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Abstract: In the history of human civilization, traditional villages and buildings have been signifi-
cantly threatened by fire. As an essential part of Huizhou traditional architecture, fire seal walls play
a crucial role in preserving Huizhou architecture by effectively blocking the spread of fire. However,
with economic and social development, the Huizhou fire seal wall’s original fire prevention function
has been unable to meet the needs of modern fire protection. This study aims to explore the fire
performance of different types of Huizhou fire seal walls to provide a reference guide for future fire
protection, optimization, and transformation of traditional buildings. In this paper, 3D models of
traditional buildings with fire seal walls were built with FDS, and the performance of the different
kinds of fire seal walls was simulated under the influence of wind speeds, building spacing, and the
height of the vertical ridge of the fire seal wall. The results showed that, under the same conditions,
a fire seal wall with a single eave is superior to fire seal walls with quintuple eaves in terms of
performance, and fire seal walls with quintuple eaves are superior to fire seal walls with triple eaves
in the middle and late stages of a fire. In addition, wind speeds, building spacing, and the height
of the vertical ridge have different effects on the fire performance of seal walls. Lower wind speeds
can reduce the fire performance of fire seal walls, and no wind and higher wind speeds have no
significant effect on the fire performance of fire seal walls, while increasing the height of the vertical
ridge and fire spacings appropriately can improve the fire performance of fire seal walls. This study
provides a reference guide for future fire protection, optimization, and transformation of Huizhou
fire seal walls, which can help improve the fire safety of traditional buildings.

Keywords: fire performance; fire spread; Huizhou fire seal walls; traditional buildings; FDS

1. Introduction
1.1. Fire Prevention in Traditional Chinese Buildings

China has a long history and rich cultural heritage as one of the four ancient civi-
lizations. Traditional villages and buildings have been widely distributed throughout the
country as cultural heritage objects with significant regional and ethnic characteristics [1],
which not only have historical research value [2] but also contribute to the inheritance of tra-
ditional culture [3], improvement in infrastructure [4], and development of agriculture and
tourism [5,6]. As stated by the Chinese Ministry of Housing and Urban-Rural Development,
8171 villages were included in the List of Traditional Villages of China by the end of 2022 [7],
which rendered China the most significant cultural heritage conservation country world-
wide [8]. However, with recent economic and social advancements, China has experienced
frequent fires, which pose a severe threat to the conservation of traditional villages and
buildings, and many traditional villages and buildings are destroyed by fire every year [9].
For example, a fire broke out in the ancient city of Dukesong in Yunnan Province, China,
in 2014, covering an area of nearly one hundred and one acres, causing the destruction
of 242 old buildings and direct property damage amounting to 89.83 million yuan. A fire
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broke out in an ancient town in Nanjiang County, Sichuan Province, China, in 2016, causing
26 people to be affected and property damage totaling more than 3 million. This entails not
only historical and cultural heritage loss but also significant damage to the local natural
environment and human landscape. There are four main reasons for fires. First, traditional
Chinese buildings are mainly constructed of wooden structures, which have been eroded
by wind and rain for thousands of years and exhibit a low water content; thus, they can
easily ignite once they encounter open fires [10]. Second, traditional Chinese villages and
buildings are mainly located in remote rural areas, which usually have treacherous terrain
and roads, making it difficult for fire engines to enter and extinguish fires [11]. Third,
traditional Chinese villages are densely distributed with small building spacing, which
promotes the occurrence of mass fires. Fourth, firefighting facilities in rural areas must
be improved, and public awareness of firefighting must be enhanced. It is difficult to
extinguish fires the first time they occur. Therefore, it is still a significant problem that
fire threatens the conservation of traditional buildings and villages [12]. The study of fire
protection in traditional villages and buildings is important within this context.

