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Abstract: Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a
computationally fast tool with which to study dynamical processes in warm dense matter beyond
the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to
achieve computational efficiency while implementing semi-empirical scaling parameters to retain
accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted
basis set, approximations to exchange, and the lack of correlation. We examined each of these
approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma.
We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis
with a semi-empirical correction based on the valence-bond wave function. A single parameter
scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that
semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD.
However, reducing the scaling parameters for more ab-initio terms gives more accurate results and
displays the underlying physics more readily.

Keywords: warm dense matter; wave packet molecular dynamics; non-adiabatic; pauli potential

1. Introduction

Warm dense matter (WDM) is a critically important physical regime that bridges the
gap between condensed matter and classical plasma physics. The WDM state is found in
several astrophysical environments (e.g., planetary interiors and white dwarfs) [1,2]. It also
has practical applications for understanding controlled thermonuclear fusion and material
processing [3]. Typically described as a system of strongly coupled ions immersed in a
degenerate electron sea, WDM may exist in either a compressed liquid or a highly excited
solid state. In both states, the ions have a Coulomb energy comparable to the thermal
energy, while the electrons, at temperatures below the Fermi temperature, exhibit strong
quantum behavior [4]. Techniques that simulate WDM states must model the slow and long-
time behavior of the strongly coupled ions while simultaneously capturing the electrons’
quantum mechanical nature. These inherent complexities lead to the failure of perturbative
techniques, resulting in differences in predictions of important quantities. While different
models generally agree on the thermodynamic and acoustic properties [5,6], important
quantities such as transport coefficients can differ by up to an order of magnitude [7,8].

Atomistic models in which the ions, treated through classical molecular dynamics,
are coupled with a quantum mechanical treatment of the electrons, have had the most
success. The ion trajectories from such simulations can provide transport properties, such
as viscosity and thermal diffusivity [9]; acoustic properties, such as the sound speed [10,11];
and thermodynamic variables, including the equation of state [10,12]. The most prevalent of
these techniques is density functional theory molecular dynamics (DFT-MD), in which the
electrons are treated within the framework of either orbital-free [10] or Kohn–Sham density
functional theory [13]. DFT-MD employs the Born–Oppenheimer (BO) approximation, in
which the electrons are considered to respond instantaneously to the ion dynamics, usually
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justified by the disparate time-scales of the electron and ion motion. Although applicable
for equilibrium properties, such as the equation of state [14], the BO treatment of the ions
may not be suitable for calculating dynamic properties such as sound-speed and transport
coefficients [6,11]. Furthermore, by its very nature, the BO approximation prohibits direct
energy transfer between electrons and ions, and is therefore problematic for modeling
non-equilibrium matter [15]. Ultimately, in the WDM regime, it is still unknown how the
BO approximation impacts atomistic calculations.

Recently, several theoretical techniques have been developed that go beyond the BO
approximation. The simplest technique couples the ions to a Langevin thermostat which
models the electron–ion collisions through an additional stochastic Gaussian force added to
the equations of motion [11,16–19]. While efficient, this phenomenological approach uses a
single collision frequency that must be determined a priori. Other techniques that go beyond
the BO approximation include using a thermally averaged, linearized Bohm potential, which
has successfully described acoustic oscillations in warm dense aluminum [20,21], and the most
widespread, wave packet molecular dynamics (WPMD) [5,6,22–29]. Time-dependent DFT,
often used successfully in quantum chemistry [30], remains too computationally intensive
to study the large systems of interest. In this work, we will focus on the applicability and
approximations used within WPMD.

WPMD is a time-dependent quantum mechanical technique that simultaneously sim-
ulates, (1) the propagation of the ions as classical point particles, and (2) the electrons
as quantum-mechanical entities. In WPMD, each electron is represented as a quantum
wave packet, a spatially-localized complex function often implemented on a Gaussian
basis [31]. A wave packet uniquely defines the state of a single electron, with the total
many-body wave function being constructed from either a Hartree product or a Slater deter-
minant [32,33], a choice that is driven by the importance of balancing exchange effects with
computational cost. Equations of motion for the dynamical parameters are easily derived
from variation of the time-dependent Schrodinger equation, where, for a single-Gaussian
basis, they take on a simple Hamilton form [25,31]. The direct inclusion of electrons, and
thus the effects of electron–ion interactions, means that WPMD intrinsically goes beyond
the BO approximation. It is capable of computing electron–ion energy exchange in non-
equilibrium systems, the effects of electron–ion collisions, and more generally calculating
observables in quantum many-body systems [29,33].

