to decelerate back to the NBS.
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Figure 9. Upper solution where the plasma flow is above the initial velocity at the wave center for
Mep = 24.4949, (u(0), U(0), Ex(0)) = (1.00001, 1, 0.0000105787).

Lower solutions are presented in Figures 10–14. For lower values of the collective ion-acoustic
Mach number (e.g., Mep = {1.1, 1.8}) these solution curves are smooth, single valued and do not
require the insertion of a unique solution.
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Figure 10. Lower solution for Mep = 1.1, (u(0), U(0), Ex(0)) = (0.99999, 0.999992,−5.38484× 10−6).
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Figure 11. Lower solution for Mep = 1.8, (u(0), U(0), Ex(0)) = (0.99999, 0.999997,−0.0000107293).
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Figure 12. Lower solution for Mep = 2, (u(0), U(0), Ex(0)) = (0.99999, 0.999998,−0.0000111723).
Note that here the solution is becoming double valued near the center of the wave (see Figure 13),
suggesting the need for a unique solution.
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Figure 13. A close-up view of the center portion of the u(x)-curve from Figure 12, for Mep = 2.
Clearly the solution is double valued near the center of the wave, suggesting that a unique solution
should be inserted.

For the choice Mep = 2 and higher, the decelerating solutions become double valued near the
wave center consistent with the findings of McKenzie (2002) [29]). Figure 13, corresponding to Mep = 2,
shows a close-up view of u = u(x) near the wave center, revealing the double valued character of
the solution. In these double valued, decelerating cases, a unique solution can be inserted using the
method described above, in which the value of x = x(t) at the wave center is found from an equal
area construction (see Figure 8).
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Figure 14. Lower solution for Mep = 4, (u(0), U(0), Ex(0)) = (0.99999, 0.999999,−0.0000124494).
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Figure 14, for Mep = 4, illustrates a lower solution constructed in the same manner as described
above for upper solutions. Some general trends that can be noted about such decelerating solutions
are that the wave amplitude increases linearly with increasing Mach number, going from roughly
Ex ≈ 6× 10−6 for Mep = 1 to Ex ≈ 5 for Mep = 4. On the other hand, the wave structure narrows with
increasing Mach number, going from about 400 Debye lengths when Mep = 1 and narrowing down to
about 15 Debye lengths at Mep = 2 after which the wave structure tends towards a constant minimum
in that there is no further width decrease for increasing Mach number.

Upper solutions for Mach numbers Mep = 1, 1.8 and 3, constructed using the procedure described
above, are presented in Figures 15–17. The upper solutions also become increasingly narrow with
increasing Mach number, going from a width of roughly 40 Debye lengths when Mep = 1 down
to about 15 Debye lengths when Mep = 1.8 and then remaining roughly constant at this value
for increasing Mach number. The amplitude of accelerating (weak) solutions is, evidently, highly
insensitive to Mach number variation, going from Ex ≈ 0.4 when Mep = 1 and remaining at Ex ≈ 0.425
for Mach numbers of Mep = 1.2 and higher.
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Figure 15. Upper solution, where the plasma flow is below the initial velocity at the wave center,
for Mep = 1, (u(0), U(0), Ex(0)) = (1.00001, 1.00001, 3.01112× 10−7).
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Figure 16. Upper solution for Mep = 1.8, (u(0), U(0), Ex(0)) = (1.00001, 1, 0.0000107289).
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Figure 17. Upper solution for Mep = 3, (u(0), U(0), Ex(0)) = (1.00001, 1, 0.0000121454).

3.2. Setting the Electron Mass to Zero

To understand the significance of electron mass in the SSS, we can consider the limit me → 0,
which effectively removes the electron-acoustic, sonic point from the system. The zero electron mass
form of the SSS can readily be obtained by keeping only terms with a 1/M2

e0 factor in the momentum
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equations and by dropping all terms with an α0 factor from the conservation equations. This yields the
me = 0 governing system of ODEs

∂u
∂x

=
uγ

γ
Ex (94)

U
∂U
∂x

= α2
1Ex (95)

∂Ex

∂x
=

u−U
uU

(96)

which contain the integrals

U + α2
1u−γ −

α2
1

2
E2

x = 1 + α2
1 (97)

and
U2

2
+

γα2
1

γ− 1
u1−γ =

1
2
+

γα2
1

γ− 1
(98)

where the parameter α2
1 is here most conveniently expressed in terms of the ‘collective ion-acoustic

