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Abstract: In this review, we detail the commonality of mathematical intuitions that underlie three
numerical methods used for the quantitative description of electron swarms propagating in a gas
under the effect of externally applied electric and/or magnetic fields. These methods can be linked
to the integral transport equation, following a common thread much better known in the theory of
neutron transport than in the theory of electron transport. First, we discuss the exact solution of the
electron transport problem using Monte Carlo (MC) simulations. In reality we will go even further,
showing the interpretative role that the diagrams used in quantum theory and quantum field theory
can play in the development of MC. Then, we present two methods, the Monte Carlo Flux and the
Propagator method, which have been developed at this moment. The first one is based on a modified
MC method, while the second shows the advantage of explicitly applying the mathematical idea of
propagator to the transport problem.
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1. Introduction

The goal of kinetic theory is the modeling of a gas (or plasma, or any system made up
of a large number of particles) by a distribution function in the particle phase space. This
phase space includes the position and velocity coordinates, but also microscopic variables,
which describe the “state” of the particles. In this respect, several textbooks and review
papers have been devoted to describe the mathematical foundations of kinetic theory of
gases and plasmas [1–6]. The need to create mathematical models of ionized gases at
low temperatures has also been felt for many decades. In fact, the applications of these
systems are numerous and qualitatively important and range from the detection of ionizing
radiation to the production of new materials, to medicine, and the emission of light [7]. It is
not possible to build a reliable model of a low-temperature ionized gas without a detailed
description of electron transport and kinetics. For this reason, a gigantic literature was born
and developed, including thousands of works, on the development of numerical calculation
methods that allow us to calculate the quantities that describe these phenomena [8–10].

Since the density of electrons in a weakly ionized gas is much lower than that of the
neutral background gas, their behaviour is governed by externally applied fields (electric
or magnetic) and by the various collisions that they undergo with the molecules or atoms
of the neutral gas. Under these assumptions, it follows that the motion of electrons in the
phase space can be described by a single particle distribution function f (r, v, t) under the
linear electron Boltzmann equation (EBE) [11,12]:

∂ f (r, v, t)
∂t

+ v(t) ·∇r f (r, v, t) + a(t) ·∇v f (r, v, t) = J[ f ], (1)
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where r, v, and t are the configuration space coordinates, velocity space coordinates,
and time, respectively, e is the elementary charge, m is the electron mass, E is the electric
field, and J[ f ] is the collision term that takes into account electron collisions with the
neutral background gas atoms or molecules. For the category of problems in question, this
equation becomes linear, since in a very low ionized gas, the interaction between charged
particles can be neglected. In this review, in fact, we focus on the linear Boltzmann equation
where self-collisions of electrons are neglected. More complex transport equations consider
the interaction between charged particles. This interaction can be included with different
methods, where one consists of describing it at the micro-mechanical level rather than as an
instantaneous collision process [13,14], and the other considers pairs of charged particles,
one of which is sampled from an approximation of the solution, to collide according to the
Coulomb cross section but still within the Boltzmann equation [15]. These aspects are not
considered in this work because, at the moment, there is no solid basis for describing them
in the formalism used here. An interesting approach in this sense is that of Prigogine and
co-authors [16], which diagrammatically describes successive approximations of interaction
between charged particles in phase space. This approach does not appear to have been
extended to weakly ionized gases where most collisions are between electrons and neutrals.
Even with this simplification, the equation presents considerable difficulties and this is
why the literature relating to its solution is so extensive [8,10,17,18].

For many years, and still effectively when appropriate, an approximation known
as the two-term approximation has been employed to solve this equation [11,19–22]. It
consists in simplifying the electron velocity distribution function (EVDF) by developing
it into an expansion in spherical harmonics truncated at first order. This methodology is
quick and simple to implement numerically and has been available for many years also into
open access programs, which allow one to calculate the isotropic and the first anisotropic
components of the velocity distribution function [21,23–25]. Over the years, it has emerged
that the two-term approximation is not sufficient in a series of problems especially re-
lated to plasmas confined inside reactors, whose geometry must be considered [26–31].
For this reason and with the help of the ever-improving performance of computers, more
direct calculation methods have been developed which allow the distribution function
of Equation (1) to be determined if necessary, taking into account all the independent
variables involved.

The first of these methods, and still one of the most used today, is the Monte Carlo (MC)
method, which directly simulates the trajectory of each electron in a large ensemble using
random numbers [15,32–34]. This method is a variation of the one originally developed in
the 1940s for calculating neutron trajectories in the simulation of nuclear fission systems [35].
Nowadays, several codes are available as open source for MC simulations of electrons
in gases [36–39]. Despite the accuracy of MC simulations for calculation of chemical rate
coefficients and electron transport parameters and the increase in computational resources,
this method is still computationally expensive (especially when coupled with self-consistent
description of weakly-ionized gases) [40].

Recently, other deterministic methods for numerical solutions of the EBE have
emerged [41–43]. For a long time, these methods were simply unaffordable because of
the high computational cost of the integral in the Boltzmann collision operator, but they
are now becoming more and more competitive. The methods that will be exposed in
this review share the role played in their formulation and practice by Green functions or
propagators [44]. These, essentially, are operators that allow to calculate the evolution
of a system, as long as it is described by linear equations, by breaking it down into the
contributions that come from every small part of the system into every other small part
of the system. Green functions, on which there is a gigantic literature, place the methods
considered here in the broader perspective of mathematical physics.

To summarize, the numerical methods developed for solving the EBE are an important
part of mathematical physics and theoretical physics, and any research in this sector
deserves to be considered in the broader context. On the occasion of the 150th anniversary
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of the original formulation of the EBE, a review article on methods for calculating the
kinetics of electrons based on the EBE was published by Boyle and co-authors [10]. The
present review has been formulated as a complement to that work. In fact, we focus
here on methods for numerical solutions of the EBE that do not employ an expansion of
the velocity distribution function in spherical harmonics. Moreover, the present review
updates the survey written by Segur and co-authors [17] with a description of recent efforts
in development of numerical methods used to solve the EBE.

The review is structured as follows. Section 2 describes the principles of MC simula-
tions of electrons and the connection of MC methods with the electron transport equation.
Section 3 presents the mathematical principles behind the Monte Carlo Flux method, which
is a hybrid stochastic-deterministic algorithm to solve the EBE. The advantages and disad-
vantages of this method are also described. Finally, in Section 4, the Propagator method is
described and its application for electron swarm and plasmas are highlighted, as well as the
numerical method. To conclude, we show that awareness of the common conceptual basis
between these methods produces advantages both for those who develop them, for those
who employ them, and for those who teach them. In the following sections, we will develop
this point of view.

2. The Monte Carlo Method
2.1. Principle

The MC method is still today the most used for the description of electron swarms,
especially in situations of complex geometry or when, in the context of a simulation of
a plasma device, electrons are interacting with space charge or with the walls of the
device [9,15,33,37,40,45–50].

The method is based on the description of the movement of a large number of mathe-
matical objects representing electrons under the effect of forces due to electric fields and
magnetic fields, while collisions with neutral plasma particles are introduced by means of
random times between each collision and the following one.

It is very simple to create a MC simulation [32]; it is sufficient to organize a vector of
objects representing the electrons or, in a more traditional setting, numerical vectors for
the individual dynamic quantities of each electron, i.e., x, y, z, vx, vy, vz. Once a small and
appropriately chosen time step has been introduced, one takes into account the effect of the
forces acting on each electron due to its position and speed. At this point, it is possible to
apply the kinetic theory of gases to determine the probability that a given collision process
extracted from the set of cross sections can occur. The effect of this collision process on any
single electron is produced explicitly, for example by modifying the velocity components
to take into account an elastic or inelastic process. In case of non-conservative collisions,
i.e., ionization or attachment, a dynamic list of particles can be used [32]. Other methods
have been proposed to conserve the number of simulated particles without altering the
average properties of the swarm [51–53].

