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Abstract: Machine learning methodologies have played remarkable roles in solving complex systems
with large data, well-defined input–output pairs, and clearly definable goals and metrics. The
methodologies are effective in image analysis, classification, and systems without long chains of logic.
Recently, machine-learning methodologies have been widely applied to inertial confinement fusion
(ICF) capsules and the design optimization of OMEGA (Omega Laser Facility) capsule implosion
and NIF (National Ignition Facility) ignition capsules, leading to significant progress. As machine
learning is being increasingly applied, concerns arise regarding its capabilities and limitations in the
context of ICF. ICF is a complicated physical system that relies on physics knowledge and human
judgment to guide machine learning. Additionally, the experimental database for ICF ignition is not
large enough to provide credible training data. Most researchers in the field of ICF use simulations,
or a mix of simulations and experimental results, instead of real data to train machine learning
models and related tools. They then use the trained learning model to predict future events. This
methodology can be successful, subject to a careful choice of data and simulations. However, because
of the extreme sensitivity of the neutron yield to the input implosion parameters, physics-guided
machine learning for ICF is extremely important and necessary, especially when the database is small,
the uncertain-domain knowledge is large, and the physical capabilities of the learning models are
still being developed. In this work, we identify problems in ICF that are suitable for machine learning
and circumstances where machine learning is less likely to be successful. This study investigates
the applications of machine learning and highlights fundamental research challenges and directions
associated with machine learning in ICF.

Keywords: machine learning; inertial confinement fusion

1. Introduction

Artificial intelligence (AI) is rapidly becoming one of the most important technologies
of our era. In recent years, machine learning [1], particularly, deep learning [2], has
enabled computers to acquire knowledge by being trained with large amounts of input
information and learn by analyzing large amounts of data instead of being programmed
using deterministic algorithms. Machine learning methods are being applied to image
sorting, classification, self-driving vehicles, speech recognition, and other tasks previously
performed by humans, and it is having a profound impact. Machine learning has been
applied to many classes of problems but it is not always the optimal solution. As machine
learning applications continue to expand, particularly in the context of complex scientific
problems, we need to understand the capabilities and limitations of machine learning
methodologies in order to identify problems that can be successfully addressed using
machine learning and understand what machine learning can and cannot do.

This paper is organized as follows. The capabilities and limitations of machine learning
are presented in Section 2. Section 3 describes the physical system of inertial confinement
fusion (ICF). The uniqueness, challenges, and opportunities for applying machine learning
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to ICF problems are discussed. Section 4 presents the tasks to which machine learning can
be successfully applied. A framework of physics-guided deep learning, some successful
examples, and recent progress are given in Section 5. The conclusions are presented in
Section 6.

2. Machine Learning and Limitations

Numerous studies have shown that machine learning methods can be successfully
applied to many problems, for example, pattern recognition, image classification, cancer
diagnosis, learning a function that maps well-defined inputs to outputs, a system with large
digital datasets that contain input–output pairs, and systems that provide clear feedback
with definable goals and metrics. Machine learning methods are particularly effective in
handling problems that (1) do not have long chains of logic or reasoning that depend on
diverse background knowledge or “common sense”; (2) do not need a detailed explanation
of how a decision was made; (3) have a high degree of tolerance for errors; and (4) have
no need for provably correct or optimal solutions. Recently, more rapid advancements
in machine learning have been made in complex problems, such as robotics tasks, real-
time correction in three-dimensional printing, drug discovery, aircraft design, self-driving
vehicles, and even symbolic regression [3].

Unique challenges remain for systems that have a mapping function that changes
rapidly over time and requirements for specialized dexterity, physical skills, or mobility.
Not all problems are solvable using machine learning methodologies. As stated by Andrew
Ng, “if a typical person can do a mental task with less than one second of thought, we can
probably automate it using AI either now or in the near future” [4]. Otherwise, machine
learning methodologies may not be as successful as we had hoped.