1.2. Fire Research in Traditional Buildings

Fire protection research for traditional villages and buildings is currently focused on
the following four aspects: First, fire risk assessment research [13,14] mainly identifies
potential or existing fire risks of target objects using field research and provides assessment
levels using hierarchical analysis, fuzzy analysis, and accident tree analysis [15], and corre-
sponding fire protection optimization strategies are finally proposed in a targeted manner.
Secondly, numerical simulation research of fires [16–18] mainly adopts the FDS software
(https://pages.nist.gov/fds-smv/downloads.html) simulation method to establish a tradi-
tional village or building numerical model so that it can be employed to study the changes
in flame plume, smoke spread, and heat radiation conditions during a fire. This method
dramatically reduces the cost of fire research and provides high experimental safety and
economy. Thirdly, physical experimental combustion simulation research [19–21] entails
the construction of a scaled or full-size model to study the combustion characteristics of
wood and fire spread patterns between buildings. This measurement method is more
accurate than numerical simulation, but the economic cost and danger are significantly
higher. Fourthly, traditional fire protection technology research [22], which favors the
theoretical level, focuses on compiling and summarizing ancient villages and building
fire protection experiences using historical literature and field research and providing
corresponding explanations. For example, Chinese patios and fire alleys are ancient fire
prevention techniques that have saved countless houses from disasters for hundreds of
years. From the above, current research on fire prevention in traditional villages and
buildings is a focus of research from theoretical to practical levels, and it is conventional
relative to present technology levels.

However, from microscopic combustion simulation to macroscopic fire risk assess-
ment levels, research on traditional fire prevention technology remains at the theoretical
research level, with few scholars verifying conventional fire protection measures using
modern technology and proposing updated alternatives. Moreover, with the development
of contemporary society, traditional fire protection systems are gradually disintegrating
and disappearing, and the original fire protection measures can no longer fully meet the
requirements of village or building protection; thus, it is essential to conduct a modern fire
protection transformation of traditional fire protection technology.

1.3. Huizhou Fire Seal Walls

Huizhou fire seal walls are called Matou walls because the top base of the wall is
shaped to resemble a horse’s head. Huizhou fire seal walls are usually made of brick and
stone; they are built around wooden buildings and are mostly constructed with hollow
bucket walls because they do not bear weight [23]. Therefore, the bricks in Huizhou are
large and thin. The fire seal wall is built freely, roughly following the rule that the lower
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solid fence should be covered with air and the empty wall should not be connected; the wall
is usually painted with white ash, and the eaves are covered with very small green tiles [24],
forming a powder wall with tiles, which is very decorative. There are three main parts:

1. Wall;
2. Plucked leaves, pallets, and pallet heads, for which the primary function is to prevent

the wall from being directly impacted and soaked by rain;
3. The ridge of the Matou wall is the closing part of the sealed firewall.

According to the number of eaves on the wall above the roof, they can be classified
as fire seal walls with a single eave, fire seal walls with triple eaves, and fire seal walls
with quintuple eaves [25] (Table 1). Huizhou fire seal walls, primarily located in the
Huizhou region of China, are a traditional Chinese building fire protection technique that
can effectively prevent flames from spreading to adjacent buildings in the event of a fire,
thus reducing the danger. Most existing Huizhou fire seal walls originated during the Ming
and Qing Dynasties, when He San, the governor of Huizhou, ordered residents to adjust
the height of walls for fire protection, after which fire seal walls were widely used for fire
protection in the Huizhou area. For hundreds of years, they have been used as essential
fire protection technology to protect Huizhou’s traditional villages and buildings from the
threat of fire and safeguard the lives and property of countless people.

Table 1. Classification of Huizhou fire seal walls.

Type Number of Eaves Example Photos Schematic

fire seal wall
with a single

eave
1
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However, with the development of modern society, the fire protection function of the 
Huizhou fire seal wall has gradually weakened, and the original fire protection system 
and architectural style have been seriously damaged; thus, traditional Huizhou fire seal 
walls can no longer meet modern fire protection demands. 