Many flavors of WPMD exist that utilize varying degrees of approximation. The
three most common approximations are a restricted basis, consisting of a single Gaussian
per electron; a pairwise exchange interaction, often identified as a Pauli potential; and
the exclusion of correlation. Furthermore, the Pauli potential itself is often assumed to
depend only on the kinetic energy component of exchange in addition to the dependence
on electron momentum being ignored [22,25,34]. With these simplifications, WPMD can
obtain the same computational efficiency as in many classical methods [35,36]. These
efficiencies have led to the widespread use of a semi-empirical WPMD method known as
the electron force field (eFF). In eFF, several experimentally derived scaling parameters
are used, with remarkable success, to correct for deficiencies in basis, approximations to
exchange, and lacking correlations. To date, eFF has been used to investigate material
properties in extreme environments [27,28,32,37,38], temperature relaxation rates in warm
dense hydrogen [5], sound-speed in warm dense aluminum [5], and diffusion in warm
dense hydrogen [6].

Despite the success of eFF, exactly how the scaling parameters address these approx-
imations is not well understood. The predictive capability is limited, and its use in new
regimes should always be corroborated with other models or experimental data [33]. For ex-
ample, eFF was recently shown to underestimate the ion–ion correlation in dense aluminum
plasma at temperatures of a few electronvolts [5,39]. While there has been some effort made
to understand the effect of a pairwise exchange in dense hydrogen [22–25,40,41], the basis
set limitation has not previously been investigated. However, work involving a multiple-
Gaussian basis has been used to investigate wave-packet spreading in electron–nuclear
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scattering [33] and ionization of a single hydrogen atom [42,43], where improvements up
to a five Gaussian basis were found. Figure 1 shows improvements in the ground state
energy of the hydrogen atom with an increasing number of Gaussians in the electron basis;
minimal improvements are observed beyond four Gaussians.
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Figure 1. The ground state energy of the hydrogen atom. The crosses were the calculated from
minimization of the energy equations as the number of Gaussian basis functions were increased. The
dotted line shows the exact ground state energy of hydrogen [44]. The insert shows the changes to the
shape of the wave functions with an increasing number of basis functions. Beyond four Gaussians,
improvements in the ground state energy and shape of the wave function are negligible.

We focus our efforts on dense hydrogen, the prototypical test-bed for atomistic models,
and investigate the accuracy of WPMD as the number of Gaussians in the basis is increased.
For computational efficiency, we retain a pairwise Pauli potential; however, based on
the work of H. Xiao [45], we extend the Pauli potential to include additional potential
energy terms. Finally, a simple correction based on the valence bond (VB) wave function is
introduced with a single scaling parameter to address the model’s lack of correlation and
pairwise exchange. With this correction and a two-Gaussian basis, we are able to exactly
match the low-temperature pressure curve of dense hydrogen. Ultimately, we hope to
extend the parameter space to where WPMD, and specifically eFF, is applicable.

This paper is organized as follows. Section 2 details the theory and development of
the WPMD equations for systems with a multiple Gaussian basis. Particular focus is given
to the development of the updated Pauli potential, including a comparison of the updated
Pauli potential with past work. Section 3 details the improvements afforded to hydrogen-
based systems. The results include geometry optimization, potential energy surfaces and
dynamics of the hydrogen molecule, and hydrogen under high pressure. Where available,
we benchmark our calculations with experimental results. Finally, Section 4 details some
of the effects of approximations in current WPMD techniques and suggests a path forward
to provide large-scale simulations of dense plasmas in previously unexplored regions of
phase space.

2. Materials and Methods
2.1. Introduction to Wave-Packet Molecular Dynamics

In WPMD, the many-electron trial wave function Ψ is parameterized by a set of vari-
ables (q(t)) [22–25,42]. Development of a fully anti-symmetric wave function requires the
calculation of the Slater determinant of all single electron wave functions, a computationally
expensive operation [24,42,43]. To decrease the computational cost, many implementations
of WPMD, including eFF, use the simpler Hartree product, constructed through the linear
combination of the single-particle wave-functions, ψk. The Hartree product wave function,
ΨH , is defined as:
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ΨH(~X, t) =
Ne

∏
k=1

ψk(~xk, t), (1)

where ~X = {~x1, . . . ,~xk, . . . ,~xNe}, and ~xk are used to indicate the space occupied by the
k-th electron. Using the Hartree product for the many-body electron wave function omits
the correct anti-symmetry needed to ensure fermionic particles, such as electrons, do not
violate the Pauli exclusion principle. To make practical use of the Hartree product, the use
of Pauli potentials helps approximate the missing anti-symmetry. We will discuss the use
of Pauli potentials in more detail in Section 2.3.