Although the advantages of machine learning are enormous, there are some inherent
limitations of the methodologies that cannot be addressed by using more data, more
computing power, or more resources. Firstly, the inherent limitations come from the
foundation of machine learning methodologies, i.e., probability and statistics. Reasoning is
inherently limited and cannot be achieved in the framework of machine learning. Machine
learning methodologies encode correlations but not causation or ontological relationships.
For example, they cannot learn from the probability that “rain clouds cause rain”. Symbolic
regression or planning is still a core challenge for both physics and AI, although there
has recently been significant progress in physics-inspired machine learning. Secondly,
machine learning methods are stochastic, rather than deterministic. No matter how many
inputs are given and how much computer power is available, machine learning methods
cannot understand Newton’s second law, Einstein’s theory of relativity, and the second law
of thermodynamics. Simply speaking, physical constraints are not incorporated into the
framework of machine learning methodologies or algorithms.

Therefore, machine learning methods alone are not always the best solution to a
problem. Applying machine learning methods to any problem or system can lead to a poor
outcome if a task requires a “thinking” process or it might not fully benefit from machine
learning. For scientific problems such as ICF, physics-guided deep learning is typically
utilized [5,6].

Deep learning is a subset of machine learning that classifies input data based on a
multi-step process of learning from prior examples. It makes use of advanced “neural
networks” [1,7] that proactively discover new patterns and become more accurate over
time. Although traditional machine learning techniques are widely used in industries, true
deep learning methods are only now being used in certain fields of research [8]. In order
to maintain high fidelity, in addition to the required computational power, deep learning
methods require not only large amounts of hand-crafted, structured, and high-quality
training data but also require a new mindset that embraces a flexible way of thinking about
how to solve a problem.

Achieving AI capabilities requires developing cognitive computing algorithms that
enable the extraction of information from unstructured data by sorting concepts and rela-
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tionships into a knowledge base. This can be thought of as a kind of biological exaptation,
where a physiological structure becomes relevant for a function it was not originally
adapted or selected for. Figure 1 shows the domains and relationships between artificial
intelligence, machine learning, neural networks, and deep learning.
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Existing deep learning models may or may not differentiate between causation and
correlation, and they may not accurately make open-ended inferences based on real-world
knowledge. Thus, complementary tools, in addition to the machine/deep learning algo-
rithms, are required. So, the first step in building a good machine learning model would
be a combination of physics knowledge [9], human analysis [10], as well as deep learn-
ing algorithms [11]. The scientific problems in inertial confinement fusion capsules and
high-energy-density physics partially fall into this category.

Research shows that deep learning models do not perform as well in problems where
the data are limited and lack a mechanism for learning abstractions through explicit and
verbal definitions. Deep learning models can fail if the test data differ significantly from
the training data. Additionally, deep learning models do not perform well when dealing
with data that have complex hierarchical structures. So, using machine learning methods in
areas with considerable noise may well lead to dangerous outcomes. In order to thoroughly
understand the capabilities of machine learning and effectively apply it to scientific research
and industrial advancement, we summarized the present status of machine learning and
present this summary in Table 1.

Table 1. Summary of the present status of machine learning.

Successful areas

Pattern recognition, image classification, cancer diagnosis, and systems with
the following features: (a) large digital datasets (inputs, outputs), clear goals,
and metrics; (b) not dominated by a long chain of logic and reasoning; (c) no
requirement for diverse background knowledge and explanation of decision
process; (d) high tolerance for errors and no requirement for provably correct or
optimal solutions.

Inherent limitations Unable to (a) achieve reasoning; (b) incorporate physics constraints in the
framework of machine learning.
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Table 1. Cont.

Deep learning features

(a) Input data based on multi-step learning process; (b) Advanced neural net-
work; (c) Able to discover new patterns, requires a new mindset, and can poten-
tially distinguish between causation and correlation; (d) Does not work well for
problems with limited data and data with complex hierarchical structures, no
mechanism for learning abstractions.

Specialized methods

(1) Flexible regression method (artificial neural network and Gaussian process
regression) for static and low-dimension systems; (2) Principal component
analysis, autoencoder, and convolutional neural network methods for high-
dimension systems; (3) Hyperparameter-tuning approach for optimization
and model accuracy; (4) Linear-star-space system identification method and
recurrent neural networks for identifying models.

Desired tools Combining physics knowledge with human analysis and deep learning algo-
rithms.

Required for AI Cognitive computing algorithms that enable the extraction of information from
unstructured data by sorting concepts and relationships into a knowledge base.