Alternatively, each electron is associated with the time to its next collision, which is
updated during the calculation.When this is reached, the speed of the electron is changed
and a new time to the next collision is calculated. The version of the method most often
used for precision calculations is the one called null collisions MC. The method was first
introduced by Skullerud [54] for the use in plasma, although a similar one, the artificial
isotope method [35], had been previously used for the treatment of complex geometries
in nuclear reactors. The basic idea is simple and powerful and consists in introducing
a collision process, fictitious, in such a way that its frequency added to that of the other
processes produces a collision frequency that does not depend on space, time, or speed.
This way it is extremely simple to calculate the time to the next process, just once after any
collision event, using the following equation [55]:

tc = −1
ν

log η, (2)
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where tc is the time to next collision, ν is the above-mentioned constant total collision
frequency (including the null collision frequency), and η is a random number from a
uniform distribution in (0, 1]. To compensate for the fictitious process that has been added,
when it occurs, the speed of the electron does not change. This method also allows the effect
of the non-zero temperature of the gaseous medium on the electrons to be introduced: it is
clear in fact that the collision frequency between a neutral particle and an electron depends
on the speed of the particle. This effect is particularly important if ions are propagated
instead of electrons [56,57]. A reasonable maximum of the collision frequency is then taken,
and at the time of the collision a fraction of the events are eliminated to account for the
Maxwell distribution of gas particle velocities.

2.2. Monte Carlo Method as Formal Solution of the Electron Transport Problem

The MC method, with the prescription just summarized, is able to solve the problem of
the transport of a swarm in an exact way, given that no numerical parameter is introduced
that needs to be optimized. For this reason it has sometimes been considered a kind of
numerical experiment based on an analogical approach, on the direct use of the laws
of physics, something different from the solution of transport equations. This idea is in
contrast with the very principles of the initial development of the MC method, at the
time of which it was clear to the developers that the method can be derived by formal
procedures starting from the integral form of the transport equation [35]; there is therefore
no opposition between an analogical approach and an approach based on the solution of
the integral equation, especially since the two methods ultimately lead to the development
of the same code.

In the case of applying the method to swarms of charged particles, there are some
formalities to introduce in the mathematical proofs, given that charged particles do not
propagate in straight lines unlike photons and neutrons. However, these technical aspects
have been addressed in several publications [2,58]. In this regard, an illuminating way of
showing how the continuous operators of the EBE become events in the MC method is
to use the well-known integral equation [58] satisfied by the time evolution operator U
written as the exponential of the sum of two operators At and Jt, where t is time:

U(t) = exp(−(A + J)t), (3)

which is very well known in quantum field theory, but mathematically true in general;

U(t) = exp(−At) +
∫ t

0
dt′ exp(−A(t − t′))J[ f ]U(t′). (4)

Now if exp(−At) is the operator which propagates a particle for the time t under
the action of inertia and electric force, while J[ f ] is the integral operator representing the
collision events as

J[ f ] =
∫

v′

[
b(v, v′) f (v′, t)− b(v′, v) f (v, t)

]
dv′, (5)

where b(v′, v)dv is the probability per unit time that an electron undergoes an elementary
event (e.g., a collision with the target gas) and that, under the effect of this event, it changes
its velocity v to a value v′. Moreover, the following usual normalization condition applies
for the transition probabilities

ν(v) =
∫

v′
b(v′, v)dv′, (6)

where ν(v) is the total electron impact collision frequency.
The equation above shows that the last collision event randomly breaks the propaga-

tion into two parts, or stages, one of which, U(t′), can still include other collision events
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in a hierarchical structure. This structure is resumed in a natural way using a diagram
technique that was mentioned in the work [32] developed in more detail in Ref. [59].

To show this, we introduce, for the first time explicitly, the Green function or propaga-
tor between two positions in phase space after a time shift ∆t = t′ − t that is represented
here as G(r′, r, v′, v, t′, t), which actually is a generalized function, since it may include the
Dirac’s delta δ(r′ − r, v′ − v, t′ − t) in its expression.

The intuitive aspect of traditional MC methods derives from the fact that in the
absence of collisions the Green function of two arguments final v′, r′, t and initial v, r is
equal to 0 unless there is an electron trajectory, determined by inertia and by the electric
and possibly magnetic fields, which smoothly joins the two arguments; in which case the
Green function is just equal to the aforementioned Dirac delta. Calculating this propagator
without collisions is therefore equivalent to solving the equations of motion for a material
point with a charge-to-mass ratio corresponding to an electron, under the effect of fields.

When collisions of electrons with atoms and molecules are added to the description,
the point probability packets are dispersed, which means that the initial Dirac distribution
becomes a Dirac distribution multiplied by a value less than 1, added to a traditional
function. At this stage, it is no longer possible to use a description based only on determin-
istic trajectories.

Now, we can introduce here a notation well known in quantum field theory [60]
where G, the Green function of the equation, is the exact propagator, while we use g to
represent the Green function where the positive part of the collision operator J is removed,
so that particles just propagate according to the convective operator while they “decay”
and disappear according to the exponential exp(−νt). The result is the expansion:

G(r, r0, v, v0, t, t0) = g(r, r0, v, v0, t, t0)

+
∫∫∫

d3r1d3v1d3v2

∫ t

t0

dt1g(r, r1, v, v2, t, t1)b(v2, v1)g(r1, r0, v1, v0, t1, t0)

+
1
2

∫∫∫
d3r1d3v1d3v2

∫ t

t0

dt1

∫∫∫
d3r2d3v3d3v4

∫ t

t0

dt2g(r, r2, v, v4, t, t2)

× b(v2, v1)g(r1, r0, v1, v0, t1, t0)b(v4, v3)g(r2, r1, v3, v2, t2, t1) + · · · (7)

The expression above is quite complex, and its subsequent orders are increasingly
cumbersome, but it can be conveniently summarized by diagrams as shown in Figure 1.

Figure 1. Representation of a MC calculation as a perturbative expansion of the exact propagator
using a diagrammatic technique, explained in the text. A MC trajectory with a certain number of
collisions nc is a contribution to the calculation of the diagram with nc dots. After Ref. [59].

In the figure, once again using a notation borrowed from quantum field theory [61],
an arrow represents a Green function, a dot represents the effect of integration and of the
positive part of the collision operator J, a thick arrow represents the exact Green function G
(i.e., the Green function of the full transport equation). Here, g, the thin arrow, represents
not just collisionless particle propagation, but includes exponential decay. This is essential
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for the full G, the thick arrow, to conserve the normalization of f . If the null-collision
method is used, the operator represented by the dot contains a term not affecting f and a
term with cJ, c < 1.

The factor 1/2, which precedes the second term in Equation (7) takes into account the
fact that a collision at t1 followed by a collision at t2 is equivalent to the same collisions
in opposite order. The term of n-th order will therefore be preceded by a factor 1/(n!).
If the perturbation expansion is written using the null collision method, then a factor of
the type exp(−νt)[νt]n/(n!) will appear in front of each term in the expansion [57,59]; the
details of the derivation are sketched in the next section. These factors constitute a Poisson
distribution, which can be generated using the formula for collision times (2). In this way,
the formula normally introduced on an empirical basis finds a mathematical motivation.

These diagrams show that the null-collision MC method is in fact directly related to
a specific form of the transport equation [55]. Indeed, it is possible to formally state that,
given a set of MC simulations of a given case study, the subset that includes exactly n-
collisions corresponds to a stochastic calculation of the term of n-th order in a perturbation
expansion of the solution of the equation transport.

Sometimes, one can be misled by the fact that the MC method introduces statistical
fluctuations of the quantities then felt in the transport equation, such as the kinetic distribu-
tion of velocities. This seems to show that it has a higher element of describing reality than
these equations. In reality the statistical fluctuations of the MC method are not physical
and simply have to be reduced as much as possible by accumulation of events, leading
to statistical convergence towards the exact solution. The method always converges to it
for an infinite number of events, when the solved equation is linear. We take advantage of
this aspect to underline again something that is also essential in the other sections of this
review, namely the fact that swarm problems are generally described by linear equations,
given that the particles of the swarm are diluted to the point of not interacting. This is a
basic requirement to apply the concept of the Green function.

These considerations allow us to place the MC method, normally considered a techni-
cal tool in the field of plasma simulation, in the broader context of methods for theoretical
physics. This is a very appropriate position given that it is formally capable of solving the
Boltzmann transport equation, and not only as a numerical experiment, from an analogical
point of view, as the terminology often used in publications seems to suggest [2,6].