From the above, the fire prevention situation of traditional Chinese buildings and 
villages is becoming increasingly serious, and traditional fire prevention technology is 
gradually dying out. As a traditional fire prevention technology, Huizhou fire seal walls 
have very important fire prevention research value, but there is little research in related 
fields. Therefore, it is necessary to further strengthen the role of traditional fire protection 
technology for traditional village and building conservation. Inspired by this aspect, this 
study established the following research steps (Figure 1): First, we visited traditional vil-
lages in Huizhou, conducted field research on the Huizhou fire seal wall of the traditional 
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However, with the development of modern society, the fire protection function of the
Huizhou fire seal wall has gradually weakened, and the original fire protection system and
architectural style have been seriously damaged; thus, traditional Huizhou fire seal walls
can no longer meet modern fire protection demands.

From the above, the fire prevention situation of traditional Chinese buildings and
villages is becoming increasingly serious, and traditional fire prevention technology is
gradually dying out. As a traditional fire prevention technology, Huizhou fire seal walls
have very important fire prevention research value, but there is little research in related
fields. Therefore, it is necessary to further strengthen the role of traditional fire protection
technology for traditional village and building conservation. Inspired by this aspect,
this study established the following research steps (Figure 1): First, we visited traditional
villages in Huizhou, conducted field research on the Huizhou fire seal wall of the traditional
Chinese fire protection system, and selected a typical dwelling for mapping. Secondly, the
Huizhou fire seal wall was numerically simulated using FDS software (https://pages.nist.
gov/fds-smv/downloads.html). The purpose was to compare fire resistance differences
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and the weak points of fire seal walls with single eaves, triple eaves, and quintuple eaves
under the same conditions and analyze the effects of wind speeds, building spacing,
and vertical ridge height on the fire resistance of Huizhou fire seal walls under different
fire scenarios. Finally, corresponding Huizhou fire seal wall renovation strategies were
proposed, which provide a practical reference for the future fire protection renovation of
the same type of fire seal walls, and this fundamentally contributes to the protection of
traditional villages and buildings in Huizhou.
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2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area

The selected study area is in Huangshan City, Anhui Province, China (Figure 2a), which
is in the southern part of Anhui Province, East China, with a total area of approximately
9800 km2, between 117◦02′–118◦55′ E and 29◦24′–30◦24′ N. The resident population of
Huangshan city is 1,332,000 people, of which the urban population accounts for 59.25% of
the total population and the rural population accounts for 40.75% of the total population.
Its subtropical monsoon climate results in four distinct seasons, sufficient rainfall, and
much heat. According to a typical Chinese meteorological year query, the average wind
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speed is 7 m/s at maximum and 1.6 m/s at minimum throughout the year. The average
monthly maximum value of the dry bulb temperature is 30 ◦C, and the average monthly
minimum value is 10 ◦C. In addition, it is also the birthplace of Hui culture, for example,
Huizhou architecture, Huizhou four sculptures, and Huizhou opera. Among them, Hui-
style architecture [26], as historical and cultural heritage, is distributed in large numbers
among various ancient villages in Huangshan city, such as Xixi’nan Village, Hongcun
Village, and Chengkan Village, all World Heritage Sites [27]. Therefore, this study adopted
the protection of traditional villages and buildings in Huizhou as the starting point of the
current severe form of traditional village and building fire protection and used FDS to
numerically simulate the Huizhou fire seal wall, which can provide important reference
values for the optimization of traditional fire protection technology in Huizhou and the
protection of historical and cultural heritage.
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Figure 2. Study area and mapping objects. (a) Location map of Huangshan, China; (b) General plan
of Bei’an village; (c) Exterior view of the mapping object; (d) Interior view of the mapping object.