3. Inertial Confinement Fusion

Inertial confinement fusion (ICF) capsules represent a complex system that initiates
nuclear fusion reactions by compressing and heating targets (capsules) filled with ther-
monuclear fuel. The targets are small spherical pellets about the size of a pinhead that
typically contain a mixture of about 150–200 micrograms of deuterium and tritium [12].
Successful simulations of the dynamic system, from ablation to implosion, ignition, and
explosion require long chains of logic and planning and heavily rely on physical and hu-
man analysis. The dynamic process in ICF capsules is multi-dimensional, multi-scale, and
deterministic with stochasticity [13]. Advances in fusion science and engineering depend
on complex simulations, rigorous physics analysis, innovative experiment designs, and
new device developments. Simulations of ICF capsules are particularly challenging due
to the coupled physics phenomena and a vast range of scales in length and time. The
multi-scale physics modeling results in impractical requirements for computational power
and capability, inspiring the development of reduced models to make applications more
practical, although the reduced models still face the challenges of intensive computation
and numerical optimization, as well as uncertainty quantification.

Many existing and widely-used machine-learning methods [14] can be directly ap-
plied to model reduction in ICF problems [5,6]. The specific method to be used depends
on the type of model and the applicability of the reduced model. For models that are
approximately static, flexible regression methods, such as artificial neural networks [1] and
Gaussian process regression [15], can be readily applied. Gaussian process regression is
predictable for lower-dimensional problems. For high-dimensional problems, it is advanta-
geous to extract a reduced set of features from the input and output space, which can be
accomplished using principal component analysis [16], autoencoders, or convolutional neu-
ral networks [17–20]. The flexibility of these methods enables the fitting of applicable data
with varying levels of accuracy. In addition, hyperparameter-tuning approaches [21–23]
can be used to optimize the balance between model accuracy and complexity. Approaches
used to identify dynamical models, e.g., linear-state-space-system identification meth-
ods [24,25] and recurrent neural networks [26–28], can be used to develop reduced models
of dynamic systems.

There are complicating factors in ICF ignition capsules [29,30]. One unique challenge
is that the experimental database used for training is very limited. Additionally, the nuclear
performance (i.e., the neutron yield) of ICF capsules can be quite sensitive to multiple
input parameters, as observed in NIF ignition experiments [31,32]. Existing machine
learning models are trained on a mix of simulations and experimental data; however, the
simulations are not yet predictive. Thus, the test data could be very different from the data
used for the training. These challenges limit the quality and predictive capability of the AI
machine/deep learning models applied to ICF capsules, which underlies the need to add
physics analysis and human judgment to deep learning models.
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Including physics knowledge and human analysis in deep learning models can sig-
nificantly improve the models’ predictive capability. With physics analysis, we can take
into account the undesired factors and decompose the ICF problems into two components:
those that are solvable by machine learning and those that are less solvable by machine
learning. The former can be directly addressed using deep learning methods and the latter
can be addressed through a combination of first principles physics, reduced physics models,
human analysis, and deep learning algorithms.

For example, the neutron yield of an ICF capsule is given by an integral over the
volume of the hot fuel and time t:

Yn =
∫ ∫

nDnT < σv >DT dVdt, (1)

where nD and nT are, respectively, the number density of the deuterium (D) and tritium
(T) in the hot fuel, < σv >DT is the nuclear reaction rate of DT, and V is the volume of
the hot DT fuel (or hot spot). In terms of the pressure (Phs), ion temperature (T), and mass
(Mhs) of the hot spot and the mean thermonuclear (TN) burn width (τb) of the hot fuel, the
averaged yield of the capsule becomes [33,34]:

Yn ≈
NA

8kADT

< σv >

T
(Phsτh)Mhs

(τb
τh

)
, (2)

where τh is the hydrodynamic disassembly time and defined as the ratio of the hot spot
radius (Rhs) to the sound speed (Cs) in the hot spot; and NA, k, and ADT are, respectively,
the Avogadro number, Boltzmann constant, and atomic number of the DT mixture. The
product Phsτh of the ICF capsule is given by the expression [34–37]:

Phsτh = P0
[ γp

(3γp − 1)ε0
ηLηV2

imp
] γp

γp−1 Rhs
Cs

g̃ fT , (3)

where P0 and ε0 are, respectively, the pressure and specific internal energy of the pusher at
the time of peak implosion velocity (Vimp), and γp is the effective adiabatic index [34,36] of
the pusher that is nonlinearly related to the pusher adiabat [38,39]. ηL is the conversion
efficiency of the laser energy to the pusher kinetic energy and η is the conversion efficiency
of the pusher kinetic energy to the internal energy of the total stagnated fuel mass. These
two coefficients account for the energy losses from the system during the implosion process.
g̃ is a shape factor with a value of 1 for spherical and <1 for non-spherical hot spots [39].
Cs ' 2.778× 107

