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Abstract: Fire alarm systems are typically equipped with various sensors such as heat, smoke, and
gas detectors. These provide fire alerts and notifications of emergency exits when a fire has been
detected. However, such systems do not give early warning in order to allow appropriate action to be
taken when an alarm is first triggered, as the fire may have already caused severe damage. This paper
analyzes a new dataset gathered from controlled realistic fire experiments conducted in an indoor
laboratory environment. The experiments were conducted in a controlled manner by triggering the
source of fire using electrical devices and charcoal on paperboard, cardboard or clothing. Important
data such as humidity, temperature, MQ139, Total Volatile Organic Compounds (TVOC) and eCO2

were collected using sensor devices. These datasets will be extremely valuable to researchers in the
machine learning and data science communities interested in pursuing novel advanced statistical
and machine learning techniques and methods for developing early fire detection systems. The
analysis of the collected data demonstrates the possibility of using eCO2 and TVOC reading levels
for early detection of smoldering fires. The experimental setup was based on Low-Power Wireless
Area Networks (LPWAN), which can be used to reliably deliver fire-related data over long ranges
without depending on the status of a cellular or WiFi Network.

Keywords: early fire detection; indoor fire analysis; non-image fire analysis; realistic indoor experiments;
machine learning

1. Introduction

Conventional fire alarms are very effective in detecting flaming fires. However, they
cannot detect the presence of smoldering fires, which develop very slowly and do not
develop much heat when compared to flaming fires. Therefore, it takes a relatively long
time before a fire alarm can detect them. Thus, if smoldering flames are not detected
early, they can cause a significant fire hazard. Recently, there has been a rising interest
in providing fire systems that can provide reliable early detection of fires [1]. However,
most conventional studies of fire science are based on numerical experiments such as CFD
simulations [2–4] and not on actual experimentation.

Smoldering is a slow, flameless form of combustion that is a cause of residential fires.
It is usually initiated by heat sources such as cigarettes, coal or short-circuited wires, which
can cause slow combustion of home furniture, linen, cloth or paper-based materials. These
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fires are relatively slow and are not quickly detected by photoelectric smoke detectors
and fire alarms except after the fire is fully developed and damage in the property is
inevitable [5]. As such, this research measures the gas concentration levels accumulated
in a room with a smoldering fire before a smoke alarm is activated. The paper shows
graphically and statistically that it is possible to detect smoldering fire before it actually
develops into a full flammable fire. Such early detection can prevent property damage and
preserve lives.

Several studies covering early fire detection have been reported in the literature.
A. Solorazano et al. [6,7] proposed the use of fire detectors based on chemical gas sensors
instead of smoke-based detection systems in order to achieve early fire detection. This
approach mainly depends on the fact that some types of fires involve the release of volatiles
before smoke [8].

In addition, interest has increased in developing machine learning solutions using real
fire datasets [9,10]. However, the vast majority of publicly available datasets related to the
study of early fire detection are based solely on image data [11–14]. L. Wu et al. [10] used
data on temperature, smoke concentration and carbon dioxide to develop an early warning
algorithm based on a back-propagation neural network that outputs the probability of fire
occurrence, using the National Institute of Standards and Technology (NIST) dataset [15]
for their work [10]. While the NIST dataset is very valuable and includes 27 different
experiments, it covers a limited number of indoor fire scenarios. For the development of
reliable machine learning-based fire warning systems, the algorithms need to be exposed to
a much larger number of fire types and scenarios in order to cover the flammable materials
commonly found in homes [10]. This paper concludes that in order to develop a proper
multi-sensor fusion mode, the fire dataset needs to be expanded to include flammable
materials commonly found in homes.