2.1.2. Data Sources

The study conducted research and mapping in Huangshan City. The measuring tools
were a laser rangefinder and drone, and CAD computer software (https://www.autodesk.
com.hk/solutions/cad-software) was adopted to plot the measurement results. Several
traditional Huizhou villages, such as Chengkan Village, Xixi’nan Village, Hongcun Village,
and Bei’an Village, were visited to investigate different Huizhou fire seal walls during the
2021–2022 period. In addition, traditional residential buildings were better preserved in
Bei‘an Village. Therefore, to facilitate the numerical simulation of fire seal walls, a typical
traditional Huizhou residence with fire seal walls (Figure 2b–d) in Bei’an Village was
selected as a study object for mapping. The mapping’s results show a building with fire
seal walls with triple eaves on the eastern and western sides; the walls are painted white
lime, the rugged hill-shaped roof is covered with black tiles, and the interior structure is a
Chinese beam-bearing wooden frame. With a total height of 2 floors (Figure 3), the building
area is 75 m2, and the floor space is 37.5 m2. Constructed during the Chinese Qing Dynasty
(1664–1911), the building has essential historical research value.
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2.2. Experimental Design and Boundary Condition
2.2.1. Experimental Design

This study refers to the above mapping data and uses Pyrosim 2019 to build the model.
A single model of a fire seal wall with triple eaves with a length of 7040 mm, a width
of 5330 mm, and a height of 6900 mm, including a total of 2 floors, is established along
the positive direction of the X-axis, and the front elevation is oriented along the negative
direction of the Y-axis. Among them, the exterior wall material is masonry, and the interior
columns, beams, squares, interior partition walls, and floor slabs are set to yellow pine
(Table 2). The thickness of the exterior walls is set to 200 mm, the cross-sectional size of
the interior columns is set to 200 mm × 200 mm, the cross-sectional size of the beams and
square is set to 150 mm × 150 mm, the thickness of the partition wall is set to 50 mm, and
the thickness of the floor slab is set to 100 mm. The roof material is developed into green
tiles; each piece is 150 mm × 200 mm in size. The sizes of the exterior windows are set
to 870 mm × 1050 mm and 400 mm × 320 mm, for a total of 2 types. After this model is
established, monolithic models of fire seal walls with single eaves and fire seal walls with
quintuple eaves are similarly established, according to the mapping data of the Huizhou
fire seal walls researched. The parameters of the other parts are consistent with those of the
established model of the fire seal wall with triple eaves, except for the eastern and western
side walls.

Table 2. Material parameters.

Name of Material Specific Heat Capacity
(kJ/kg·K)

Density
(kg/m3) Conductivity (W/m·K) Calorific Value (kJ/kg)

Yellow pine
Fire seal wall

Tile

2.3 570 0.2 18,000
1.05 1700 1.89
1.24 1200 0. 43

The fire simulation scenarios in this paper are as follows: fire seal walls with single
eaves, fire seal walls with triple eaves, and fire seal walls with quintuple leaves are selected
as fire simulation objects based on the above study. Twenty-seven fire simulation scenarios
(Figure 4) were constructed by selecting fire-spreading influencing factors from three
different levels. At the meteorological level, wind speed was chosen as the most critical
factor affecting fire spread. There were three wind speeds (0 m/s, 1.6 m/s, and 7 m/s),
representing no wind, the lowest annual average wind speed, and the highest average
yearly wind speed in Huizhou, respectively, and these scenarios were recorded as W1–W9.
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At the street level, the building spacing was selected as the most critical factor affecting fire
spread, in which there were three building spacings (0.8 m, 1.6 m, and 2.4 m), and these
scenarios were recorded as F1–F9. At the building level, the height of the vertical ridge of
the fire seal walls was selected as the most influential factor of fire spread, among which
there were three vertical ridge heights (0 m, 0.5 m, and 1 m), representing the standard
heights of the vertical ridges of Huizhou fire seal walls, and these scenarios were recorded
as H1–H9. The other factors are set as follows: the environmental temperature is 20 ◦C, the
wind direction is west, and the building location is parallel.
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2.2.2. Equipment Arrangement

