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Abstract: Turbulence and transport phenomena play a crucial role in the confinement and stability of
tokamak plasmas. Turbulent fluctuations in certain physical quantities, such as density or temperature
fluctuations, can have a wide range of spatial scales, and understanding their correlation length is
important for predicting and controlling the behavior of the plasma. The correlation length in the
radial direction is identified as the critical length in real space. The dynamics in real space are of
significant interest because transport in configuration space is primarily focused on them. When
investigating transport caused by the E× B drift, the correlation length in real space represents the
size of E × B whirls. It was numerically discovered that in drift wave turbulence, this length is
inversely proportional to the normalized mode number of the fastest growing mode relative to the
drift frequency. Considerable time was required before a proper analytical derivation of this condition
was accomplished. Therefore, a connection has been established between phenomena occurring
in real space and those occurring in k-space. Although accompanied by a turbulent spectrum in
k-space with a substantial width, transport in real space is uniquely determined by the correlation
length, allowing for accurate transport calculations through the dynamics of a single mode. Naturally,
the dynamics are subject to nonlinear effects, with resonance broadening in frequency being the
most significant nonlinear effect. Thus, mode number space is once again involved. Resonance
broadening leads to the detuning of waves from particles, permitting a fluid treatment. It should be
emphasized that the consideration here involves the total electric field, including the induction part,
which becomes particularly important at higher beta plasmas.

Keywords: turbulence and transport modeling; magnetic confinement; correlation length; resonance
broadening; tokamaks; drift waves

1. Introduction

The description of turbulence in tokamak plasmas is usually made in k-space [1–15].
However, the complementary description in real space is sometimes useful [1,2]. This is
particularly the case when we want to describe drift wave transport. We are particularly
interested in high-beta cases where electromagnetic effects cannot be ignored. This means
that we need to consider the asymptotic behavior of the eigenfunction in this limit. As it
turns out, the asymptotic behavior of the electrostatic case can still be used [3,14]. Concern-
ing high-beta, we note that linearly our present model contains the second stability regime
of the ideal magnetohydrodynamic (MHD) ballooning mode [12,13]. We also note the
ability of our model to describe the L-H transition [15] where the system spontaneously and
without adjustments enters an H-mode where the gradient of the pedestal is in the second
stability regime of MHD ballooning modes. The fact that our quasilinear description is
well at the level of nonlinear simulations [16] is confirmed by the agreement of the H-mode
simulations with [15,17].
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2. Basic Equations

We begin with the expression for electron density perturbation Equation (1), which is
derived from the collisionless electromagnetic parallel electron equation of motion, the ion
energy equation, electron density, and Ampere’s law in Ref. [4]. The expression depends
on the vector potential component A‖, so the deviation from a Boltzmann expression is due
to the electromagnetic induction. We derived an expression for the correlation length in the
electrostatic case in Ref. [3]. It focused on how the correlation length in real space describes
the width of the eigenfunction.

δne

ne
= [1 + δ(ω)]

eϕ

Te
, (1a)

where:

δ(ω) =
(ω∗en −ω)2

ω(ω∗en −ω) + ωDe(ω−ω∗ep) + k2ρ2k2
‖vA

2
. (1b)

Here, δne is the electron density (ne) perturbation, ϕ is the electrostatic potential, e is
the electronic charge, Te is the electron temperature, k is the wave propagation vector, k‖ is
wave vector parallel to the magnetic field, ω is the the mode frequency, ω∗en is the electron
diamagnetic drift frequency, ω∗ep is the diamagnetic drift and is due to the inhomogeneity
of electron pressure, ρ is the ion Larmor radius, vA is the Alfvén velocity, and ωDe is
the magnetic drift frequency. The expression for the magnetic drift is standard. It has
different signs for ions and electrons and is due to the inhomogeneity of the background
magnetic field.