One of the primary contributions of this work is to collect and provide data for machine
learning practitioners and data scientists to build early fire detection predictive models.
Our work provides a unique publicly available indoor laboratory fire dataset that has been
readily formatted and made available to machine learning researchers and data scientists.
The experiments conducted and the data collected cover scenarios that have not been
previously reported. The scenarios provided by our work include experiments conducted
on electric-triggered fires and charcoal-triggered fires on material commonly found in
homes. Our main objective is to provide a sufficiently high-quality laboratory fire dataset
that can help answer such important questions as what the most important predictive
variables are for detecting smoldering fires. There is a strong need to gather data on the
gas concentration levels accumulated in a room with a smoldering fire in the time before a
smoke alarm is activated in order to answer such questions. Because it takes a relatively
long time for a photoelectric smoke detector to detect a smoldering fire, it is important to
measure the concentration of toxic gasses in the room before alarm activation. The volume
of toxic gases present before the alarm goes off significantly affects a person’s chance of
escaping a fire hazard [5].

The experiments conducted in this work aim to determine the sensitivity thresholds
or boundaries between the following conditions: (1) no fire; (2) fire started, and (3) fire
alarm activated. Figure 1 illustrates the general concept. The blue dashed line indicates
the time when a fire is started, and the red dashed line indicates the point at which the
fire alarm is activated or triggered. Notice that the time threshold is categorized into three
sensitivity threshold limits within this time interval: low risk, medium risk, and high risk,
as shown in the grey dotted lines. The ideal solution is to trigger an alert as soon as possible
when a fire is started, at the low-risk sensitivity threshold limit. However, employing such
a strategy introduces a high likelihood of false alarms. False alarms incur high human
and financial costs, especially to the fire authority resources, and should be minimized or
avoided completely [16]. On the other hand, if an alarm is triggered within the high-risk
level, then the degree of damage may have already been severe. Therefore, there is a need
to determine the “sweet spot” (preferably at the medium risk level) at which to trigger the
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fire alert in order to allow for the earliest possible detection without triggering false alarms.
This is a challenging task, and it is envisaged that any decision for determining the right
time to trigger an alert should be based on a data-driven approach.
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Figure 1. The data are initially captured when the fire begins continuing until the fire alarm is
activated. As the fire begins, the risk level gradually increases from low to medium and then high.

The results from the conducted experiments reveal a set of interesting observations.
From the results presented in this paper it can be observed that the most volatile variables
trigger the fire alarm at the eCO2 and TVOC. In particular, the pattern shown by the eCO2
levels indicates that it can be used as a possible trigger for early fire alarms. The variable
correlation analysis conducted on the collected data provided here provides valuable
results and observations that filter only the most relevant features in order to build accurate
predictive models. For example, the analysis provided reveals that eCO2 and TVOC are
both strongly correlated with MQ139, leading to the conclusion that MQ139 can be removed
from any constructed models.

The paper proposes and uses an IoT-based system for experimentation. The experi-
mental setup is based on a Low-Power Wireless Area Network (LPWAN) protocol [17,18]
commonly used in IoT systems and connects to the Things Network cloud server through
an LoRaWAN [19] Gateway that can be located outside the affected building/premises.
LPWAN systems such as LoRa have been demonstrated to provide connectivity up to 100s
of kilometers line-of-sight and a few kilometers in urban areas [20]. The advantage of such
a system is that it enables long range communications independent of the status of the
cellular or Wi-Fi network. While this is a prototype setup, it has the potential to develop
into an IoT-like system capable of providing an early fire alarm system connected remotely
to home owners through mobile phone and/or to the concerned authorities through any
device connected to the internet. Several research works have been reported proposing an
early fire detection system based on Wireless Sensor Networks (WSNs) [21,22]. However,
these reported designs depend on low range ZigBee protocol-based devices that do not
provide the long-range advantages of LPWAN. IoT-based technologies have been proposed
for early fire detection systems [23]; however, most of these proposed applications were in
the area of forest fires in order to exploit the long range provided by LPWAN to achieve
connectivity with rural areas [24,25].

The remainder of this paper is organized as follows. Section 2 presents the materials
and methods used for the experimentation. Section 3 provides the results of the conducted
experiments along with an analysis of the collected data. Section 4 provides the conclusions.
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2. Materials and Methods

In this section, the experimental methodology is described. We first describe how we
set up our experiments to gather the fire dataset.