This physical-mathematical aspect of the method can easily go into the background,
precisely because of what is perhaps its greatest advantage; in its most basic implemen-
tations it can be developed precisely having in mind a direct image of the physics of the
transport process.

3. The Monte Carlo Flux Method
3.1. Principle

In the previous section, we noted that the traditional MC method corresponds in any
case to a formal calculation, i.e., the calculation of the Green functions, or electron propaga-
tors. These functions are generalized functions (i.e., Dirac delta functions), with a diffuse
component which becomes the majority as time increases, precisely due to collisions [59].
The computed Green functions in each case depend on continuously varying arguments,
which represent initial and final position and velocity components.

Since the beginning of the 1990s, modifications of the method have been experimented,
in which instead of calculating propagators at the level of description of the electrons for the
entire simulated time, the formalism of Markov processes has been employed to separate
the diffusion time scale from the collision scale [62]. Among these, the Monte Carlo Flux
method (MCF) stands out in particular, which is a hybrid method between the deterministic
method of the propagators and the stochastic MC method [41]. The fundamental idea of
this method is the separation between diffusion and collisional time scales. In fact, due
to the small mass of the electron compared with that of atoms and molecules, in some
very common regimes, hundreds of collisions are needed to observe a significant average
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dispersion of the initial kinetic energy. It is therefore convenient to describe the diffusive
phase by means of averaged quantities obtained previously from calculations describing
the effect of the collisions on the single electrons. To make this calculation practical, it is
advisable to carry out a coarse-grained preliminary operation by introducing a lattice of
suitable geometry into the configuration space. Once this is done, diffusive kinetics over
long times can be described using the Master Equation or Kolmogorov equation [62,63]
(i.e., the balance of probability over time).

The schematics of MCF is shown in Figure 2, where the three main steps of the
numerical methods are highlighted (in order from left to right). The transition frequencies
pij(∆t), which appear as coefficients depending on two indices and on time in the equation
are precisely the quantities which can be calculated by means of a collection of traditional
MC simulations [41]. In each of these collections of simulations, electrons are uniformly
distributed within a cell of the lattice in the configuration space and a simulation of the
duration ∆t corresponding to a few collisions is therefore performed. At the end of the
simulation, the electrons found in each of the cells estimate the transition frequency between
the initial cell and the final cell. Running this collection of preliminary simulations can
take significant time, as it is necessary to break down for each individual cell. However,
the Markov matrix that is calculated in this way can be used as a Green function in
coarse-grained space and for a fixed time difference, so that it is possible to perform
different simulations, for different times as long as they are multiples of ∆t, and for several
initial distributions, all without the need to run the preliminary MC simulations again.
Alternatively, the stationary distribution can be calculated by looking for the stationary
vector with respect to the pij matrix. All of these calculations are completely deterministic
and pretty fast.

Figure 2. The MCF schematics. (a) Discretization of the velocity space into cells, (b) MC simulations
of electrons for calculation of transition weights between velocity space cells, (c) solution of Master
Equation for deterministic evolution of the electron distribution function.

3.2. Mathematical Derivation of Monte Carlo Flux

In this subsection, the MCF method is derived starting from a continuous gener-
alization and proceeding with its discretized form, obtained under the multigroup ap-
proximation [64]. This subsection is based on Chapter 3 of the Ph.D. thesis of one of the
authors [65].

The system under consideration is assumed to be homogeneous, such that spatial terms
in Equation (1) are neglected. A possible technique for the solution of the homogeneous,
linear EBE is based on the path-integral formulation, as described by Rees [66]. In Ref. [66],
the rigorous path-integral theory has been initially developed for transport studies in
semiconductors. The same theory has been extended by Kumar [67] and Longo [55] for
the motion of charged particles in a gas in the presence of an external field. The use of
this formulation has a two-fold advantage, that is; (i) the null-collision technique [54] is
directly derived from the transport problem and (ii) the solution of Equation (1) is obtained
by iterative applications of a continuous generalization of a Markov operator on the initial
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EVDF. In particular, from Equations (5) and (6), it is possible to verify that Equation (1) can
be rewritten as

∂ f (v, t)
∂t

+ a(t) ·∇v f (v, t) = M(v, t)− νmax f (v, t), (8)

where
M(v, t) =

∫
v′

b(v, v′) f (v′, t)dv′ + [νmax − ν(v)] f (v, t), (9)

and νmax is the maximum collision frequency defined such that νmax ≥ ν(v) for all values
of the electron speed v. Note that the first term on the right-hand-side of Equation (9) repre-
sents the gain of electrons having velocity v at time t due to collisions with the background
gas, and the term (νmax − ν(v)) represents “null-collision” events per unit time that leave
the EVDF unchanged. The definition of νmax is also widely used in MC simulations, since
it is at the basis of the null-collision technique introduced by Skullerud [54]. For stationary
conditions the solution of Equation (8) is

f (v) =
∫ ∞

0
M(v − at)e−νmaxtdt. (10)

The method for evaluating the right-hand-side of Equation (10) is based on the follow-
ing iterative technique [66]. First, an intermediate function M(n−1)(v) for the (n − 1)-th
iteration is generated from f(n−1)(v), as

M(n−1)(v) =
∫

v′
b(v, v′) f(n−1)(v

′)dv′ + [νmax − ν(v)] f(n−1)(v). (11)

Second, the distribution f(n)(v) is obtained from M(n−1)(v) as

f(n)(v) =
∫ ∞

0
M(n−1)(v − at)e−νmaxtdt. (12)

The advantage of this method is that the n-th iterate f(n)(v) is equivalent to the
distribution obtained after a time interval n/νmax. Furthermore, the stationary EVDF can
be obtained in the limit f (v) = limn→∞ f(n)(v).

As described by Nanbu [68], the same iterative approach can be applied when the
temporal evolution of the EVDF is sought after. In particular, for sufficiently high values
of νmax, let ∆t = (νmax)−1 be the time step for EVDF evolution. Then, at first order in ∆t,
the EVDF can be expressed as

f(n)(v) ≃ M(n−1)(v − a∆t)∆t, (13)

or equivalently

f(n)(v) ≃ ∆t
∫

v′
b(v, v′) f(n−1)(v

′)dv′ + [1 − ν(v)∆t] f(n−1)(v − a∆t). (14)

If ∆t is sufficiently low, an iterative solution of Equation (8) also describes the temporal
evolution of the EVDF, starting from an initial distribution f(0), at time t = 0.

To summarize, it is useful to represent the aforementioned equations in a schematic
form. In particular, the integration on the right-hand-side of Equation (11) can be rep-
resented as the action of an operator Ŝ on f(n−1)(v) and that on the right-hand-side of
Equation (12) by the action of an operator P̂ on M(n−1)(v). A complete iteration is therefore
described by the action of the combined operator M̂ = ŜP̂ on f(n−1)(v). Moreover, the time
evolution of an initial function f(0)(v) after a time interval n/νmax is determined by {M̂}n.
Different numerical techniques can be employed for calculations of the aforementioned
operator. In the MCF method, a grid is defined for calculations of transition weights for the
electron motion between velocity space cells. In this discretized form, M̂ is also termed as
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the transport matrix (or Markov matrix). The following subsections are devoted to the de-
scription of this discretization and the numerical procedure that is applied for calculations
of M̂.

3.3. Discretization of the Electron Velocity Distribution Function

We describe here the numerical method that is used to implement the MCF. A more
detailed comparison of MCF against other methods, such as conventional MC, two-term
Boltzmann solver, and multi-term Boltzmann solver, is described in Refs. [41,69,70]. Fur-
thermore, the method has been recently coupled with detailed plasma chemistry models
in Refs. [71–74].

In this subsection, a uniform external electric field E is considered, such that
E = (0, 0,−|Ez|). Hence the electron velocity v = (vx, vy, vz) can be represented in polar
coordinates (ϵ, θ, ϕ), where ϵ is the electron kinetic energy (i.e., ϵ = (1/2)mv2), θ is the
angle between v and the z-direction, and ϕ is the azimuthal angle around the z-axis. Under
the assumption of isotropic scattering around the z-axis, the velocity space can be described
by two variables only (ϵ, θ), instead of three. Moreover, under this assumption, the EVDF is
uniform in ϕ (i.e., f (v) = f (ϵ, cos θ)). Hence the velocity space (ϵ, cos θ) is partitioned into
cells Ci,j, with 1 ≤ i ≤ I the index for the energy component and 1 ≤ j ≤ J the index for the
angular component. The calculation range is assumed as 0 ≤ ϵ ≤ ϵmax and −1 ≤ cos θ ≤ 1,
where ϵmax is chosen such that we can neglect electron diffusive fluxes to energies higher
than ϵmax. In this way, the energy and angular bin sizes are defined as ∆ϵ = ϵmax/I and
|∆(cos θ)| = 2/J.