Another approximation implemented, for computational speed, in most WPMD
techniques, is the utilization of a single isotropic Gaussian as a restricted wave function
for each electron [22–24,32,34]. Gaussian bases have been used since the 1950s to calculate
electronic structure [46]; however, to get the most accurate wave function requires the use
of an increased basis, as was demonstrated in Figure 1. We will discuss the changes to the
WPMD theory due to a larger basis set in more detail in Section 2.2.

The Gaussian wave function, used in WPMD, is typically paramaterized by a set of
ten real physical variables q = {~r,~p, σ, pσ}, i.e.,

ψk(~xk) =

(
3

2πσ2

)3/4
exp

[
−
(

3
4σ2 −

ipσ

2h̄σ

)
|~r−~xk|2 +

i~p · (~r−~xk)

h̄

]
. (2)

The elegance of this definition is that~r = 〈r̂〉 is the expectation of position, ~p = 〈 p̂〉 is

the expectation of momentum, and σ =
√
〈r̂2〉 − |〈r̂〉|2 is the uncertainty in position with

the corresponding conjugate momentum, pσ.
Equations of motion for the dynamical parameters are easily derived from variation

of the time-dependent Schrodinger equation [31,33,47],

Nq̇ =
∂H
∂q

(3)

where H is the total energy of the system and q is the set of all dynamic variables. The
norm matrix, N, is defined as follows.

Nqkql =
∂

∂q∗k

∂

∂ql
ln
〈

ΨH(q∗)
∣∣∣ΨH(q)

〉
, (4)

where Nqkql is a matrix element of the norm matrix, qk represents a specific element of the
set of time-dependent variational parameters, and q∗k is the complex conjugate of qk. For
the single-Gaussian basis given in Equation (2) the equations of motion take on a simple
Hamilton form [31].

The total Hamiltonian operator of the semi-classical many-electron system interacting
with classical point-like ions is given by

Ĥ = (T̂i + V̂ii) + (T̂e + V̂ei + V̂ee) + ĤHarm , (5)

where the operators take on their usual classical,

T̂i = ∑
I

p2
I

2MI
, V̂ii =

1
2 ∑

I,J

ZI ZJ

|~RI − ~RJ |
, (6)

and quantum mechanical,

T̂e = −
1
2 ∑

k
∇2

k , V̂ei = ∑
I

∑
k

−ZI∣∣∣~xk − ~RI

∣∣∣ , V̂ee =
1
2 ∑

k,l

1
|~xk −~xl |

, (7)
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definitions. T̂e is the electron kinetic energy operator, V̂ei is the electron–ion Coulombic
potential energy operator, V̂ee is the electron-electron Coulombic potential energy operator,
T̂i is the ion kinetic energy, and V̂ii is the ion–ion Coulombic potential energy. In these
expressions, pI represents the classical momentum of the I-th ion, MI is the mass of the
I-th ion, ZJ is the number of protons in the J-th ion, and ~RJ represents the position of the
J-th ion.

The final term in the Hamiltonian defined in Equation (5) is a harmonic energy term
ubiquitous throughout WPMD (see [35,36]). This term is typically used to constrain the
electron’s size, which may increase to the point that electron–ion interactions become
negligible. As such, the harmonic energy term is not an energy term born out of physical
arguments, but it comes from a computational necessity. For this potential we have used
the form suggested by Zwicknagel et al. where HHarm = 〈ĤHarm〉 = ∑Ne

k=1
9

8γ4
0
σ2 and γ0 is

set to to half the simulation box length [48]. It should be noted that this term represents a
small contribution to the total energy, as—in the WDM regime—most wave packets are
constrained enough from the ionic potentials present [5,36].

2.2. Extension to Multiple Gaussians

The primary aim of this work was to investigate the improvements in describing
dense plasmas with WPMD when the basis set is extended to include multiple Guassians.
Following the framework of Morozov and Valuev [42,43] we extend the basis to include
multiple Gaussians as follows:

ψk(~xk, t) = n−1/2
k

Ng

∑
α=1

ϕkα(~xk, t) , (8)

where ψk represents the single particle wave function of the k-th electron, Ng is the total
number of Gaussian wave packets per electron, nk = ∑α,γ Okαkγ = ∑α,γ

∫
ϕ∗kα ϕkγd3x is the

normalization factor, and Okαkγ is the overlap of Gaussians. The term ϕkα represents the
Gaussian wave packet α in the k-th electron. For multiple Gaussians, the simple relationship
between the parameters used in Equation (2) and the expectation of the electron physical
characteristics is lost. Thus, to simplify the analytic derivation of the energy terms in the
Hamiltonian, we use the following Gaussian representation:

ϕkα(~xk, t) = dkα(t)e−akα(t)(~xk ·~xk)+~bkα(t)·~xk+ckα(t). (9)

Here, the set of dynamical variables for each Gaussian is qkα = {akα,~bkα, dkα}. These
five complex parameters provide a total of ten real dynamic variables for each wave packet. If
necessary, these can be mapped directly to the ten physical parameters used in Equation (2).
The parameter, ckα, is not an independent variable and is used to ensure normalization of each
Gaussian [43].