√
γT(keV) cm/s is the sound speed in the hot DT, fT (≥1) is the tamping

factor, and γ is the adiabat index of the hot DT.
Equations (2) and (3) show that the neutron yield of the capsule is sensitive not

only to the peak implosion velocity but also to other implosion parameters such as the
pusher adiabat, absorbed laser energy, tamping factor, hot-spot geometry (i.e., implosion
symmetry), pusher symmetry, and pusher pressure at the time of peak implosion velocity.

The analytic nonlinear relationship (3), which agrees well with the NIF experimental
data, was derived from the minimum implosion energy principle [36]. Due to the small size
of the NIF experimental dataset, it is impossible to obtain this analytical nonlinear represen-
tation from any machine/deep learning model. This presentation has to come from physics
principles and analysis because any machine learning model trained on large simulation
data cannot compensate for missing physics. In fact, thousands of simulations conducted
prior to the NIF experiments produced correlations between the hot-spot pressure Phs and
the peak implosion velocity Vimp [40] that differed significantly from the correlations shown
in the experimental data [36].

Despite the fact that machine learning methods are not able to produce an analytic-
integrated physics presentation (e.g., Equation (3)), machine learning methods can have
a great impact on ICF capsule design and the design optimizations of the parameters
under the guidance of physics relationships and causations. In this sense, machine learning
methods present some unique opportunities for research and development in the areas of
high-energy-density physics [5,6].
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4. Tasks Good for Machine Learning

Machine learning methods can be used to explore the sensitivity of ICF outputs to
design parameters [41,42] and aid in the design and understanding of ICF implosions by
integrating simulation and experimental data into a common framework. Particularly, with
enhanced physics understanding and an increased number of experiments on NIF, deep
learning methodologies may be able to reveal general correlations among variables and
bridge the gap between measured and simulated data in fusion ignition on NIF.

Machine learning methods can be very useful in optimizing the implosion symmetry
of capsules [43], the pusher mass/thickness, and the pusher materials with respect to the
implosion energy and hot-spot pressure in multi-variable and multi-dimension environ-
ments. Because the pusher adiabat plays a crucial role in the energy partition between the
pusher and the hot DT fuel during the implosion [35,37,44], for example, the amount of
implosion energy going into the hot spot of a capsule with a low-adiabat pusher could be
as high as 2× the implosion energy going into the hot spot of a capsule with a high-adiabat
pusher. More importantly, the adiabat of the pusher at the time of the peak implosion
velocity depends on the level of preheating and the degree of mixing between the ablator
material and cold DT fuel. So, optimizing the laser-pulse shape and hohlraum energy
coupling with respect to preheating, the pusher adiabat, and ablation-front instability
are other important tasks that machine learning methods can perform well. In addition,
machine learning methods are capable of performing well in the numerical optimization
and uncertainty quantification of any new design.

Deep learning methods enable the extraction of powerful models from experimental
data if a large dataset exists. By performing advanced data analytics, new and hidden struc-
tures within the data can be extracted and used to develop an accurate modeling framework.
Together with physics principles and knowledge, this approach can lead to the discovery
of new physics through the direct use of data to verify and validate analytic models that
generate fundamental physics. In this way, parameterized representations are uncovered
that not only minimize the mismatch between theory and data but also potentially reveal
hidden physics at play within integrated multi-physics and engineering systems.

Deep learning can also provide data-enabled enhancement [45,46]. For example, the
new deep learning cognitive simulation model for ICF, recently developed at the Lawrence
Livermore National Laboratory (LLNL), combines simulation and experimental data for
modeling ICF experiments, resulting in more accurate predictions of NIF shots [47]. In
this approach, a neural network is first trained on a variety of simulations to teach it the
basics of ICF and the different measurements involved. Then, a portion of the neural
network is retrained on the NIF experimental data, allowing it to adjust its performance
predictions. Cognitive deep learning can be used to enhance theoretical models using data,
or experimental data acquisition can be enhanced using theories and models. Similarly,
data from empirical models can be used to enrich theoretical computational models.