Under these assumptions, the EVDF can be represented in its discretized form as a
column vector f of size I J × 1 as

f =


n1
n2
...

nJ

, (15)

where each element of the vector f has size I × 1 and represents the total number of particles
having energies between 0 and ϵmax and cos θ = cos θj, with j = 1, . . . , J. In particular,
the j-th component (nj) is written as

nj =


n1,j
n2,j

...
nI,j

, (16)

where ni,j is the total number of electrons in the Ci,j cell and it is computed as

ni,j =
Nelec

∑
k=1

δ(ϵk)δ(cos θk), (17)

where Nelec is the total number of particles in the MC simulation and

δ(ϵk) =

{
1, if (i − 1)∆ϵ ≤ ϵk ≤ i∆ϵ

0, elsewhere
, (18)

δ(cos θk) =

{
1, if − 1 + j∆| cos θ| ≤ cos θk ≤ −1 + (j − 1)∆| cos θ|
0, elsewhere

. (19)
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In other words, after discretization of the energy and angular components, each
simulated particle contributes to the EVDF as a Kronecker delta function [15]. From the
EVDF, the l-th order Legendre polynomial coefficients fl(ϵi) can be calculated as

fl(ϵi) = Al(ϵi) f⊤(ϵi)Ll , (20)

where Al(ϵi) = (2l + 1)/(ne∆ϵ
√

ϵi) is a normalization factor that depends on the total
electron population ne, such that

ne =
I

∑
i=1

J

∑
j=1

ni,j. (21)

f⊤(ϵi) is the transpose vector for the EVDF computed at ϵ = ϵi, thus having size 1 × J,
and Ll is a column vector of size J × 1 written as

Ll =


Pl(cos θ1)
Pl(cos θ2)

...
Pl(cos θJ)

, (22)

with Pl(cos θj) the l-th order Legendre polynomial calculated at cos θj. Note that the
Electron Energy Distribution Function (EEDF) comes from Equation (20) as the zero-th
order (isotropic) component ( f0) of the EVDF expansion. Hence f0 can be calculated with
the following simplified expression:

f0(ϵi) =
1

ne∆ϵ
√

ϵi

J

∑
j=1

ni,j, (23)

meaning that the EEDF can be retrieved directly from binning in energy of the total number
of simulated particles. In the following, the basic idea underlying MCF simulations is
covered, that is the calculation of the temporal evolution of the EVDF, given an initial
distribution at time t = 0.

3.4. Calculation of the Transport Matrix

In the MCF method, the temporal evolution of the EVDF is obtained by a matrix-vector
operation, given an initial distribution function at the time t = 0. The EVDF at time t + ∆t
is computed as [41]

f (t + ∆t) = M(∆t)⊤ f (t), (24)

where M(∆t) is the transport matrix of size I J × I J. Note that the matrix M is a discrete
version of the continuous operator M̂ defined in Section 3.2.

More generally, if the reduced electric field and the gas composition are fixed for any
t > 0, the transport matrix remains unchanged and the EVDF can be found with an iterative
procedure as

f (t + n∆t) =
(

M(∆t)⊤
)n

f (t), (25)

with n the iteration number, and n∆t the time-step associated with the n-th iteration. An
important consequence of Equation (25) is that the evolution of the system after ∆t is
determined only by the state of the system at a time t and it is not affected by the previous
history. This is known as Markov property and allows one to rewrite the linear EBE
(Equation (1)) as a simple Markov chain consisting of the system of linear equations in (25).
This property is typically satisfied if tcoll ≪ ∆t < tSS, that is, ∆t should be much longer
than the time interval between two successive collisions tcoll , but also shorter than the
time tSS for the distribution function to reach steady-state. In particular, collisions are
essential for the randomization of the particle velocities and trajectories. Through this
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randomization, electron history is erased and the evolution of the system depends only
on the current state, not on past states. Hence, as shown in Refs. [69,70], the choice of an
appropriate ∆t is fundamental to ensure the applicability of Equation (25).

The form of the transport matrix is

M =


m1,1 m1,2 · · · m1,J
m2,1 m2,2 · · · m2,J

...
...

. . .
...

mJ,1 mJ,2 · · · mJ,J

, (26)

where mj,j′ are sub-matrices of size I × I. The total number of sub-matrices in Equation (26)
is determined by the angular discretization. For example, if J cells are defined for the
angular component, then all the J × J possible combinations are included in M. Each
sub-matrix is written as:

mj,j′ =


p1,1 p1,2 · · · p1,I
p2,1 p2,2 · · · p2,I

...
...

. . .
...

pI,1 pI,2 · · · pI,I


j,j′

, (27)

where pi,i′ |j,j′(∆t) is the transition weight for electrons moving from cell Ci,j to Ci′ ,j′ within
the time interval ∆t. In the MCF method, short MC simulations are performed for calcula-
tions of transition weights between all velocity space cells. Hence, transition weights in
Equation (27) are calculated as

pi,i′ |j,j′(∆t) = ni′ ,j′(∆t)/ni,j(0), (28)

where ni′ ,j′(∆t) is the total number of electrons moving from cell Ci,j to Ci′ ,j′ within the
time interval ∆t and ni,j(0) is the total number of electrons in the initial cell Ci,j at time
t = 0. Note that the time interval ∆t depends on physical parameters such as the electric
field E and the gas number density N. Empirically, it becomes shorter at higher E and N,
as the electron collision frequency increases. The choice of an optimal ∆t is important for
an optimization of the CPU time in MC simulations, as well as for accurate calculations of
transition weights [69].

3.5. Advantages and Disadvantages

The main advantages of the MCF method are the following [65,69,70]:

• Since the MCF is used to calculate the transition frequency and not directly the
kinetic distribution, the MCF results have uniform statistical fluctuations for all the
regions of the distribution, in particular also the tail, which instead may be statistically
inaccessible to the traditional method given the low number of electrons described;

• The matrix-based approach does not require a series expansion of the EVDF and it
is easier to implement than a multi-term Boltzmann solver. In perspective, the MCF
method can be combined with efficient algorithms for matrix operations and
GPU acceleration;

• As a difference with respect to other variance reduction techniques, mainly based on
variable mathematical weights for the simulated particles, the MCF method addresses
the fundamental problem of the very large ratio, amounting to several orders of
magnitude, between the relaxation time of the distribution and the inter-collision time.
Hence, the stochastic part of MC simulations is limited to a small time interval, which
is typically orders of magnitude lower than the steady-state time for the electron
energy distribution function (EEDF).

However, in spite of the advantages of this method in terms of both computational
cost and accuracy with respect to a conventional MC method, a number of disadvantages
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of MCF should be considered when choosing an appropriate computational method for
plasma applications. For example:

• The increasing size of the transport matrix lengthens the computational time and this
is also a limit for practical use of the MCF method. This is a problem, for example,
for an extension to the configuration space, since additional calculations of transition
weights of electrons moving between different cells in the spatial coordinates are
needed. Nevertheless, matrices in this case are largely sparse. Hence, the use of
efficient algorithms for sparse matrix calculations could help to reduce the large
memory that is required;

• The method presented here can only deal with calculations of flux transport param-
eters. However, bulk parameters are needed when comparing results of calculated
electron transport coefficient with swarm measurements, especially at high E/N [75].
An extension of the MCF method to the configuration space will provide calculations
of the aforementioned parameters as well;

• The transport matrix includes the effect of both field and collisional events. This has
practical limitations for calculations of transition weights in the presence of a time-
varying electric field evolving in timescales comparable with the energy relaxation
time. In fact, this limits the applicability of MCF to DC and high frequency fields,
and makes MCF not suitable for studies of RF or pulsed discharges.