2.1. Experimental Setup

All experiments were conducted in a non-vented room with dimensions of 3 × 3 × 3 m.
The location of the sensing setup was fixed in the middle of the room. The fire source was
placed in the corner of the room to ensure that the emitted gases or smoke would not go
directly to the sensing setup. Various sensors were used in the experiments. All sensors
were connected to a microcontroller using an Arduino board. The data were collected using
the wired serial connection between the computer and the microcontroller. PLX-DAQ [26]
was used for data acquisition to collect the data instantaneously into an Excel sheet. We
used two generic sensors to reflect the starting pattern of fires. A DHT22 sensor was used
to measure both the temperature and humidity, while an SGP30 sensor was used to collect
the Total Volatile Organic Compounds (TVOC) and CO2 readings.

Finally, a fire system alarm was installed to detect precisely the point of time at which
the alarm was triggered. FIREX-UK FX0102E fire detectors were used; these were equipped
with internal heat, smoke, and gas detector sensor devices. The fire alarm detector is
designed to trigger based on a sensitivity limit, and if the sensed value cross that limit, an
alarm is triggered. In our experiments, we captured exactly the time at which the detector
triggered the alarm. In our datasets, for each data point, “OFF” indicates that the alarm has
not been triggered, while “ON” indicates that the fire alarm has been triggered.

Each experiment was conducted separately using two main methods to trigger the
fire, namely, electric heating devices and charcoal. Electrical fires were triggered using
electrical heating devices consisting of a wound coil normally used for heating or cooking
purposes, with a power of 10–12 Watts (12–13 Vdc, 0.85–1 A). The burning materials used
in the experiments were of two types, paperboard cardboards (paper with a plastic layer)
or clothes. The clothes materials included Cotton Fabric, Denim Fabric, a mixture of cotton
and polyester, and commercial bedsheet and pillow sets in order to include a range of
materials commonly found in residential homes. The cardboard-based fires were only
triggered by charcoal, while cloth fires were triggered by charcoal or electrical devices. The
sensors employed in our setup captured humidity, temperature, ammonia (NH3), TVOC,
and eCO2 readings. The sampling time for recording the data was 1 sample per second.

A total of eight experiments were successfully conducted. While over 30 experiments
were initially conducted, not all experiments were successful. Most experiments failed to
produce enough smoldering fires, and others developed flammable fires before the fire
alarms were triggered. We faced issues with our hardware setups during some experiments
which required us to stop the experiments halfway.

The eCO2 levels were collected because it is the primary gas emitted from complete
combustion in smoldering fires. eCO2 stands for “Equivalent CO2” (known as Global
Warming Potential weighted greenhouse gas emissions, or GWP) and is a standard unit
for measuring carbon footprints; it expresses the impact of each different greenhouse
gas in terms of the amount of CO2 that would create the same amount of warming [27].
Sometimes, other gases are emitted from the smoldering fires depending on whether the
burning materials are comprised of nitrogen or other compounds such as NH3, NO2, H2,
SO2, and H2S [28]. Thus, it is important to measure VOC gas levels. The SGP30 sensor
offers an advantage, as it is a pre-calibrated sensor that accurately measures the levels of
CO2 and VOC without requiring calibration at the start of each experiment.

Additional sensors were used to capture a range of VOC gases such as Freon (R134A)
and Ammonia (NH2) gases. However, from the observations of several experiments, we
discovered some issues with our sensors. First, the sensors required a long preheating
time before giving accurate measurements. Second, we noticed that the sensors were not
consistently calibrated. To address these issues, we captured output based on the gas level
(from 1 to 1000). The experimental hardware setup is depicted in Figure 2.
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Figure 2. Hardware Deployment setup for Experiments: (a) setup physically situated in the middle
of the laboratory room; (b) experimental setup showing sensors connected to the microcontroller
motherboard and the LoRa Node wireless system connecting it to the cloud.