The norm matrix given in Equation (4) becomes a block diagonal in the Hartree
Product ansatz, where the block for the k-th electron is given by

Nqkαqkγ
= −2 Im

{〈
(ψk)

′
qkα

∣∣∣(ψk)
′
qkγ

〉
−
〈
(ψk)

′
qkα

∣∣∣ψk

〉〈
ψk

∣∣∣(ψk)
′
qkγ

〉}
, (10)

which within the framework of multiple Gaussians, can be expressed in terms of the
derivatives of each individual Gaussian [43]:

Nqkαqkγ
= −2 Im

{
n−1

k

〈
(ϕkα(x))′qkα

∣∣∣(ϕkγ(x))′qkγ

〉
− L∗k,qkα

Lk,qkγ

}
(11)

where Lk,qkγ
= (nk)

−1 ∑σ

〈
ϕkσ

∣∣∣(ϕkγ)
′
qkγ

〉
, and (ϕkγ)

′
qkγ

is the derivative with respect to one
of the qkγ dynamic parameters.
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The Hartree energy of the system may be expressed as the sum of the ion and electron
kinetic energies, along with the electron–ion, electron-electron, and ion–ion potential energies:

HH = Ti + Te + Vii + Vei + Vee. (12)

In each case, an analytical expression may be derived. For the semi-classical electron
terms, they are most easily expressed as the products of overlapping an integral with a
residual, i.e.,

Te =
〈

ΨH
∣∣∣T̂e

∣∣∣ΨH
〉
= ∑

k
∑
α,γ

OkαkγTe
kαkγ , (13)

Vei =
〈

ΨH
∣∣∣V̂ei

∣∣∣ΨH
〉
= ∑

I
∑
k

∑
α,γ

OkαkγVei
Ikαkγ , (14)

Vee =
〈

ΨH
∣∣∣V̂ee

∣∣∣ΨH
〉
= ∑

k,l
∑

α,β,γ,δ
OkαkγOlβlδVee

kαlβkγlδ , (15)

where Okαlδ represents the overlap between the α Gaussian wave packet of the k-th electron
and the δ Gaussian wave packet of the l-th electron. Expressions for the three residual
terms Te

kαkγ, Vei
Ikαkγ, Vee

kαlβkγlδ, and the overlap integral are easily derived in the Gaussian
basis and are provided in reference [43].

2.3. Development of a Pairwise Pauli and Correlation Potential

The Hartree product defined in Equation (1) neglects exchange effects captured by the
Slater determinant. Within this approximation, important effects necessary to describe a
quantum mechanical system of interacting fermions, such as the Pauli exclusion principle,
are neglected. Here we detail the development of a spatially anti-symmetrized pairwise
exchange term added between electrons of like spin. This term is equal to the difference
between the energy calculated with the Slater determinant and that calculated with a
Hartree product. In line with the eFF method, we retain a pairwise Slater determinant to
ensure a computational scaling comparable with classical techniques. We construct our
pairwise Pauli potential from three terms:

HP = TP
e + VP

ei + VP
ee (16)

where

TP
e =

〈
ΨS
∣∣∣T̂e

∣∣∣ΨS
〉
−
〈

ΨH
∣∣∣T̂e

∣∣∣ΨH
〉

, (17)

VP
ei =

〈
ΨS
∣∣∣V̂ei

∣∣∣ΨS
〉
−
〈

ΨH
∣∣∣V̂ei

∣∣∣ΨH
〉

, (18)

VP
ee =

〈
ΨS
∣∣∣V̂ee

∣∣∣ΨS
〉
−
〈

ΨH
∣∣∣V̂ee

∣∣∣ΨH
〉

, (19)

are the Pauli kinetic, Pauli electron–ion potential, and Pauli electron-electron potential
energy terms, respectively. Using the usual definition for a two-particle Slater determinant,

ΨS(~x1, ~x2) =
1√
2
[ψ1(~x1)ψ2(~x2)− ψ1(~x2)ψ2(~x1)] , (20)

analytic expressions for the two-particle Pauli energy given in Equations (17)–(19) were
derived. The analytical expressions are as follows:
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TP
e = ∑

k,l
∑

α,β,γ,δ

(
(OklOlk)OkαkγOlβlδ

(
Te

kαkγ + Te
lβlδ

)
−OkαlδOlβkγ

(
Te

kαlδ + Te
lβkγ

))
(nknl)(1− (OklOlk))