Some of the limitations of the MCF method can be overcome by the Propagator method
that is described in the following Section, where the field acceleration is separated from the
collision part by defining different propagator matrices similar to the transport matrices
used in MCF. This makes the Propagator method also applicable to AC electric fields.
However, the Propagator method is limited to low ∆t such that the electron outflow from
a cell does not exceed the total number of electrons in that cell [76]. Furthermore, it is
important to highlight that, as a difference with respect to the Propagator method and the
Convection scheme [77], the MCF uses MC simulations for calculations of transition weights
between velocity space cells. The use of MC simulations is advantageous for its simpler
implementation with respect to efficient convective schemes, but it is computationally
expensive for large domain simulations.

4. Propagator Method
4.1. Principle

Propagator method (PM) is a numerical scheme to calculate the EVDF (or EEDF)
on the basis of the EBE. The PM shares many common concepts with the MCF method.
The PM calculation is performed with cells defined by partitioning of phase space (v, r),
velocity space, and real space into small sections in which the electrons distribute. The
number of electrons belonging to a cell is stored in an element of a matrix or an array
corresponding to the cell. The probability of inter-cellular electron transition from a source
cell to destination cells in a short time step ∆t is again represented by a Green function.
The transition may be caused by the velocity change under electric and magnetic fields
and scattering at collisions with gas molecules. The PM does not use random numbers,
and its calculation is completely deterministic. The stochastic processes are considered
on the bases of their expected values. Temporal development of the EVDF is observed by
applying the acceleration and collision propagators to the EVDF every ∆t. The PM has a
flexibility in treatment of the propagators as seen in practical examples introduced in the
following sections. The step-by-step time development of the EVDF can be modified in
some specific models customized to derive only equilibrium solutions, and the PM can deal
with some simple boundary conditions such as electron reflection and secondary electron
emission at electrode surfaces.

There are various cell configurations and experimental models for the PM calculations
depending on the target properties of electron swarms. Let us overview the efforts of
calculations that have been performed using the PM.
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4.2. Classification of Cell Configurations and Expressions of Electron Motion

We may classify the types of the PM configurations on the basis of the partitioning of
velocity space for cells and the expressions of the electron motion in the quantification of
the intercellular electron transition.

For the former point, the cells can be defined, for example, for every ∆vx, ∆vy, and ∆vz
in Cartesian coordinate system (vx, vy, vz) (Figure 3a,b), or for every ∆v, ∆θ, and ∆ϕ in
polar coordinate system (v, θ, ϕ) (Figure 3c,d), where vz = v cos θ, vx = v sin θ cos ϕ, and
vy = v sin θ sin ϕ. In addition, division for every ∆ϵ instead of ∆v is also possible. They are
referred to as Cartesian-v, polar-v, and polar-ϵ configurations of the cells for velocity space
in the following sections.

For the latter point, Lagrangian and Eulerian expressions are considered for the
treatment of electron motion in the acceleration or flight. In the Lagrangian expression, the
source and destination cells are related by ballistic motion of electrons starting from the
source cell (Figure 3a,c), For example, if the electrons in a source cell undergo a collective
free flight for ∆t, they would appear as if they are a moving cell, which is called a Lagrangian
cell. The destination cells are chosen as those located at the position where the Lagrangian
cell reaches after ∆t, and the ratio of the electron redistribution that the destination cell
accepts from the source cell is calculated as the ratio of the area overlapping between the
Lagrangian cell and each destination cell. On the other hand, in the Eulerian expression,
source and destination cells are assumed to contact each other and to share the cell boundary
between them. The number of electrons moving out of the source cell to the destination
cell, ne,out, is evaluated by integrating the electron flux passing through the cell boundary
during ∆t (Figure 3b,d). Its amount is evaluated as ne,out = Scell(ne,cell/Vcell)(eE/m)∆t,
where Scell [L2T−2] is the area of the cell boundary projected to a plane perpendicular to
E, ne,cell is the number of electron in the cell, Vcell [L3T−3] is the volume of the cell, and
(eE/m) [LT−2] is the electron acceleration. ∆t must be short enough to avoid ne,out > ne,cell
for all cells.
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Figure 3. Cells defined in two-variable velocity space (v∥, v⊥) or (v, θ), and treatment of the intercel-
lular electron transition by acceleration: (a) Lagrangian treatment in Cartesian-v cell configuration;
(b) Eulerian treatment in Cartesian-v cell configuration; (c) Lagrangian treatment in polar-v cell
configuration; and (d) Eulerian treatment in polar-v cell configuration. The thick boundaries indicate
the source cells from which electrons flow out downstream (rightward) by acceleration. The red
hatched cells are the Lagrangian cells.

4.3. Collision Propagator

The collision propagator represents the change of electron velocity due to collision
and scattering. The collisions are categorized into mainly four types. In the simplest case,
the following processes are assumed for the electrons undergoing collision at an energy ϵ′.
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Elastic collision The electrons are scattered isotropically without loss of energy. They are
redistributed to the destination cells having the same energy ϵ = ϵ′ in proportion
to the solid angle of the destination cell subtended at the origin of velocity space
(Figure 4a).

Excitation collision The electrons lose excitation energy ϵexc and are redistributed to the
lower-energy cells of ϵ = ϵ′ − ϵexc (Figure 4b).

Ionization collision The electrons lose ionization energy ϵion and the residual energy is
shared by the primary and secondary electrons. The electrons, which are doubled, are
redistributed to the lower-energy cells of ϵ ≤ ϵ′ − ϵion with relevantly given ratios
under the law of energy conservation (Figure 4c).

Electron attachment The electrons captured by gas molecules disappear from velocity
space (Figure 4d).

The number of electrons undergoing collisions of the kth kind in a cell during ∆t,
ne,coll,k, is evaluated as ne,coll,k = [Nqk(v)v∆t]ne,cell, where N is the gas molecule number
density, and qk(v) is the electron collision cross section of the kth kind of collisional process
as a function of the electron speed v. The portions ne,coll,k are subtracted from ne,cell of the
source cell, and distributed to the destination cells corresponding to the electron velocity
after scattering. ∆t must be short enough so that the probability of multiple collisions
during ∆t can be neglected, and to satisfy ∑k ne,coll,k < ne,cell.
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Figure 4. Treatment of electron collisions and scattering: (a) elastic collision, electron redistribution
to the cells of ϵ = ϵ′; (b) excitation collision, electron redistribution to the lower-energy cells of
ϵ = ϵ′ − ϵexc; (c) ionization collision, electron doubling and redistribution to the lower-energy cells of
ϵ ≤ ϵ′ − ϵion; and (d) electron attachment, electron disappearance from velocity space. The cells with
thick boundaries and red crosses are the source cells, from which electrons flow out. ϵ′ is the energy
of the incident electron. ϵexc and ϵion are the excitation and ionization energies, respectively.

4.4. Models of Velocity-Space under Uniform Electric Fields

The PM calculation for the temporal development of the EVDF of an electron swarm
under a uniform electric field E = (0, 0, Ez) is the simplest self-consistent model. It assumes
an electron swarm in boundary-free real space and the position of each electron is ignored.
The E field may be dc, ac (typically rf: radio frequency), or even impulse fields.
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The EBE for this model is written as

∂

∂t
f (v, t) = −a · ∂

∂v
f (v, t) + J[ f (v, t)], (29)

= −a∥
∂

∂v∥
f (v, t) + J[ f (v, t)]. (30)

The spatial electron distribution has already been integrated and its profile is not
investigated here.

The EVDF in this model can be assumed to be in a rotational symmetry for the az-
imuthal direction ϕ around the vz-axis. Thus, the EVDF can be represented as a two-variable

distribution as f (v∥, v⊥, t) or f (v, θ, t). Here, v∥ = vz = v cos θ and v⊥ =
√

v2
x + v2

y = v sin θ

are components of v parallel and perpendicular to the direction of −E, respectively, and
v = |v|.