2.2. System Architecture and Communications Flow

In this section the overall communication flow using the designed system architecture
is presented. The overall communication flow is shown in Figure 3. The sensor data were
collected using a microcontroller Arduino board, then sent to The Things Network cloud
server using LoRa communication gateway technology [18]. The LoRaWAN Gateway
enables long-range and low-power data transfer transmission without using cellular or
WiFi connections. Specifically, the data are collected by a Seeeduino LoRaWAN controller
which has a built-in LoRa Module connected using a serial connection with the controller.
The data are then sent to a Raspberry Pi-based gateway connected to the Internet using
an Ethernet connection. Data are then transmitted to The Things LoRaWAN Network
(TTN) via the internet. The TTN network provides the ability to integrate with other
cloud providers such as AWS IoT, allowing data queries to be performed using other AWS
services such as the Dynamic Database (DynamoDB) Lambda. Finally, all analyses can be
offloaded to a mobile App using the Xamarin open-source platform [29].
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The duration of an experiment varied depending on the fire source. For each experi-
ment, all the sensor readings capture was initiated at the point when a fire was triggered,
and stopped a few minutes after the fire alarm was activated. Table 1 summarizes the
experimental duration for each fire source.

Table 1. Time duration for each conducted experiment.

Title 1 Title 2 Title 3

Electrical/Clothes

Experiment 1 37 min 58 s
Experiment 2 33 min
Experiment 3 12 min 35 s
Experiment 4 15 min 56 s

Charcoal/Clothes
Experiment 1 15 min 6 s
Experiment 2 17 min 7 s

Charcoal/Cardboard Paperboard Experiment 1 14 min 12 s
Experiment 2 17 min 31 s

It can be observed that the approximate time the fire alarm was activated for the
electrical/clothes material varied significantly, between 12 and 37 min. On the other hand,
the fire alarm activated by the charcoal/clothing fires did not differ much, between 14 and
17 min. A similar observation was made for the charcoal/cardboard paperboard, as the
alarm was activated between 14 and 17 min.

3. Results and Discussion

A total of eight controlled experiments were carried out. Four fire experiments were
conducted on clothing triggered by electric fire sources, while the remaining four fire ex-
periments were triggered by charcoal on paperboard cardboard or clothing. We conducted
additional experiments for the electric fire source as the time for the fire alarms to be
activated (due to electric fire sources) significantly varied, between 12 and 37 min, whereas
the duration of charcoal-based cardboard, paperboard, and clothing fires did not differ
much, between 14 and 17 min. Figure 4 shows the progress of fire with time for different
types of fires in linear and log scales.

Each conducted experiment comprises a collection of time series data that correspond
to the various sensor measurements (i.e., humidity, temperature, MQ139, TVOC, and eCO2)
taken every second.
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Figure 5 shows all the reading measurements (i.e., humidity, temperature, MQ139,
TVOC, and eCO2) for all fire sources (i.e., the electrical device/cloth, charcoal/cardboards,
and charcoal/cloth). We can observe that both eCO2 and TVOC appear to exhibit impor-
tant predictive variables, as their values increase significantly before the fire alarms are
triggered for every fire source, including electricity/clothing, charcoal/cardboards, and
charcoal/clothing. For example, we can see that both TVOC and eCO2 values increase
drastically around time 27:00 before the fire alarm is triggered at time 37:02 for the electric
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fire. As observed, there is always a visible dramatic increase and abrupt changes to the
eCO2 values, despite the different time-series patterns. It is envisaged that if we could
detect such patterns at an early stage, this would offer an opportunity to trigger a fire alarm
warning alert before a fire grows out of control. In Figure 5, both eCO2 and TVOC exhibit
the most important predictive variables, as the values increase significantly before the fire
alarms are triggered for every source of the fire.
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Figure 5. The eCO2 reading measurements for four different experiments of electric fires.

For illustrative purposes, Figure 5 further depicts the eCO2 reading measurements
for four different experiments with electric fires. The red dashed line represents the point
where the fire alarm is activated. From the plots, we can observe that their readings patterns
are different, but there were some visible periods. For example, we can see a drastic change
to the normal patterns (the outliers and anomaly formations) before the fire alarm was
activated. Based on our observations, the most volatile variables that trigger the fire are the
eCO2 and TVOC attributes. The results shown in Figure 5 indicate that that eCO2 levels
can be used as an indicator for more prompt trigger times.