5. Physics-Guided Deep Learning

Although machine/deep learning methods have demonstrated great success in some
predictive modeling, when applied to surrogate modeling, they are often not robust,
as they require large amounts of data and inadequately capture parameter sensitivities.
In recent years, physics-guided machine learning algorithms [9], together with human
analysis and self-consistent cognitive learning models, have achieved significant success
in ICF capsule design, leading to robust and self-consistent surrogate learning models for
complex ICF applications. Figure 2 displays a framework for physics-guided deep learning
algorithms. In the framework, physics knowledge and the laws of nature are incorporated
into the mapping functions with variable weights and are used to guide the selection of the
model architecture, activation functions, loss functions, etc. The model training is driven
by physics.
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One successful example is the triple-alpha experiment conducted on OMEGA [48].
Machine learning methods, experimental feedback, and human analysis tripled the fusion
yield of the direct-drive capsule at OMEGA. Researchers at the University of Rochester
ran simple one-dimensional models hundreds of thousands of times. Each run involved
randomly changing the values of the pulse shape and target structure, and then picking the
best designs for subsequent rounds of target shots. They compared the simulated results
with the actual results of the shots and repeated this process. The physics-guided machine
learning-designed target had a threefold higher yield [48].

A second successful example is the recent series of high-yield NIF ignition cap-
sules [31,32,49]. The NIF machine learning team at LLNL developed a cognitive simulation
methodology for combining simulation and experimental data into a common, predictive
model. This method leveraged a machine learning technique called “transfer learning,”
which is the process of taking a model trained to solve basic tasks and partially retraining it
on a sparse dataset to solve a different but related task. In the context of ICF ignition design,
machine learning models are trained on large simulation datasets for general fusion burn
and partially retrained on experimental data, producing models that are far more accurate
than simulations alone. Cognitive machine learning models that combined simulations,
experimental data, and human analysis reduced NIF shot prediction errors from as high as
110 percent to less than 7 percent [31,32,45,47]. NIF achieved a then record yield of 1.37 MJ
with shot N210808 [50].

In a recent study [51], we applied machine learning methods to NIF ICF ignition
capsules and performed a comparative assessment of neutron yields and hot-spot tempera-
tures of the ignition capsules using six popular supervised machine learning regression
methods: K-nearest-neighbor regression [52], polynomial regression [53], support vec-
tor regression [54], sparse heteroscedastic Gaussian process [15], deep neural network
regression [14], and deep jointly informed neural network regression [55]. Predictions
were obtained and compared, along with the observed experimental yield data. All of
the supervised methods considered the hot-spot temperature Tion as input and performed
predictions based on the data. When the machine learning methods were first directly
applied to the entire NIF dataset, a very weak correlation between the neutron yield and the
hot-spot temperature was observed, which was inconsistent with intuition. We then incor-
porated physics analysis into the model and divided the data into two groups according to
the laser-pulse shape (high foot and low foot). Then, a strong correlation between the yield
and hot-spot temperature in each group emerged. All six methods generated reasonable
and consistent predictions by leveraging the training data from these two groups [51].
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We found that the machine learning predictions of all methods (except the Gaussian
algorithm) for the high-yield capsules in the training data were consistently lower than
the actual measured yields. This happens to be an inherent feature of machine learning,
which often results in underestimation of the high values and overestimation of the low
values, as the machine learning algorithm is drawn to the middle where most of the data
lie. The highest-yield data point cannot be overestimated because the algorithm has never
seen anything higher in its training set. So, human- and physics-guided analyses need to
be incorporated into machine learning algorithms in order to address this limitation.

The inability of most machine learning methods to accurately predict high-yield NIF
data also reflects the reality of NIF experiments, where the capsule performance is extremely
sensitive to various design perturbations, especially when operating under marginal laser
energy drive so achieving high-yield performance in the capsules is hard to replicate. The
high-yield shots are characterized by a relatively high peak implosion velocity and thin
shell, which brings these capsules close to the “velocity cliff” and increases the risk of shell
burn-through, leading to excessive mixing between the pusher and cold fuel. All of these
factors mean that the capsule’s performance is hard to reproduce.