, (21)

VP
ei = ∑

I
∑
k,l

∑
α,β,γ,δ

(
(OklOlk)OkαkγOlβlδVei

Ikαkγ −OkαlδOlβkγVei
Ikαlδ

)
(nknl)(1−OklOlk)

, (22)

VP
ee = ∑

k,l
∑

α,β,γ,δ

(
(OklOlk)OkαkγOlβlδVee

kαlβkγlδ −OkαlδOlβkγVee
kαlβlδkγ

)
(nknl)(1−OklOlk)

, (23)

where Okl = (nknl)
−1/2 ∑α,δ〈ϕkα|ϕlδ〉, Olk = O∗kl , and the residual terms, Te

kαlδ, Vei
Ikαlδ, and

Vee
kαlβlδkγ, are provided in reference [43].

The majority of WPMD techniques that do not implement full exchange have opted
to use a Pauli potential based solely on the kinetic energy component of the Pauli ex-
change [22,23,32,34]. In addition, while some authors retain the dependence on electron
momentum [22], many models, including eFF, simplify the terms further by neglecting this
dependence [25,34]. Figure 2a compares our pairwise Pauli potential with other published
results. The results by Klakow et al. contain only the kinetic energy’s contribution to
exchange, and for this system, agree with our TP

e term. The eFF model also makes use of
the kinetic energy’s Pauli potential but differs from Klakow et al.’s potential due to the
incorporation of empirical scaling parameters [25]. Due to the lack of ions in the system,
our total Pauli term contains just one additional term, V(P)

ee . This term acts to lower the
exchange energy when compared to both the Klakow potentials. The eFF potential, which
lies above the Klakow model, performs quite poorly for this system. This is unsurprising
as, with a simple form, it is attempting to correct for several approximations in the model.
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Figure 2. Validation of the three-term Pauli potential. (a) The Pauli potential consisting of all three
energy terms is compared to the potential used in eFF and that developed by Klakow et al. which uses
only the kinetic energy term [32]. Results are given for the exchange energy between two electrons of
fixed-width σ =

√
3/4. Unlike the electrostatic energy, shown by the dashed line, the Pauli potentials

do not exhibit long-ranged behavior. (b) Verification of the Pauli potential following the method
suggested by Xiao et al. [45]. The different energy contributions upon anti-symmetrization for the
triplet H2 system. In this system, the unrestricted Hartree–Fock (UHF) result is exact. Each electron
is represented by a single Gaussian of radius 1.7 Bohr centered on the atom. Note, the eFF potential
does not match the exact UHF result.

In Figure 2b, we compare the energy of the anti-bonding of the H2 molecule with
that predicted by unrestricted Hartree–Fock (UHF). For the anti-bonding case, there is
no correlation, which makes it the most straightforward system to examine exchange
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calculations. It is clear that the kinetic energy term is dominant and primarily responsible
for the Pauli exclusion principle; however, the other terms are not negligible and play
important roles in stabilizing molecules and preventing Gaussian coalescence [45]. When
all three Pauli energy terms are added together, the result matches the exact UHF result
and establishes our Pauli potential’s validity. Note that the eFF potential, denoted by the
solid black line, does not match the exact UHF result.

One of the reasons for the success of the eFF technique over previous models is
the inclusion of additional scaling parameters in the Pauli potential. These parameters,
matched with a set of molecular test structures, account for the lack of full exchange,
the limited basis set, and the neglect of correlation, where we define correlation as the
difference between the exact energy and the Hartree–Fock (HF) energy. Despite our
expanded basis, two approximations persist in our model; these are pairwise exchange and
lack of correlation. The inclusion of correlation in such models is difficult and a decades-old
problem in quantum mechanical many-body systems [49–52]. Motivated by eFF, we used a
valence bond (VB) wave function to develop a simple pairwise correction term to account
for these deficiencies. The approximation takes on a similar form as the Pauli potential

HC = TC
e + VC

ei + VC
ee , (24)

where

TC
e =

〈
ΨVB

∣∣∣T̂e

∣∣∣ΨVB
〉
−
〈

ΨH
∣∣∣T̂e

∣∣∣ΨH
〉

, (25)

VC
ei =

〈
ΨVB

∣∣∣V̂ei

∣∣∣ΨVB
〉
−
〈

ΨH
∣∣∣V̂ei

∣∣∣ΨH
〉

, (26)