3.1. Variable Correlation Analysis

The objective of the variable correlation analysis is to examine and determine any
visible patterns from the dataset that can be used to select the best features to build a
predictive model. This is done by examining the feature interactions among each of the
attributes. Figure 6 shows the Pearson correlations between each feature for a fire that was
triggered by an electric device. As expected, TVOC and eCO2 are strongly correlated to
each other. However, we can see some interesting observations regarding the correlations
of the Ammonia (NH3) gas level (i.e., MQ139) with both eCO2 and TVOC. Both eCO2 and
TVOC are strongly correlated with MQ139. When building a machine learning predictive
model, one could consider removing one of the strongly correlated features, and based on
our variable correlation analysis, the MQ139 could be one potential candidate for removal.
This correlation analysis would be valuable to machine learning researchers and data
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scientists seeking to filter only the most relevant features in order to build more accurate
predictive models.
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Figure 6. Both eCO2 and TVOC are strongly correlated with MQ139. When building a machine
learning predictive model, one might consider removing one of the strongly correlated features. Based
on the conducted variable correlation analysis, MQ139 may be a suitable candidate for removal.

3.2. Data Distribution Analysis

In this section, we present a data distribution analysis of our experimental dataset.
The primary objective of the data distribution fitting analysis is to determine whether our
dataset fits well on a specific statistical distribution, which could be useful to generate
synthetic data.

We fitted each variable, i.e., eCO2, TVOC, humidity, temperature, and MQ139, to the
most well-known distributions to find the best distributions that fit our data. These distri-
butions include the normal, lognormal, exponential, power law, power normal, Weibull,
Weibull minimum, Weibull maximum, exponentiated Weibull, erlang, exponential normal,
exponential Weibull, logistic, log gamma, log-Laplace, skew normal, Pareto, Pearson, beta,
and generalized gamma distributions.

For each fitted distribution, we estimated the parameters that provide the minimum
SSE errors. Based on the SSEs computed for all distributions, we then selected the lowest
SSE as the best distribution. Table 2 shows a summary of the best distributions for each
source of fire for all the reading measurements (i.e., eCO2, TVOC, humidity, temperature,
and MQ130).
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Table 2. For all reading measurements in each fire source (i.e., electrical/cloth, charcoal/cardboards,
and charcoal/cloth, we found the best-fitted distributions, including their best parameters.

Source of Fire Measurement Best Fitted Distribution Sum of Square Errors (SSEs)

Electrical/Cloth

eCO2 Exponentiated Weibull Distribution 0.00011267029929785147
TVOC Double Weibull Distribution 2.708889556679 × 10−5

Humidity Double Weibull Distribution 366.03915174693213
Temperature Double Weibull Distribution 38157.55591746159

MQ139 Power Lognormal Distribution 0.5513364247530835

Charcoal/cardboard

eCO2 Exponentiated Weibull Distribution 6.986666475369561 × 10−6

TVOC Exponentiated Weibull Distribution 1.4865994920838973 × 10−5

Humidity Beta Distribution 1236.9933162581392
Temperature Beta Distribution 103053.45783803816

MQ139 Power Law Distribution 0.10289974506654861

Charcoal/Clothing

eCO2 Log Gamma Distribution 2.788708658959186 × 10−6

TVOC Log Gamma Distribution 3.8246971469792034 × 10−5

Humidity Log Gamma Distribution 29.494137424567498
Temperature Double Weibull Distribution 44790.0445294828

MQ139 Pearson type (PT) III distribution 0.02046073738554408

The results include several interesting observations. First, we can observe that the
SSEs for eCO2 and TVOC are extremely low, which indicates that these two variables can
be modeled accurately using both Exponentiated Weibull and Double Weibull distributions
(i.e., 0.0001 and 2.7088 × 10−5). As was shown earlier in Figure 4, eCO2 and TVOC are
the two most important predictor variables for predicting fires. A more accurate ability
to synthetically generate patterns for these two variables offers significant advantages in
building a more accurate model for early fire detection.