Some of the earliest PM efforts to obtain f (v, t) adopted the Cartesian-v configuration
with ∆v∥ and ∆v⊥ under dc [78,79] and rf [80] E fields. Such a cell configuration simplifies
the calculation of the electron acceleration because it is a parallel shift to the +v∥ direction
in velocity space. Each cell has a boundary in contact with its downstream neighbor, and
the boundary is normal to a. The probability of electron transition from a cell can be
calculated easily in both Eulerian and Lagrangian manners. The Cartesian-v configuration
has also been adopted in calculation of f (v, z, t) extended to a parallel-plane electrodes
model including one-dimensional real space z [81–83]. In the one-dimensional real-space
model, there are different treatments for simultaneous changes of v and z in an electron
flight, which is explained in the next subsection.

On the other hand, polar-v or polar-ϵ configuration with ∆v or ∆ϵ, and ∆θ or ∆(cos θ)
makes the redistribution of electrons after collisions simple when isotropic electron scat-
tering is assumed. The ratio of the scattered electrons that a destination cell receives
is proportional to the solid angle of the cell subtended at the origin v = 0 of veloc-
ity space in case of isotropic scattering, and the sold angle Ω of a cell is given from
dΩ = 2πd(cosθ) = 2πsinθdθ. Such a polar-ϵ configuration has been adopted not only for
f (v, t) in velocity space in pulsed Townsend (PT) mode [76,84] but also for the steady-state
Townsend (SST) mode [85–87], for the time-of-flight (TOF) mode [76,88,89], and rf [90]
and impulse [91] fields as mentioned afterward.

4.5. Models of Configuration Space between Parallel-Plane Electrodes

The EVDF in one-dimensional configuration space between parallel-plane electrodes is
a function of three-variable that are (v∥, v⊥, z) or (v, θ, z). In the point of required memory
capacity for practical calculations, it is beneficial that the range of z is finite between the
electrodes. The computational array for the cells becomes three-dimensional, and cells
are prepared for every ∆v∥, ∆v⊥, and ∆z [81–83], or for every ∆ϵ, θ, and ∆z [85]. The
same collision propagator as used in the velocity-space model can be applied to this mode
because the scattering changes only v of electrons and their positions are unchanged at that
moment. The acceleration propagator involves the spatial displacement because v and z
change at the same time in electron free flight under an electric field.

In some early PM efforts using cells defined for every ∆v∥, ∆v⊥, and ∆z [81–83], the
destination cells were chosen under a concept of Lagrangian cell. The choice of destination
cells and evaluation of the electron redistribution ratios for them are easy in the Cartesian-v
configuration because the geometrical shape of cells is simple. This treatment also allows
flexible change of E not only for DC E but also for RF E [82,83] or position-dependent
E [81,82].

On the other hand, treatment of electron displacement in an Eulerian approach was
also attempted [85], adopting restrictions for the cell configuration and the intercellular
electron motion. The cells are defined for every ∆ϵ, ∆θ, and ∆z to satisfy ∆ϵ = eE∆z. The
number of electrons flowing out of a source cell is evaluated by integrating the electron flux
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passing through the downstream cell boundary in velocity space. The changes of ϵ and z
are strictly bound under the law of conservation of energy. A demonstration was made
under a SST condition by superposing a temporal development of an isolated electron
swarm starting from the cathode with an initial energy ϵ = 0 until almost all electrons
are absorbed by the anode. Under the restrictions to guarantee the energy conservation,
position-dependent profiles of spatial relaxation processes of mean electron energy and
drift velocity agreed with results of a MC simulation. In particular, the rising position
of ionization coefficient was successfully reproduced at z = ϵion/(eE), where ϵion is the
ionization threshold, by suppressing the numerical diffusion which may occur among the
destination cells in the Lagrangian approach.

The boundary condition at the electrodes is also a point of discussion. The simplest
model assumes perfect absorption, where the electrons reaching the electrodes disappear.
Elastic or inelastic reflection at the electrodes can be considered by relevantly choosing v
after reaching either of the electrodes. The effect of secondary electron emission [82] can be
considered as a practical condition as well by supplying new electrons to the cells near the
electrode on which primary electrons impinge.

4.6. Models of Boundary-Free Real Space in Steady-State Townsend Condition

When SST condition is assumed for one-dimensional electron flow in z direction under
uniform electric field E = (0, 0,−E), partitioning of the z position can be omitted [86] in
the PM calculation for the EVDF by utilizing the assumptions that the normalized EVDF is
identical irrespective of z and that the electron number density varies exponentially with
z as ne(z) = ne(0) exp(αz), where α is the effective ionization coefficient. The EVDF is
available from the PM calculation performed with only cells for velocity space. Such a
technique allows one to reduce the required memory capacity.

If the EVDF in a slab z0 ≤ z ≤ z0 +∆z is in equilibrium, the electron flow at z = z0 +∆z
is exp(α∆z) times as large as that at z. The PM calculation considers only f (v, θ) in the
slab. A polar-ϵ configuration was adopted and ∆z was set to be ∆ϵ/(eE) to take account
of the conservation of energy [86]. Electrons in the slab may flow out of the slab, but
other electrons flow into the slab from the opposite side to keep the electron population in
the slab unchanged. The outflow can be evaluated directly from the EVDF in the slab in
the same way as done between parallel-plane electrodes. The inflow is evaluated using
the assumption of exponential spatial growth. Let nf,out and nb,out be the numbers of
electrons flowing out of the slab forward (vz > 0) at z = z0 + ∆t and backward (vz < 0) at
z = z0, respectively, and nf,in and nb,in be those flowing into the slab forward at z = z0 and
backward at z = z0 + ∆z, respectively, during a time step ∆t. Their relations are

nf,in = exp(−α∆z)nf,out, (31)

nb,in = exp(+α∆z)nb,out. (32)

The value of α is unknown at this moment. However, with nion and natt respectively
being the electron increase and decrease due to ionization and attachment during ∆t,
the value of exp(α∆z) is obtained from a quadratic equation derived from the electron
conservation in the slab. They satisfy

nf,in + nb,in − nf,out − nb,out + nion − natt = 0, (33)

exp(−α∆z)nf,out + exp(+α∆z)nb,out − nf,out − nb,out + nion − natt = 0. (34)

This treatment is equivalent to the assumption ∂/∂z = α and ∂/∂t = 0 in two-term
approximation of the EBE analysis for the SST condition [92]. α is obtained from

exp(−α∆z) =
nf,out + nb,out − nion + natt ±

√
(nf,out + nb,out − nion + natt)2 − 4nf,outnb,out

2nf,out
. (35)
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The positive sign is taken in usual SST condition so that α = 0 when nion − natt = 0.
By a relaxation of the EVDF starting from initial EVDF and α, the EVDF in equilibrium
under the SST condition is obtained.

Another solution of the quadratic formula corresponding to the negative sign is
understood to represent properties of electrons in backward diffusion. In this case, α no
longer represents the exponential growth of ne(z) by ionization, but it represents the decay
of ne(z) toward the −z direction in the upstream region from the electron source [87,93].
A PM calculation with such α [87] demonstrated that the EVDF obtained in the upstream
region represents the properties of the missing electrons [94] producing the decay of ne(z)
in front of the absorbing anode [81,85].

4.7. Models of Boundary-Free Real-Space Time-of-Flight Condition

The spatial electron distribution p(z, t) =
∫

v f (z, v, t)dv can be composed by super-
posing the kth-order Hermite functions Hk(Z) exp(−Z2) up to a sufficient order n [88]:

p(z, t) =
1√

2σ(t)

n

∑
k=0

wk(t)Hk

(
z − G(t)√

2σ(t)

)
exp

−( z − G(t)√
2σ(t)

)2
, (36)

where Hk(Z) is the kth-order Hermite polynomial derived sequentially from H0(Z) = 1 by
a relation Hk+1(Z) =

√
2ZHk(Z)− kHk−1(Z), wk(t) is the weight of the kth-order Hermite

function, G(t) = ⟨z⟩ is the center of mass of the whole electron swarm, σ(t) is the standard
deviation of electron position z, and Z = z/[

√
2σ(t)] is the dimension-less z position.

Hk(Z) satisfy an orthogonality
∫ +∞
−∞ Hi(Z)Hj(Z) exp(−Z2)dZ = δiji!

√
π, where δij is the

Kronecker delta. The Hermite functions are suitable to expand or compose Gaussian-like
distributions having boundary condition limz→±∞ p(z, t) = 0, and it is thought that p(z, t)
of electron swarms eventually tends to a Gaussian. Values of wk(t) are determined by the
spatial moments of the electron swarm up to the kth order, as shown later.