Mach number’ [29]

Mep =
√

mu2
0/γkTe0 (= Me0/

√
α0)

as
α2

1 =
1

γM2
ep

The me = 0 SSS (94) through (96) again is stationary at the NBS.
The SSS for me = 0, linearized about the NBS, is

d
dx

 u
U
Ex

 =

 0 0 1/γ

0 0 α2
1

1 −1 0


 u

U
Ex

 (99)

As with the previous me 6= 0 case, the solution of Equation (99) has the general form (84) and also
possesses the eigenvalue λ1 = 0 with the associated eigenvector p1 = (1, 1, 0), with the implication
that the NBS as a constant state is built into the system. The remaining two eigenvalues for (99) can be
expressed as

λ± = ±

√
M2

ep − 1

γM2
ep

(100)

thus, the eigenvalues λ± will be pure real whenever

Mep > 1 (101)

and pure imaginary otherwise. With me = 0, Equations (91) and (92) become

dU
du

=
1

M2
epuγU

(102)

and
dU
ds

= 1/M2
ep),

du
ds

= uγU (103)

Figure 18, for me = 0, is analogous to Figure 5 for the nonzero electron mass case.
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Figure 18. Level curves of Equation (98) for Mep = 0.9 (red curve), Mep = 1 (orange curve) and
Mep = 3 (blue curve). The dashed curves correspond to (the nonphysical region where) U < 0.
The gaps in the upper U > 0 curve branches correspond to where Ex2 < 0 (also assumed to be a
nonphysical region). The blue curve for which Mep = 3 (> 1) is the only curve that passes through
u = U = 1, Ex = 0 and thus is the only one of the three that is connected to the neutral background
state (NBS). The right panel shows the stream-plot of the direction field for ODE system (103) where
Mep = 3, on the same axes with the physical segment of the blue curve from the left panel. Comparison
of this Figure to the analogous Figure 5, for nonzero electron mass case, shows that setting me = 0 has
effectively moved the sonic point to infinity on the u-axes.

Comparison of these analogous figures shows that a key difference between the zero and nonzero
electron mass cases is that when me = 0 the sonic point is effectively shifted to infinity on the u-axis.
Thus, the proton verses electron velocity dependence, which is characterized by closed-loop (oscillator
type) curves in phase-space for nonzero electron mass, becomes an open (on the right), unbounded
electron velocity curve when me = 0.

Figures 18 and 19 express, graphically, the condition Mep > 1 required for solutions to connectable
physically to the NBS.
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Figure 19. Level curves of Equation (94) for Mep = 0.1 (dashed red curve), Mep = 1 (orange curve) and
Mep = 10 (thick blue curve). Note that E2

x(u) is concave up at the point where it touches the NBS only
if Mep > 1, thus solutions physically connected to the NBS require flow that is supersonic with respect
to the collective Mach number.
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Figure 20 is the only upper-solution presented for me = 0. As noted above, setting the electron
mass to zero has effectively shifted the sonic point to infinity, meaning that the upward growing
electron velocity is unbounded and thus unphysical in this case.
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Figure 20. Upper solution for me = 0, Mep = 1.1, (u(0), U(0), Ex(0)) = (1.00001, 1.00001, 5.37831× 10−6).
The red, dashed curves correspond to the linearized solution (Equation (84)). This figure illustrates
that setting me = 0 has effectively shifted the sonic point to infinity on the x-axis with the result that
plasma acceleration is unbounded when the velocity growth is positive.

Inspection of Figures 20–24, corresponding to solutions of the SSS for me = 0, indicates that
the decelerating soliton-type waves do not vary significantly between the me = 0 and
me = 9.1094× 10−28 g cases.
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Figure 21. Lower solution for me = 0, Mep = 1.1, (u(0), U(0), Ex(0)) = (0.99999, 0.999992,−5.37818× 10−6).
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Figure 22. Lower solution for me = 0, Mep = 1.8, (u(0), U(0), Ex(0)) = (0.99999, 0.999997,−0.0000107344).
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Figure 23. Lower solution (weak) for me = 0, Mep = 2, (u(0), U(0), Ex(0)) = (0.99999, 0.999997,−0.0000111804).
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Figure 24. Lower (weak) solution for me = 0, Mep = 3, (u(0), U(0), Ex(0)) = (0.99999, 0.999999,−0.0000121717).