Second, we found the temperature variable to be the most challenging variable to
model for all sources of fire. We identified the Double Weibull distribution as the best-fitted
variable for electrical/clothing and charcoal/clothing fires, although the SSEs reached as
high as 44,790. This indicates that it is almost impossible to model the temperature variable
accurately in any conditions. Humidity gives very high SSEs for electrical/clothing and
charcoal/cardboard fires reaching up to 1236. Interestingly, the humidity can be modeled
reasonably well using the Log Gamma Distribution, as it only incurs 29.49 of SSE.

Third, it is very interesting to note that MQ139 can be modeled accurately using Power
Lognormal, Power Law, and Pearson type (PT) III distributions. It was initially suspected
that the MQ139 reading was not captured accurately, as we had difficulties calibrating
the sensors during our experiments. However, based on the data distribution analysis on
multiple experiments for an identical source of fire, we found that the data distributions
of the MQ139 do not vary much. It can be accurately modeled using the same best-fitted
distributions, with a maximum of only 0.55 SSE.

Overall, we observed that the Double Weibull distribution gives the best-fitted distri-
bution to model most measurements for the electrical/cloth fires. As observed, the Double
Weibull distribution is the best-fitted for TVOC, humidity, and temperature. Interestingly,
both eCO2 and TVOC have the same distribution family of exponentiated Weibull Distri-
bution, with slightly different parameters for the charcoal/cardboards fire. On the other
hand, the humidity and temperature for charcoal/cardboards are best fitted with the beta
distribution. Interestingly, the charcoal/clothing fires, eCO2, TVOC, and humidity closely
follow the Log Gamma Distribution. However, the MQ139 fire exhibits a very different
distribution family for different fire sources, following a Power Lognormal distribution
for the electrical/cloth fire, the Power Law Distribution for charcoal/cardboards, and the
Pearson type (PT) III distribution for charcoal/clothing fires.

For illustrative purposes, Figure 7 shows all the fitted distributions for the eCO2
measurement for each fire source, namely electrical/clothing, charcoal/clothing, and
charcoal/cardboards. The left side of the plots shows our attempts to fit the data based on
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the test distributions. Based on the analysis, the best fit distribution of the eCO2 from an
electrical/cloth fire cause is an exponentiated Weibull, which has four parameters. The
distribution takes a parameter as the exponentiation parameter, identified as 154.73 in
our experimental best fit. The c is the shape parameter of the non-exponentiated Weibull
law, for which we identified the best fit as 0.19 (i.e., c = 0.19). Furthermore, we found
that shifting the loc parameter by 395.36 and the scale parameter by 0.01 offered the best
fit distribution.
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Interestingly, the best fit distribution of the eCO2 for the charcoal/cardboard source
of fire was an exponentiated Weibull as well. The parameter is somewhat different as
the mean value for the charcoal/cardboard is significantly less (a parameter value is 6.8
compared to 154.7 of the electrical/cloth fire). However, the best fit distribution for the
charcoal/clothing fires is a log gamma distribution, different from the electrical/cloth and
charcoal/cardboard fires. The log gamma distribution takes c as a shape parameter, for
which we identified 0.01 as the best fit. Similar to the exponentiated Weibull, it takes the
loc and scale parameters to shift and scale the distribution. For our charcoal/clothing fire
datasets, we identified the best loc as 9103.87 and the scale as 49.40.