Temperature slices (Figure 5) were arranged at 0.8 m, 1.6 m, and 2.4 m from the right
side of the fire seal wall under the 27 simulated scenarios and kept parallel to the fire seal
wall surface. Temperature detectors were arranged in adjacent temperature slices, and
thermocouples were placed vertically at 0.5 m intervals in the middle and on both sides,
with 33 in total. The detectors at 0.8 m intervals on the fire seal wall with a single eave were
recorded as N1–N33; the highest point in the middle is N13; the highest point on the left is
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N33; and the highest point on the right is N23 (Table 3). The detectors at 0.8 m intervals
on the fire seal wall with triple eaves are recorded as T1–T33, with the highest point in
the middle denoted as T13, the highest point on the left denoted as T33, and the highest
point on the right denoted as T23. The detectors at 0.8-m intervals on the fire seal wall with
quintuple eaves are marked as F1–F33, with the highest point in the middle marked as
F13, the highest point on the left marked as F33, and the highest point on the right marked
as F23.
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Table 3. Location of the detectors.

Category Building Spacing
(m)

Highest Point in the
Middle

Highest Point on the
Left

Highest Point on the
Right

fire seal wall with a
single eave

0.8 N13 N33 N23
1.6 N37 N39 N38
2.4 N70 N72 N71

fire seal wall with triple
eaves

0.8 T13 T33 T23
1.6 T37 T39 T38
2.4 T70 T72 T71

fire seal wall with
quintuple eaves

0.8 F13 F33 N23
1.6 F37 F39 F38
2.4 F70 F72 F71

2.2.3. Fire Source Setting

The setting of the fire source is a crucial factor affecting the accuracy of the fire
numerical simulation results, and it is reasonable to use the t2 fire growth model because
most traditional Huizhou buildings are wooden beam structures. The t2 fire growth model
can be calculated using the maximum heat release rate during a fire [28]. It can be expressed
as follows:

Q = αt2, (1)

where Q is the heat release rate of the fire source in kW; t is the time in units of s; and α is
the fire growth coefficient in units of kW/s2. According to the Chinese Technical Standard
for Smoke Prevention and Exhaust Systems (GB51251-2017), the fire growth coefficient
can be divided into 0.1878 kW/s2, 0.04689 kW/s2, 0.01172 kW/s2, and 0.00293 kW/s2,
corresponding to superhigh, high, medium, and low speeds, respectively (Table 4). After
field research, the traditional buildings in Huizhou have been weathered and eroded
for hundreds of years, and the moisture content in wooden structures is low, consistent
with the characteristics of fast-burning materials. Therefore, a fire growth coefficient of
0.04689 kW/s2 is used in this paper, with a maximum heat release rate of 8 MW (Table 5).
t is calculated as 413 s, which can reach the stable burning time, and the simulation time
of the whole process was set to 1200 s. The location of the fire source was set at the center
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of the interior of the first floor of the traditional house, and the fire source area size is
0.5 m × 0.5 m (Figure 6).

Table 4. Common fire growth factors.

Growth Type A(kW/s2) Typical Combustible Materials

superhigh speed 0.1878 Oil pool fire, flammable decorative home
high speed 0.04689 Wooden shelf pallets, foam

medium speed 0.01172 Cotton and polyester items, wooden offices
low speed 0.00293 Heavy wood products

Table 5. Maximum heat release rate values for typical fire locations.

Typical Fire Locations Maximum Heat Release Rate/MW

Shopping malls with sprinklers 5.0
Offices and guest rooms with sprinklers 1.5

Public places with sprinklers 2.5
Supermarkets and warehouses with sprinklers 4.0

Offices and rooms without sprinklers 6.0
Public places without sprinklers 8.0

Supermarkets and warehouses without sprinklers 20.0
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2.3. Grid Settings
2.3.1. Grid Division