Let mk(v, t) be the kth-order spatial moment distribution function with respect to the
z direction, and it is defined as

mk(v, t) =
∫ ∞

z=−∞
zk f (v, z, t)dz. (37)

A series of moment equations in a hierarchy are derived from the EBE by integrating
each term with weight zk over z [76,88,89], and mk(v, t) can be calculated without the
partitioning of z:

∂

∂t
f (z, v, t) = −vz

∂

∂z
f (z, v, t)− az

∂

∂vz
f (z, v, t) + J[ f (z, v, t)], (38)

∂

∂t
mk(v, t) = +kvzmk−1(v, t)− az

∂

∂vz
mk(v, t) + J[mk(v, t)]. (39)

Here, m0(v, t) is identical to f (v, t) representing the electron number density at v.
m1(v, t) gives the center of mass G(v, t) of the electrons having v as G(v, t) = m1(v, t)/
m0(v, t), and the center of mass G(t) of the whole electron swarm is given as G(t) =∫

v m1(v, t)dv/
∫

v m0(v, t)dv. The temporal variation of G(t) is the center-of-mass drift ve-
locity Wr(t) = dG(t)/dt of the electron swarm [76,88,89,95,96]. m2(v, t) gives the variance
of the electron swarm as [

∫
v m2(v, t)dv]/[

∫
v m0(v, t)dv]− [G(v, t)]2. Its temporal variation

gives the longitudinal diffusion coefficient as DL(t) = 1
2 (d/dt){

∫
v m2(v, t)dv/

∫
v m0(v, t)d

v − [G(t)]2} [76,89,95,96].
For the moment calculation up to the nth order, (n + 1) sets of cells are prepared,

and initial values of mk(v, t) (0 ≤ k ≤ n) are stored in the cells. Their temporal variations
for ∆t are calculated by applying the collision and acceleration propagators to mk(v, t).
The propagators are common for mk(v, t) irrespective of k. In addition, amounts of the
kth-order moments kvzmk−1(v, t)∆t evaluated by the drift term are added to mk(v, t) to
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obtain mk(v, t + ∆t). The instantaneous amount of the kth order moment of the whole
electron swarm is given as mk(t) =

∫
v mk(v, t)dv. mk(t), which are values in labo-

ratory system, are converted to the values in center-of-mass system around G(t) as
m′

k(t) = ∑k
i=0(kCi)[−G(t)]k−imi(t). From these quantities we can obtain higher-order

(nth-order, n ≥ 3) diffusion coefficients DLn as well [89]; e.g., DL3(t) = (1/3!)dm′
3(t)/dt.

m′
k(t) are further converted to to the dimension-less value Mk(t) reduced by σ(t) =√
m2(t)/m0(t)− [G(t)]2 as Mk(t) = m′

k(t)/[
√

2σ(t)]k. Some wk(t) are given as

w0(t) = M0(t)/
(
0!
√

π
)
, (40)

w1(t) =
√

2M1(t)/
(
1!
√

π
)
= 0, (41)

w2(t) = (2M2(t)− M0(t))/
(
2!
√

π
)
= 0, (42)

w3(t) =
(

2
√

2M3(t)− 3
√

2M1(t)
)

/
(
3!
√

π
)
, (43)

w4(t) = (4M4(t)− 12M2(t) + 3M0(t))/
(
4!
√

π
)
, (44)

w5(t) =
(

4
√

2M5(t)− 20
√

2M3(t) + 15
√

2M1(t)
)

/
(
5!
√

π
)
, (45)

w6(t) = (8M6(t)− 60M4(t) + 90M2(t)− 15M0(t))/
(
6!
√

π
)
, (46)

w7(t) =
(

8
√

2M7(t)− 84
√

2M5(t) + 210
√

2M3(t)− 105
√

2M1(t)
)

/
(
7!
√

π
)
, (47)

w8(t) = (16M8(t)− 224M6(t) + 840M4(t)− 840M2(t) + 105M0(t))/
(
8!
√

π
)
, (48)

w9(t) =
(

16
√

2M9(t)− 288
√

2M7(t) + 1512
√

2M5(t)− 2520
√

2M3(t) + 945
√

2M1(t)
)

/
(
9!
√

π
)
. (49)

The same technique to compose spatial electron distribution has been applied not only
to the longitudinal direction [89] but also to the transverse direction [97]. The higher-order
transverse diffusion coefficients DTn are also available from the simultaneous moment
equations up to the nth order with respect to the direction perpendicular to the E field [97].

4.8. Models of Velocity Space and Real Space under Uniform Electric and Magnetic Fields

The PM has been applied to calculation of the EVDF in equilibrium under dc crossed
electric and magnetic fields, E × B fields, assuming E ⊥ B as E = (0, 0,−E) (E > 0) and
B = (0, B, 0) (B > 0) [98]. The EVDF is no longer axi-symmetric under the E × B fields,
thus it is required to have three variables to represent the EVDF. A polar-ϵ configuration
modified for three-variable velocity space (v, θ, ϕ) was chosen in the practical calculation
for convenience in the treatment of isotropic scattering after collisions [98]. The memory
array for the EVDF becomes three-dimensional as the cells were prepared for every ∆ϵ,
∆θ, and ∆ϕ, where v = v1

√
ϵ/ϵ1eV, v1 is the electron speed associated with ϵ1eV = 1 eV,

vx = v sin θ cos ϕ, vy = v cos θ, and vz = v sin θ sin ϕ. A cell may have at most six
boundaries facing to the ±ϵ, ±θ, and ±ϕ directions. The EBE for the EVDF in velocity
space becomes

∂

∂t
f (v, t) = − e

m
(E + v × B) · ∂

∂v
f (v, t) + J[ f (v, t)]. (50)

The treatment for the collision operator is unchanged even for the EVDF in the E × B
fields. On the other hand, the acceleration −(e/m)(E + v × B) is velocity-dependent and
electron motion in velocity space is rotational around an axis (vx, vz) = (vE×B, vE) =
(E/B, 0). This rotation axis is parallel to the vz axis but off-centered (off-origin). This
creates a complexity in the preparation of the acceleration propagator. The probability
of the intercellular electron transition is calculated in the Eulerian approach common
with that applied to two-variable velocity space, i.e., by integration of the outflow flux at
the downstream cell boundary. However, the cell boundaries facing to the ‘downstream’
depends on the acceleration direction determined by v. Further more, the acceleration
direction may change even in a cell boundary. The acceleration propagator to deal with the
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rotational electron flow was prepared choosing the downstream cell boundaries carefully,
and the order of application of the acceleration propagator to the cells are also arranged for
fast convergence of the EVDF.

In an example of computation of the EVDF under E× B fields with 1000× 45× 720 cells
for (ϵ, θ, ϕ) in double precision (8 bytes per cell) [98], the required memory capacity was
roughly several GiB. In addition to the array to store the numbers of electrons in the cells,
those for associated cell properties such as cell volume and areas of the six cell boundaries are
also needed. However, the memory capacity required for this model is within an available
range for recent workstations.

The EBE under the E × B fields can also be extended to the spatial moment equations
under the E × B fields with respect to the x, and y, and z directions [99] in the same
approach as Equation (39) performed in the boundary-free one-dimensional TOF model.
The center-of-mass drift velocity vector Wr = (Wx, Wy, Wz) and the direction-dependent
diffusion coefficients Dx, Dy, and Dz were calculated by the PM for the simultaneous
spatial moment equations up to the second order. Seven sets of cells were used to store
the zeroth-, first-, and second-order moments with respect to the x, y, and z directions,
m0(v, t), mx1(v, t), my1(v, t), mz1(v, t), mx2(v, t), my2(v, t), and mz2(v, t), where m0(v, t) is
common for the three directions. The collision and acceleration propagators are unchanged.
Temporal development of the moments can be calculated by applying the propagators
iteratively. On the other hand, in case only the equilibrium values of Wx, Wy, Wz, Dx,
Dy, and Dz are needed, the relaxation of each moment can be achieved stepwise from the
zeroth order to the second independently for x, y, and z, because higher-order moments
depend on only the lower-order ones defined for the same direction via the drift term. This
feature allows us to save the computational load for the relaxation process and the required
memory capacity.