3.3. Discussion

While the treatment of the two-fluid system, considered here above, is simply a variation on the
gas dynamic descriptions of ESWs presented by e.g., McKenzie and Verheest [7,30], it does have the
advantage of yielding two types of ESW structures, via slight perturbations on the same background
plasma conditions, for which the previously mentioned analytic methods would yield only a single
ESW wave structure. Indeed, the classic Sagdeev potential method [31], and the more modern
gas-dynamic view-points [7,30,32] derived from it, offer very attractive, analytic descriptions of ESWs.
These analytic approaches [7,30], well define the exact conditions for which smooth ESW solutions can
be constructed. The interesting feature of the (essentially numeric, gas dynamic) treatment considered
here, however, is that we show how an additional non-smooth, or shock-like, ESW can also be
constructed by the explicit insertion of a jump through the charge neutral point of the wave. This extra
jump solution (denoted here as an accelerating upper solution in the text) is associated with negative
potential wells, whereas the smooth solution that would naturally arise using more analytic methods
(denoted here as a decelerating lower solution in the text) is associated with positive potential hills
(e.g., see [33].) As suggested above, the proximate excitation of both upper and lower ESWs, by small
perturbations from the same plasma background conditions, may be supported by observations.

4. Conclusions

The need for a self consistent system of multi-fluid equations which dynamically includes a small
population of hot, energetic particles, such as pickup ions (treated kinetically as is done in PIC codes)
has been addressed. We previously presented a multi-fluid treatment which included a population
of kinetically treated pickup ions (PUIs) coupled to a two-fluid treatment with quasi self-consistent
coupling through the anisotropic PUI pressure tensor [6]. Here we considered an improvement of that
model with a small population of kinetic ions included in the multi-fluid system by a self-consistent
treatment of their charge density and current component effects on the electromagnetic fields.
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By considering the reduction of the multi-fluid plasma system to the special case of hot electrons
and cold ions in the steady state, the existence of two types of electrostatic solitary waves (ESWs) were
shown, characterized and typed here as upper and lower solutions. The character of the upper and
lower solutions of the coupled set of ODEs are consistent with the two types of ESWs observed by
Geotail near Earth’s bow shock [11], with one type of ESW associated with electrostatic potential hills
and the other with potential wells.

We have shown that setting me = 0 (a typical approximation for PIC as well as other simulations)
recovers classical solitons, labeled here as lower solutions, such as presented in the well known text
book on plasma physics by Chen [31].

A type of soliton, labeled as upper solutions, was found that depends critically on a nonzero
electron mass to prevent unbounded acceleration of the electron fluid velocity. These so-called upper
solutions are consistent with the second type of ESW observed by Geotail [11] associated with ‘positive’
electrostatic potential hills and components of two-fluid plasma flow returning upstream from the
ESWs towards the bow shock.

The width of upper solutions were found to decrease with increasing Mach number,
asymptotically reaching a minimum width of about 15 Debye lengths at Mep ≈ 2. The amplitude of
upper solutions is highly insensitive to Mach number and have a magnitude of the electric field of
≈ 0.4 (in normalized units) for all Mach numbers. Upper solutions also become more narrow with
increasing Mach number, asymptotically reaching a minimum scale width of roughly 15 Debye lengths.

The classical type solitons, or lower solutions, were found to have an electric field strengths
that grow linearly with increasing Mach number. Lower solutions are smooth functions and
straight-forward to evaluate over the Mach number range 1 < Mep < 1.8 (for γ = 5/3). However
for all upper solutions and for lower solutions where Mep ≥ 1.9, the insertion of a unique solution
is required.

A method for constructing unique solutions was outlined, and applied to both upper and lower
types, where at the insertion point on the x-axis, the charge density is viewed as a delta like function
where dEx/dx → ∞ and the electric field is forced to zero by insertion of a unique solution, with the
result that a bounded, single-valued solution is formed that is fully compatible with the original
governing system of ODEs.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
MRI multiply reflected ion
PUI pickup ion
SW solar wind
PIC particle-in-cell
MHD magnetohydrodynamics
ESW electrostatic solitary wave
ODE ordinary differential equation
SDA shock drift acceleration
SSA shock surfing acceleration
TS Termination Shock
CSP cross-shock potential
SAP shock accelerated particle
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AU astronomical unit
1D one dimensional
SS steady state
NBS neutral background state
SSS steady state system
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