As the NIF database continues to grow and the understanding of high-energy-density
physics (HEDP) and fusion science advances, machine learning models, together with
human and physics knowledge, are expected to play an increasingly important role in future
capsule design, design optimization, and the development of new platforms (e.g., polar
direct-drive and indirect-drive hot-spot design, pushered single-and double-shell design)
for burning plasma and conducting HEDP experiments. Combining well-simulated data
and experimental data into one dynamic model can significantly improve the predictive
capability of deep learning models. A summary of the present status of machine learning,
as well as future directions, needs, and applications in ICF research, is presented in Table 2.

Table 2. Applications of machine learning methodologies in inertial confinement fusion.

ICF systems
Limited data, requiring a long chain of logical, multi-scale, and multi-
dimensional physics; sensitivity to small perturbations; low-error tolerance
level.

Required ML Physics-informed and human analysis incorporated into deep learning and
transfer learning algorithms.

Suitable problems

(1) Study of sensitivity of outputs to design parameters; (2) Integration of
simulations and experimental data into a common framework; (3) Exploration
of general correlations among the variables buried in the experimental data
and between the measured and simulated data; (4) Optimization of implo-
sion symmetry, pusher mass/thickness/materials, and laser-pulse shape; (5)
Advanced neutron image analysis and reconstruction.

Successful examples

(a) NIF high-yield Hybrid E series ignition target design and optimization
guided by the LLNL transfer learning model; (b) OMEGA trip-alpha experi-
ment driven by combining machine learning with human analysis and physics
knowledge.

Future plans

(1) Optimizing energy-coupling coefficients; designing parameter space of im-
plosion (symmetry, pusher mass/thickness/materials, and laser-pulse shape);
(2) Minimizing hydrodynamic instabilities using optimized spectrum of per-
turbations; (3) Quantifying uncertainties for both methods and experimental
data; (4) Improving 3D neutron image reconstruction using 2D projection and
autocoded features; (5) Combining physics knowledge, human analysis, data,
and deep learning algorithms in each step of a design.

6. Conclusions and Future Work

Applying physics knowledge and human analysis to deep learning models for ICF
problems can significantly improve the predictive capabilities of these models in designing
experiments for ICF and HEDP. The predictions of learning models strongly depend on
the quality and quantity of the training data. If the training data are insufficient, the deep
learning predictions will be poor. A combination of transfer learning, physics, and human
analysis may be able to compensate for the limitations of small experimental datasets
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in ICF. In this work, we summarized the present status of machine learning methods,
as well as their advantages, inherent limitations, and productive applications in inertial
confinement fusions.

For the success of machine learning in ICF, we propose the following areas for direct
applications: (1) Advanced neutron image analysis and reconstruction algorithms. The
successes of machine learning in image analysis have been demonstrated in many fields
and applying machine learning to neutron image analysis in ICF could help to determine
the correlations between inputs and outputs and lead to significant improvements over
current techniques, such as autoencoded features, 3D reconstruction using 2D projections,
and advanced characterization of the size and location of sources. (2) Optimization. De-
signing targets for burning plasma is a multi-scale and multi-dimensional task. Applying
machine learning algorithms to study design sensitivities to high-dimensional parameters
and optimize design parameters, including the laser-pulse shape, ablator material, thick-
ness, surface perturbations, and fuel mass and size, can speed up the design process and
optimize designs. (3) Uncertainty quantification. Uncertainty quantification plays a pivotal
role in reducing the impact of uncertainties during both optimization and decision making.
In fusion science, most decisions are made based on collected observations and uncertain
domain knowledge. Quantifying uncertainty is an effective method for evaluating the relia-
bility and efficacy of a decision and solving real design problems. Bayesian approximation
and ensemble learning techniques used in deep learning have shown success in a variety
of problems. Applying these methods to ICF data could greatly enhance both the physics
understanding of fusion science and capsule designs in reliably achieving burning plasma.

Finally, it is worthwhile pointing out that although AI is rapidly becoming one of the
most important technologies and most powerful tools of our era, AI machine learning is not
the solution to all problems because of its inherent limitations. Blindly applying machine
learning methods to problems beyond their applicability can lead to poor, and sometimes
dangerous, conclusions. Considering the limitations of machine learning methods, combin-
ing machine learning algorithms with physics knowledge and human analysis can provide
a powerful tool, yielding viable results for the future of high-energy-density physics and
inertial confinement fusion target designs. However, certain aspects of human intelligence
and knowledge can never be replaced by AI machine learning.
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