VC
ee =

〈
ΨVB

∣∣∣V̂ee

∣∣∣ΨVB
〉
−
〈

ΨH
∣∣∣V̂ee

∣∣∣ΨH
〉

. (27)

As before, utilizing the usual definition of the two-particle VB wave function,

ΨVB(~x1, ~x2) =
1√
2
[ψ1(~x1)ψ2(~x2) + ψ1(~x2)ψ2(~x1)] , (28)

we derived analytic expressions for the pairwise VB correction energy given in
Equations (25)–(27). The analytical expressions are as follows:

TC
e = ∑

k,l
∑

α,β,γ,δ

(
OkαlδOlβkγ

(
Te

kαlδ + Te
lβkγ

)
− (OklOlk)OkαkγOlβlδ

(
Te

kαkγ + Te
lβlδ

))
(nknl)(1 + (OklOlk))

, (29)

VC
ei = ∑

I
∑
k,l

∑
α,β,γ,δ

(
OkαlδOlβkγVei

Ikαlδ − (OklOlk)OkαkγOlβlδVei
Ikαkγ

)
(nknl)(1 + OklOlk)

, (30)

VC
ee = ∑

k,l
∑

α,β,γ,δ

(
OkαlδOlβkγVee

kαlβlδkγ − (OklOlk)OkαkγOlβlδVee
kαlβkγlδ

)
(nknl)(1 + OklOlk)

. (31)

The VB correction was implemented between pairs of electrons with the opposite
spin. The same spin electrons were assumed to be well separated spatially, due to the Pauli
potential, and to not contribute significantly to this term [53].

The total energy of our system, H = HH + HP + HC may be written as follows:

H = (Ti + Vii) + (Te + Vei + Vee) + (TP
e + VP

ei + VP
ee)δ↑↑ + ρ(TC

e + VC
ei + VC

ee )δ↑↓ , (32)

where δ↑↑ equals unity when the spins of the electrons are parallel and zero otherwise; δ↑↓
is set to zero when the spins of the electrons are parallel and unity when anti-parallel. The
parameter, ρ, must be chosen a priori for the system of interest. For a hydrogen molecule, a
value of ρ = 1 approaches the exact potential energy surface. For calculating the pressure
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of dense hydrogen, we scaled this value to match experimental results. We note that the
size of ρ as Ng → ∞ gives an indication of the remaining approximations in the model.

2.4. The Implementation of Periodic Boundary Conditions

The simulation of dense plasmas necessitates the use of a finite-in-size simulation box
utilizing periodic boundary conditions; this brings with it additional challenges. The first
is the evaluation of long-range forces associated with electrostatic interactions. We utilize
the same scheme as eFF where the electrostatic energies are multiplied by a seventh-order
spline that goes from 1 to 0 over a radial distance rcut, defined so that the first, second, and
third derivatives at the endpoints are zero [32,54]. i.e.,

fcutoff = 20x7 − 70x6 + 84x5 − 35x4 + 1 , (33)

where x = x/rcut. The cutoff range, rcut, is chosen to be equal to half the simulation box
length. This technique enables the use of the minimum-image convention, retaining one
of the most desirable properties of WPMD, which is the ability to simulate large systems
of particles. Finally, as demonstrated in Figure 2a, the newly defined exchange terms do
not exhibit the same long-range characteristics as the electrostatic terms and thus are not
multiplied by the spline.

When applying the minimum image convention to the electrons, the Gaussians that
comprise that electron must be treated as a single particle; that is to say, they must be
shifted together. There are no restrictions on the positions of the Gaussians within one
electron; however, when applying the minimum image convention, we use the expectation
of each electron’s position. Suppose care is not taken, and the Gaussians are individually
shifted. In that case, the unphysical situation where a particle interacts with the same
electron on both the left and the right can arise.

Finally, the Pauli and VB correction electron–ion energy terms are not genuine pairwise
terms. Each term in the summation involves two electrons plus an ion, essentially making
it a three-body potential. To ensure consistent calculation of this term, we periodically
shift the ion location to position it within half of the box length of the mid-point between
the two electrons. We note that this differs from consistently shifting the ion towards the
electron only when the two electrons are spatially separated; in such situations, the Pauli
and VB correction energy terms are negligible.

3. Results

Dense hydrogen is one of the simplest physical systems, and for this reason, it has
become the prototypical test-bed for atomistic models of dense plasmas. At this time,
our code is implemented serially in MATLAB and is unable to be run for long periods of
time for all permutations of approximations, basis sets, and parameter space. Thus, we
limit our investigation to cold dense hydrogen, which is often used to benchmark WPMD
approximations before being extended to higher temperature conditions [23–25].