4. Conclusions

This paper presents the results of a series of laboratory experiments that provides a
fire dataset for various fire scenarios that can take place in an indoor home environment.
The purpose of the conducted experiments was to provide a dataset and a study on
the possibility of early fire detection for smoldering fires. The experiments and analysis
presented in the paper show that commercial fire detectors can take over 15 min to trigger
the alarm. The experiments show that by monitoring certain gases such as eCO2 and VOC,
more efficient fire alarm systems can be built. In addition, for commercial fire detectors
there exist two contradictory criteria: sensitivity and accuracy. Increased sensitivity can lead
to a higher probability of false fire alarms, which is expensive for large scale institutions,
while decreased sensitivity can lead to delayed fire alarms. The results presented in this
work show that the data collected through laboratory experimentation provide important
predictor variables such as eCO2 and TVOC. The collected data could potentially be used
to build highly accurate predictive models for early fire detection systems. The dataset
provided by this work can be further used to develop machine learning-based systems to
further improve the performance of fire alarm systems.

It was found that the sum of square errors (SSEs) for the fitted reading measurements
was minimal based on our data distribution analysis. For example, the highest SSE errors
were attributed to measurements of the electrical/cloth fire, yet the errors were less than
0.01 sum of square errors. This makes it accessible and practical for generating additional
synthetic data based on best-fit distributions. Advanced machine learning techniques
such as deep learning require a considerable amount of data for training, and generating
synthetic data will be very helpful for such purpose.

To make the presented dataset highly accessible to machine learning practitioners and
data scientists, we have added class/target labels. The target variables are classified into
3 classes: 0, 1, and 2. The class label ‘status’ is provided as the basis for supervised machine
learning classification tasks. The class label 0 represents the initial point of the experiment
(i.e., no fire or activated alarm). Class label 1 represents the point at which the fire has been
started but with no activated alarm. Finally, class label 2 represents the point at which the
fire causes activation of the fire alarm.

The class labels will be extremely valuable for machine learning classification tasks.
For example, a machine learning engineer or data scientist may want to develop a predictive
model that offers early fire detection by accurately classifying a sequence of class label 1s
(with the object of detecting fire events accurately as soon as a fire has started). Moreover,
we have added timestamps in our dataset, which could be useful if there is a need to
extract more granular features. For example, one could aggregate a one-second interval
into one-minute intervals to compare the trends from different time perspectives for more
insightful conclusions of the data. The timestamps enable the use of previous values as
features. Based on window size, one can compute the weighted average in order to, for
example, gain insights into the most recent data, which could be used as additional features
to build the machine learning model. For a more advanced techniques, our dataset can be
applied to lag time-series information as features. Based on the correlation of individual
values with their past values, one could calculate the best lag parameters to better forecast
future values, for instance, by creating an ARIMA model for time series forecasting.
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The paper presents a novel experimental setup communications flow, which was used
in collecting the data and can be used as a prototype for early detection systems. The setup
architecture depends on LPWAN technology, commonly used in the domain of Internet of
Things, in order to provide long-range communications with a remote gateway and allow
direct communication with the end user, regardless of the status of the cellular or local Wi-Fi
network. The experimental setup proved to be highly reliable in terms of data delivery.

Future work includes the expansion of the number of experiments to include various
other fire scenarios and the addition of more sensors, such as LPG gas leakage sensors.
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Glossary

Main Dataset
Time: Time (in 24-h format) when data was recorded by the sensor.
Reading ID#: unique id for the row or instances
Humidity %: humidity percentage
Temperature: temperature record in Celsius (◦C)
MQ139: VOC gases (most sensitive to the Ammonia (NH3) and Freon gases level
TVOC: TVOC (Total Volatile Organic Compounds) level

eCO2:

the estimated concentration of carbon dioxide calculated from known TVOC
concentration. This assumes that the VOC produced by humans is proportional to
their exhaled CO2. The analog output of the VOC sensor is in the range of
400–2000 ppm eCO2.

Detector:
the fire alarm detection (conventional Photoelectric smoke detector). ‘OFF’ indicates
no fire detected, while ‘OFF’ indicates a fire is detected

Status:

‘0’ represents the initial point of the experiment (i.e., no fire or activated alarm).
‘1’ represents the point at which the fire has been started but with no activated
alarm yet (i.e., by electrical devices or charcoal). ‘2’ represents the point at which
the real fire system was activated by the fire cause.
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