The above-mentioned quantities are standard and defined in Ref. [4]. To generalize
this result, we employ a more general parallel vector potential, A‖, that includes the missing
terms such as current density gradient (peeling term) and collisionality. A more general
vector potential is taken from Ref. [7]. As seen in Equation (2), this expression does not
contain an electromagnetic correction to the asymptotic δ, and thus we basically have the
same mode profile as in the electrostatic case. This also follows from the investigations in
Refs. [4–6]. We also note that the effect of magnetic compression (δB‖) can be included as a
modification of the magnetic drift frequency, as shown in Ref. [7] Equation (6.21). Further
inclusion of magnetic compression would involve the compressional Alfvén wave. This is
motivated only in connection with heating. The gauge condition is the standard divA = 0.

eA‖
Te

=
k‖(ω−ω∗e)

ω(ω−ω∗e) + ωDe(ω∗ep −ω)− mk‖Te

e2Brn0

∂J‖
∂r − k2

⊥ρ2
s k2
‖v

2
A

(
1− i(ω−ωDe)

k2
‖De

) eϕ

Te
. (2)

Here, De = Te/(meνe), me is the electron mass, νe is the electron-ion collision frequency,
m is the poloidal mode number, r is the minor radius, and J‖ is the background current. Of
particular interest here is the direction of the particle flow. A rather general formula was
derived in Ref. [4]. It is:

D = (1− ft)D1Te
1.5εnvi

2 Imδ(ω)

krρs
, (3)

where we introduced
v =

ω

ωDe
= vr + ivi, (4)

εn = 2Ln/R, Ln is the electron density gradient scale length, R is the major radius, vr(vi) is
the linear mode real frequency (growth rate), ft is the fraction of trapped electrons, and kr is
the radial propagation wave vector. Here, D1 is our standard normalization of diffusivities
in our code depending, e.g., on the major radius.
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2.1. Effects of Current Gradient

We are now looking for imaginary parts of δ that will give a systematic particle flow.
We begin by ignoring collisions. Then, we have:

Imδ(ω) =
vi
|N|2

{
vi

2
(

1
εn
− 1
)
+

(
vr −

1
εn

)[(
1
εn
− 1
)(

vr −
1
εn

)
− 2ΩA −

mk‖Te

e2Brn0

∂J‖
∂r

+ 2
ηe

εn

]}
, (5a)

ΩA = k2ρ2k2
‖v

2
A/ω2

De, (5b)

N = vr

(
1 +

1
εn

)
−vr

2 + vi
2 − 1 + ηe

εn
+ ΩA +

mk‖Te

e2Brn0

∂J‖
∂r

+ ivi

(
1 +

1
εn
− 2vr

)
, (5c)

where ηe is the ratio of electron temperature to electron density gradient. From Equa-
tion (5a), we notice that we have a more likely particle pinch if the imaginary part of the
profile is flat, which is generally the case in the core region of the plasmas. However,
here too, the current gradient is relevant. It may have either sign, so we have to look at a
particular experimental case in order to draw conclusions. From Equation (2), we notice
that collisions may also enter here. However, they enter as an imaginary part and could
add to the imaginary part of ω.

2.2. Effects of Collisions

Another possibility for obtaining a steady flow is through collisions. If we treat the
frequency as real, the imaginary part of δ can be written as:

Imδ(ω) =
AC

B2 + C2 , (6)

where
A =

ω∗en −ω

ω

[
ω(ω∗en −ω) + ωDe(ω−ωep) + k2ρ2k2

‖v
2
A

]
,

B = ω (ω∗en −ω) + ωDe(ω−ωep) + k2ρ2k2
‖v

2
A,

C = k2ρ2k2
‖v

2
A

ω−ωDe

k2
‖De

.

Also here, an effect of the sign of frequency can be seen. If magnetic drift does not
dominate, we expect that the trapped electron mode (TEM) will give way to an outward
flow, whereas if magnetic drift dominates, TEM will give way to particle pinch. We now
note that our model has been able to describe particle pinches in Tore Supra [9], and
simulations closely resembling these were also performed with QualiKiz [8]. As it turned
out, these results were also consistent with our first model giving a particle pinch [10] and
are also supported by similar phenomena in the levitated dipole experiment and particle
motion in the ionosphere [11].