Figure 1 demonstrates that WPMD approaches the analytic solution of the hydrogen
atom with an increasing Gaussian basis. The ground state energy can be obtained to within
one percent, utilizing a four-Gaussian basis. Beyond this number, we observed only minor
changes in the ground state energy and the electron wave function shape. It should also be
noted that the most significant improvement occurs when increasing the basis from one to
two Gaussians.

We now turn our attention to modeling the energy of the hydrogen molecule.
In Figure 3 we plot the potential energy surface of H2 and show an improvement in
representation as the Gaussian basis is increased. Figure 3a displays the potential energy
curve calculated without including the VB correction; in this case, the binding energy
approaches the unrestricted Hartree–Fock (UHF) result. In this case, only negligible
improvements are observable beyond six Gaussians, slightly more than needed to describe
the hydrogen atom accurately. Figure 3b displays the potential energy curve calculated with
an increasing number of Gaussians per electron, this time with the VB correction (ρ = 1).
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In this case, as the number of Gaussians is increased, the potential energy curve tends
toward the generalized valence bond (GVB) result [53], validating the implementation of
the multiple Gaussian basis. The eFF results, also shown in Figure 3b, lie between the one
and two-Gaussian lines, clearly indicating that the scaling factors in eFF somehow address
the impediment from the limited basis and lack of correlation.
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Figure 3. Binding energy of the H2 molecule. (a) VB correction is excluded. Circles represent the
unrestricted Hartree–Fock (UHF) solution and crosses represent the exact solution. (b) VB correction
(ρ = 1) is included. Circles represent the generalized valence bond (GVB) solution and crosses denote
the exact solution. The thick solid line represents the solution obtained using the eFF method.

The potential energy curves for the two-Gaussian case in Figure 3a, and one-Gaussian
case in Figure 3b, both exhibit a kink around 1.6 Bohr. We attribute this to the restricted
basis attempting to represent two phenomenologically different configurations to the left
and right of the kink—that is, the expectation of the two electrons’ positions being located
between the two ions when close together and centered near the ions when separated. This
effect is less apparent when a larger basis is used.
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Figure 4. Vibrational frequency of the H2 molecule with an increasing Gaussian basis set. Blue
stars are the frequencies with no VB correction. Red crosses are the frequencies calculated with the
VB correction (ρ = 1). The black dotted line represents the experimental value of the fundamental
frequency of H2. In each case the fundamental frequency was calculated by displacing two H ions by
0.01 Bohr and observing the resulting oscillations.

Figure 3 represents the static use of the code. To validate the dynamic component, we
calculated the fundamental vibrational frequency of H2 through the dynamical equations
of motion. In the simulations, the results shown in Figure 4, the two hydrogen nuclei
were separated by a small distance of 0.01 Bohr and released, the time step was 0.603 as,
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and the total run time was 73 fs. The energy was conserved to within 10−12 Hartree. The
Vii energy was plotted versus time, creating a sinusoidal graph where the peak to peak
time was averaged over ten oscillations to obtain the fundamental vibrational frequency.
As we increased the number of Gaussians used, the results tended towards a consistent
result. Without the VB correction, this was found to be 4563 cm−1, almost 10% higher
than the experimental value of 4161 cm−1 [55]. In the simulation in which correlation
was accounted for, the frequency was found to be 4204 cm−1, just 1% higher than the
experimental value. As before, a significant improvement was found when the number of
Gaussians was increased from one to two.

We have demonstrated the applicability of the method to the hydrogen trial systems
presented thus far. We now turn our attention to modeling a periodic hydrogen plasma
system. For this work, we utilized systems consisting of 1024 ions and an equal number of
electrons. Thus, for the majority of results presented in Figure 5, we compare the pressure
of an energy-minimized system at 0 K, calculated according to the virial theorem [56], to
experimental results and other models calculated at 300 K. However, at these densities, the
difference in pressure between 300 and 0 K is negligible. This was confirmed by comparing,
in Figure 5a, the data from Klakow et al. (solid blue line) and our kinetic energy exchange
(dashed blue line), both calculated with a single-Gaussian basis; they are almost identical
over the range of densities considered.