4.9. Challenges in Computational Techniques

It is an advantageous feature that the PM can follow the temporal development of the
EVDF. On the other hand, we often need only the EVDF solution in drift equilibrium. In
conventional PM calculations, the equilibrium EVDF is obtained after physical relaxation
of the EVDF under the electron acceleration by the external fields and scattering by gas
molecules proceeding step by step every ∆t. This guarantees the continuity of the number
of electrons. When the difference between the normalized EVDFs derived from f (v, t + ∆t)
and f (v, t) is negligibly small, we may regard the EVDF as the converged solution. The
normalized equilibrium EVDF satisfies the EBE, which is a balance equation under ∂/∂t = 0.
The relaxation process of the EVDF can be accelerated by a scheme based on the Gauss–
Seidel method [76]. In contrast to that, f (v, t) is kept unchanged until f (v, t + ∆t) is
obtained, and in case physical relaxation of the EVDF is observed, the Gauss–Seidel method
renews f (v, t) part by part (i.e., cell by cell) on the basis of the local balance expressed
by the EBE ignoring the entire electron conservation. It is expected here that renewed
value of f (v, t) is closer to the equilibrium value than before renewal. Fast propagation of
the renewal result over velocity space is promoted by arranging the sequence of renewal
calculations to be from the upstream cells to the downstream cells in velocity space. This
numerical relaxation process no longer has physical meaning. However, the number of
iterations for convergence to the equilibrium solution can be reduced down to the order of
magnitude of 1/1000 in a drastic case [76].

A challenge to a long-term relaxation process was demonstrated with a PM in a matrix
form [42]. When the EVDF at a time t is represented in a vector form f (t) with the elements
corresponding to the number of electrons in each cell similarly to Equations (15) and (16),
f (t + ∆t) can be obtained by applying a propagator represented in a matrix form M as
f (t + ∆t) = M f (t) in the same way as Equation (24). Here, we may calculate powers of
M as P1 = M2, P2 = M4, P3 = M8, · · · , Pn = M2n

by repeating the squaring operation for
Pi+1 = Pi × Pi. After this preparation, we obtain f (t + 2n∆t) = Pn f (t). The relaxation time
2n∆t increases exponentially with n while computational elapse time increases linearly
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with n. The calculation for a slow relaxation of the EVDF in a ramp model gas [100]
was demonstrated using 18,000 cells defined with 1000 divisions for ϵ ∈ [0, ϵmax] and
18 divisions for θ ∈ [0, π] (thus, vector f (t) has 18,000 elements), ∆t = 1 ps, and n = 30
(230 > 109, thus until t > 1 ms) [42]. Convergence of mean electron energy ⟨ϵ⟩ and the
EVDF were observed midway by n = 20. This approach enables us to observe a long-
term relaxation in a logarithmic time scale, although it requires a large matrix size as
18,000 × 18,000.

Another recent improvement of the PM calculation is for calculations under low E/N
conditions and rf E fields [90]. The polar-ϵ configuration has a tendency that the cells
around the origin become more coarse than in the polar-v configuration. This feature is
negligible at high E/N values where the electron energy loss by inelastic collisions and the
electron energy gain under high E are dominant in the formation of EVDF satisfying the
energy balance. However, at low E/N values, which appear not only under dc E fields
but also in rf E fields as low E periods, the coarseness of the low-energy cells leads to an
overestimation of the acceleration of low-energy electrons and causes a less precision in
some electron transport coefficients. This is because uniform electron distribution within a
cell is used to be assumed in conventional PM calculations. It was demonstrated that the
overestimation is suppressed by blending central and upwind differences with relevantly
chosen weights.

Owing to the progress in both algorithm and computational facility, the PM is nowa-
days recognized as an available and possible self-consistent EVDF solver. With already es-
tablished techniques, the PM can be used not only to solve the EVDF in typical observation
models but also for preparation of look-up tables of a set of electron transport coefficients,
mean electron energy ⟨ϵ⟩, ionization coefficient νion, drift velocity W, and diffusion coeffi-
cient D under uniform dc E, for the use in fluid simulations. Further enhancement of the
calculation speed and memory capacity would allow us consideration for more practical ef-
fects of electron–molecule interactions, higher-order multi-dimensional cell configurations,
and more complicated geometries of the plasma reactors. Some of the basic processes not
dealt with sufficiently would be anisotropic scattering, super-elastic collisions, Coulomb
collisions between electrons, etc. For the cell configuration, realization of PM calculation in
dimensions higher than three would have to wait for more empowerment of the computers;
e.g., self-consistent PM calculation in a cylindrical symmetry requires five-variable phase
space as (r, z, v, θv, ϕ), which requires a tremendously huge memory capacity even with a
coarse resolution for each variable. Nonetheless, for frequently assumed geometries such
as one-dimensional real space between parallel-plane electrodes, the PM calculations done
for three-variable phase space would withstand requirements on boundary conditions by
its flexibility for linkage with, for example, Poisson’s equation and boundary conditions.

5. Summary and Conclusions

The methods that have been described in this review have in common that they
describe the kinetics of electrons, subject to the effect of electric and magnetic fields and
collisions with atoms and molecules in a low-temperature plasma, using a propagator-
based description. Propagators are operators that shuffle the probability distribution of the
electronic fluid in the phase space, moving it from one position to another in this generalized
space: just as many mathematical objects of a certain importance can have a description
apparently very different from another depending on the formal language on which the
initial setting of the algorithm is based. This means that in some cases, such as in the writing
of a so-called traditional MC program [32], the role of propagators may be much less evident
at a superficial level. In some other cases [85], propagators enter not only into the settings
of the algorithm but right from the beginning of the language that is used to describe it.
A hybrid stochastic-deterministic approach, such as the MCF [41,69], which effectively uses
the propagators twice, first as “micro-propagators” for calculations of transition weights,
and then as Markov matrices to extend the simulation to the characteristic times of energy
diffusion, is an even more particular case.
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Emphasizing the common roots of these approaches and others that are comparable
does not erase the fact that in the concrete study of a certain type of ionized gas rather
than another a method in particular may be much superior to others. Elements that
contribute to this choice are the relationships between the various characteristic times of the
plasma, the type of collision processes, the dimensionality of the system, the presence and
complexity of boundary conditions, and even practical requirements such as the reduction
of requested memory, speed and computer time, the physical transparency of the method,
and ease of code maintenance. However, the ability to understand the conceptual bases and
common aspects from a mathematical point of view of the calculation methods available for
the study of the electron kinetics of low-temperature plasmas can represent a very useful
element of knowledge, both for researchers who have to decide the best strategy for the
representation of a system and for instructors who teach these methods and express interest
in them.

In all cases, the fundamental object in question is a time-dependent relationship
between two states in phase space and which can be described physically as a function
or as an operator acting on a function, and numerically as a matrix. Hence, its treatment
requires tools from algebra and calculus. It is possible that the current approach to the
simulation of plasma-based application systems, which is a modular approach, may hide
the conceptual interest of these calculation tools: they constitute the most physical part of
simulation programs and their connection with other areas of physics and mathematics are
both aspects that can spark new interest in these tools. The mathematics of propagators
allows us to solve the problem of the kinetics of plasma electrons with great efficiency,
and this makes these instruments useful tools, because the kinetics of electrons in plasma
cannot be neglected in reliably calculating chemical reaction rates and transport quantities.

Understanding the mathematical concept underlying a group of models is a stimulating
exercise in itself and also has a heuristic value, because it produces future research questions:

• What is the most efficient presentation of the propagation concept depending on the
conditions of plasma?

• How can the concept of propagation be extended to nonlinear systems such as those
that emerge when collisions between charged particles or gas heating are taken
into account?

• Can the mathematical grids that are employed at different times of the different
approaches be replaced with spectral descriptions?

• Could propagators, which represent input–output relations, efficiently be computed
using machine learning and artificial intelligence?

• Could the similarity between the propagators used in plasma and those used in other
areas of physics help to develop faster or less memory-intensive computational methods?

More recent applications of low-temperature ionized gases from biology to space
science to materials science will always produce new possibilities for numerical descriptions
of electron transport that have new strengths—despite having their specific weaknesses.
The authors hope that this review work can stimulate research activity that captures new
insights and develops new languages.
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