3. Correlation Length

We are particularly interested in the correlation length. This is actually the effective size
of eddies. As found originally in our first paper on transport, the effective mode number
that gives transport is the mode number at the maximum growth rate as normalized by the
drift frequency. The saturation condition is:

ωiδT = vE · ∇δT, (7)

where δ indicates perturbation. We now recall that smaller eddies tear apart larger eddies
since their E×B flow is stronger due to the larger mode number. However, for larger mode
numbers, the electric field strength is reduced due to the smaller growth rate. Thus, our
condition becomes:
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vi =
ωi

ωDe
=

VE·k
ωDe

. (8)

In Equation (8), we see that the only mode number dependence here is the E × B
drift. Thus, the maximum of the growth rate as normalized by the drift frequency is at the
maximum of the E× B drift. To determine the actual value of the correlation length, we
start from the eigenfunction, which has the form:

ϕ ∝ e−αθ2
, (9a)

where:

α = −ivik2ρ2 ŝq, (9b)

θ is the extended angle, q is the safety factor, ŝ =
√

2s− 1 + κ2(s− 1)2 in which s is the
magnetic shear, and κ is the elongation. In finding the scaling of the correlation length, we
were guided by the parametric dependence of the eigenfunction in Equation (9).

Simulations gave us the scaling [3,18].

f ls =
(

0.7 +
2.4

7.14qŝ + 0.1

)
f l, (10a)

kθρs =

√
2 f ls

1 + 1/τ
, (10b)

where f l = 0.1, which is the finite Larmor radius (FLR) parameter usually used in slab
calculations. Here, kθ is the inverse correlation length and τ is the temperature ratio. This
scaling was tested extensively with good results in Ref. [3]. Another point to be considered
here is the fact that we used a fluid model. Clearly, the eigenfunction could have been
modified by kinetic wave-particle resonances. However, our model is a fluid model where
kinetic resonances do not appear. This is motivated by going into the nonlinear regime
where resonance broadening [19] is active. The resonance broadening was first applied to
our system in Ref. [20] and has recently been applied to a generalized system including
fast particles in Ref. [21].

We also recall that using Equation (10) as a single wave number in simulations with
many modes was verified numerically in Ref. [1]. In reality, a few modes around the
correlation length contribute to the transport, but we here see that we can replace these
by using only the correlation length, which means that we are looking at transport in real
space as given by the E× B rotation at its maximum. There are also other cases where our
model gives us flows in real space, such as at internal transport barriers [22] and at the
H-mode barrier [15,23].

4. High Confinement Mode (H-Mode)

H-mode is characterized by improved plasma stability, increased energy and particle
confinement, and reduced transport of heat and particles across the magnetic field. H-mode
enables longer plasma pulses and higher fusion power output, bringing us closer to the
goal of sustained, controlled nuclear fusion as a clean and abundant energy source.

The H-mode is achieved through a combination of several factors, including the for-
mation of an edge transport barrier (ETB), the presence of a steep pressure gradient, and
the establishment of a sheared plasma flow near the plasma edge. As we have stressed
several times, zonal flows are much stronger in reactive systems than when dissipation is
included [7,24]. This helps one to obtain both internal transport barriers (ITB), the ETB, and
the Dimits nonlinear upshift [25]. The result is visible in the expression for the ion thermal
conductivity.
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χi = Re

[
1
ηi

(
ηi −

2
3
− (1− ft)

10
9τ

εn −
2
3

ft∆i

)
(ωi −ωE×B)

3/k2
r

(ωr − 5
3 ωDi − iγdiss)2 + (ωi −ωE×B)2

]
, (11)

where ∆i is the contribution from trapped electrons to the ion temperature pinch [7]:

∆i =
1
N

{
|ω̂|2

[
|ω̂|2(εn − 1) + ω̂rεn

(
14
3
− 2ηi −

10
3

εn

)
+

5
3

ε2
n

(
−11

3
+ 2ηe +

7
3

εn

)
− 5

3τ
ε2

n

(
1 + ηe −

5
3

εn

)]
+

50
9τ

ω̂rε3
n(1− εn)−

25
9τ

ε4
n

(
7
3
− ηe −

5
3

εn

)}
,

N =

(
ω̂2

r − ω̂2
i −

10
3

ω̂rεn +
5
3

ε2
n

)2
+ 4ω̂2

i

(
ω̂r −

5
3

εn

)2
,

and γdiss is the Landau damping or magnetic drift resonance [26].