In Figure 5a, which shows only results calculated with a single-Gaussian basis, we can
see that the results calculated with our pairwise exchange term diverge from those of Jakob
et al. which were calculated using an exact exchange. However, with the addition of the VB
correction, in this case with the scaling parameter ρ = 0.33, we were able to better match
experimental results obtained on diamond anvil cells [57]. In this case, the VB correction
is accounting for the pairwise exchange, the limited basis, and the lack of correlation. We
note that our result follows more closely the experimental data than eFF.
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Figure 5. The pressure of dense hydrogen. (a) A comparison of our results to those in the literature
for a single-Gaussian basis. Our results were calculated at 0 K, whereas the published results, both
experimental and theoretical, were calculated at 300 K. The small offset between the Klakow et al.
results and our results using purely the kinetic energy component of exchange demonstrate the
applicability of this approximation. (b) Extension to multiple Gaussians. The red lines, calculated
with pairwise exchange only, show that increasing the number of Gaussians has only a small effect on
the pressure curve. The VB correction is needed to best match experimental results. (c) Orthorhombic
crystal structure of hydrogen at a Wigner–Seitz radius of 1.6 Bohr for a single-Gaussian basis and
scaled VB correction (ρ = 0.33). (d) Hexagonal-close-packed crystal structure of hydrogen at a
Wigner–Seitz radius of 1.6 with a two-Gaussian basis and scaled VB correction (ρ = 0.52).

In Figure 5b the effect of an increased basis is shown for the same dense hydrogen
system, both with and without the VB correction. Interestingly, simply with the pairwise
exchange energy, an increased Gaussian basis does not significantly improve the results.
This suggests the system’s limitation can be traced to either the lack of correlation or the
pairwise exchange. However, with the VB correction, we can scale ρ to lower the pressure.
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With a two-Gaussian basis and a scaled VB correction (ρ = 0.52), we can exactly match the
experimental results across the density regime tested. These results suggest that improved
correlation and full exchange play a larger role than the expanded basis. With that said, if
we investigate the crystal structure of the two minimized systems with the correction, we
find the single-Gaussian basis has an orthorhombic structure (c.f. Figure 5c). In contrast,
the two-Gaussian system has the correct hexagonal-close-packed structure (c.f. Figure 5d).

For our best model, the two-Gaussian basis with ρ = 0.52, we were able to run a
periodic dynamical simulation using a 0.24 as timestep for 130 as. During this time, we
scaled the ion velocities to have a kinetic energy consistent with 300 K and let the electrons
equilibrate with the ions. During this simulation, the pressure was observed to oscillate
between 125 and 160 GPa, denoted by the cross and error bars in Figure 5b. This simulation
demonstrates the model’s applicability but highlights the importance of parallelizing the
code for modeling larger systems.

4. Discussion

Atomistic simulations such as WPMD that go beyond the BO approximation may
be necessary to describe the dynamics of dense plasmas systems, and in particular, non-
equilibrium matter. However, in many implementations of WPMD, multiple approxima-
tions are used to achieve computational efficiency. This efficiency has led to the widespread
use of the eFF flavor of WPMD, which, despite the restrictive single-Gaussian basis, has
achieved remarkable success. This can, in part, be attributed to the semi-empirical scaling
parameters that simultaneously attempt to correct for deficiencies in the basis, approxima-
tions to exchange, and lack of correlation. However, the use of scaling parameters makes
the method’s applicability in untested regimes, such as for higher-Z or extremely dense
plasmas, questionable.

To reduce the number of scaling parameters, we have implemented a version of
WPMD with an extended multiple Gaussian basis to describe the behavior of periodic
systems of dense hydrogen. Furthermore, we use the improved Pauli potential suggested
by H. Xiao, which includes the electron–electron and electron–ion components of exchange.
Inclusion of the electron–electron exchange in the Pauli potential, and correlation approxi-
mation, allow for spatial correlations among dynamically moving and interacting electrons.
However, in order to achieve computational scaling comparable to classical methods, one
of the distinct advantages of the eFF method, we retain the use of a pairwise Pauli potential.
We achieved improvements in the descriptions of hydrogen atoms, molecules, and plasma
systems as the number of Gaussians was increased from one to four, in agreement with
previous work on non-periodic systems of a few electrons [36,42,43]. Notably, increasing
the basis from one to two Gaussians provided the greatest improvement.

With the improved basis and exchange, the most significant remaining error was
attributed to the model’s lack of correlation. We implemented a simple VB correction based
on the VB wave function, which we demonstrated in the hydrogen molecule and plasma.
However, to match experimental results, we must utilize a single-scaling parameter on this
correction term.

Future work will focus on improving the correlation part of this term, which could
be modified to take into account local order [45], or exploiting the robust correlation
functionals within DFT [50]. In addition, this work has been restricted to investigating
low-temperature dense systems due to the serial implementation in MATLAB. To overcome
computational limitations and explore higher temperature regions of phase space, we plan
to port the code over to C++ with CPU scalability in mind. However, the success of simpler
WPMD models in the WD [5,14,32] leads us to believe our improvements will extend the
region of validity; however, that is yet to be seen.
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