γdiss = −
3
4

(
σt
√

2− i
)

ωDi −
2√
π

k‖

√
2Ti
mi

σs, σt =
ωDi

|ωDi|
, σs =

k‖
|k‖|

.

Here, ηi is the ratio of the ion temperature and density gradients, and ωE×B is the
flowshear due to background flow and the hat quantities are normalized with the electron
diamagnetic drift frequency. Since marginal stability typically occurs for ωr close to 5/3ωDi,
we realize that χi will be very sensitive to the fluid closure.

The subtraction of ωE×B from the linear growth rate in Equation (11) means that we
use Waltz’s rule [27] for stabilization due to flow shear. Also, the flow shear is sensitive to
the fluid closure according to the rotation:

Γp = 〈VErVθ〉 = −
1
2

D2
Bkrkθ φ̂∗

[
φ̂ +

1
τ

P̂i

]
+ c.c, (12)

where Γp off-diagnoal poloidal momentum flux; VEr is the radial component of E × B
drift; Vθ is the poloidal flow velocity; DB = ρscs, cs is the sound speed; kθ is the polidal
wavenumber; φ̂ = eφ/Te; and P̂i = δPi/Pi. In Equation (12), we note the dependence of
ion temperature (Ti) on ion pressure (Pi), which is also very sensitive to the fluid closure,
through the formula:

T̂i =
ω

ω− 5
3 ωDi + iγdiss

[
2
3

n̂i +
ω∗e
ω

(
ηi −

2
3

)
φ̂

]
. (13)

Here, T̂i = δTi/Ti and n̂i = δni/ni. From Equation (13), we conclude that the tempera-
ture perturbation and, accordingly, the flow are much stronger in a reactive fluid model.
This is the reason why we have been able to recover both the ITB (poloidal spinup), the
ETB (H-mode), and the Dimits shift [25] with our reactive fluid model. Here, we point out
that both kinetic ballooning modes and peeling modes are active in the H-mode barrier.
We thus realize that our new knowledge about correlations in electromagnetic systems,
mentioned earlier in this work, is essential. We also stress that we have good agreement
with strongly nonlinear turbulence simulations for the MHD ballooning parameter (α) in
transport barriers seen in Alcator C-mod [17].

5. Zonal Flows

As mentioned above, zonal flows are often important. They generally arise close to
fluid resonances. Our rule for including the appearance of zonal flows is to use the Waltz
rule [27]. This means that we subtract the E× B shearing rate from the growth rate. This
procedure gives us the L-H transition as well as ITB and the Dimits nonlinear upshift. The
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Waltz rule gives us an excitation of zonal flows, the strength and location of which depend
strongly on the fluid closure in fluid models.

6. Discussion

This paper explores the impact of electromagnetic effects on various plasma phenom-
ena, including the correlation length, particle pinches, and the L-H transition. A noteworthy
finding is that electromagnetic effects do not alter the asymptotic behavior, specifically for
large FLR effect, of the eigenfunction. This behavior determines the shape of the eigenfunc-
tion, thereby influencing the correlation length. The advantage of fluid models over fully
kinetic models is the vast difference in computing time. Here, it is not only the fact that
fluid models do not need to work in six dimensional phase space but that they only work
in three-dimensional configuration space. Another advantage of using fluid models is that
it is sufficient to use a quasilinear theory, while kinetic models require strongly nonlinear
effects such as resonance broadening. This is because kinetic velocities are several orders
of magnitude larger than fluid velocities. In fact, it is resonance broadening that reduces
kinetic theory to fluid theory, where we can truncate at the irreducible fourth moment [28].
We can also compare it with an electromagnetic kinetic paper [29].
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