The grid is the smallest computational unit of the FDS tool in the process of numerical
fire simulation, whose size division directly affects the reliability and accuracy of the
simulation results. The smaller the grid size, the more accurate the calculation results, but
this increases the calculation time and economic costs. The larger the grid size, the larger
the error of the calculated results. According to Kevin [29] and others, more accurate results
can be obtained when the grid size ratio to the minimum grid size δx is 4 to 16 times. where
the characteristic diameter of the fire source can be obtained as follows:
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D∗ = (
Q

ρ0cPT0
√

g
)

2
5
, (2)

where Q is the heat release rate (8000 kW), ρ0 is the air density (1.206 kg/m3), cP is the
specific heat capacity of air [1.005 kJ/(kg·K)], T0 is the initial ambient temperature 293 K
(20 ◦C), and g is the acceleration of gravity (9.8 m/s2). The calculation indicated that
D∗ ≈ 1.395 m , and the grid yields more accurate results in the interval of 0.08~0.35 m.
Therefore, the 0.15 m grid selected in this paper is sufficient; however, according to the
study of Zhou Qing [30] on the effect of the grid size on the FDS simulation results, the
impact of the grid size on the simulation results decreases with increasing distance between
the test point and the fire source. The measurement accuracy can be improved by nearly
5% when the grid size is reduced by four times. Thus, to ensure the accuracy and economy
of the calculation results, the grid is divided into two suites in this paper (Figure 7), which
involve the use of a finer grid of 0.15 m × 0.15 m × 0.15 m near the fire source (black areas)
and a coarser grid of 0.45 m × 0.45 m × 0.45 m far from the fire source (white areas).
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2.3.2. Grid Independence Verification

To ensure the accuracy and rationality of the grid division, five grid sizes (0.10 m,
0.15 m, 0.20 m, 0.30 m, and 0.45 m) were selected in this paper before the numerical
simulations. The temperature detector distribution along the vertical direction at 1.8 m
(groups 1©), 3.6 m (groups 2©), and 5.4 m (groups 3©) southward of the fire source center
was selected to verify the FDS grid independence (Figure 8a). The final simulation was
carried out until 413 s, when the heat release rate reached its maximum value, after which
the reaction stabilized. The analysis results at 450 s after the start of the simulation were
selected (Figure 8b–d), which showed that the temperature distribution curve of the 0.15 m
grid size increased gently. The results were stable for each group. The 0.10 m, 0.20 m,
0.30 m, and 0.45 m grid sizes showed significant volatility, among which the 0.45 m grid
showed the most considerable volatility near the fire source. However, with increasing
distance, the farther away from the fire source location, the smaller the curve fluctuation
range and the closer the measurement results of the five grids are. Therefore, in this paper,
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it is reasonable to consider the economy and accuracy of grid division and choose a 0.15 m
grid near the fire source and a 0.45 m grid far from the fire source.

Fire 2023, 6, x FOR PEER REVIEW 11 of 24 
 

 

simulations. The temperature detector distribution along the vertical direction at 1.8 m 
(groups ①), 3.6 m (groups ②), and 5.4 m (groups ③) southward of the fire source center 
was selected to verify the FDS grid independence (Figure 8a). The final simulation was 
carried out until 413 s, when the heat release rate reached its maximum value, after which 
the reaction stabilized. The analysis results at 450 s after the start of the simulation were 
selected (Figure 8b–d), which showed that the temperature distribution curve of the 0.15 
m grid size increased gently. The results were stable for each group. The 0.10 m, 0.20 m, 
0.30 m, and 0.45 m grid sizes showed significant volatility, among which the 0.45 m grid 
showed the most considerable volatility near the fire source. However, with increasing 
distance, the farther away from the fire source location, the smaller the curve fluctuation 
range and the closer the measurement results of the five grids are. Therefore, in this paper, 
it is reasonable to consider the economy and accuracy of grid division and choose a 0.15 
m grid near the fire source and a 0.45 m grid far from the fire source. 

 
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

2000

2500

3000

Te
m

pe
ra

tu
re

 (℃
)

Distance to the floor (m)

 dd=0.10m
 dd=0.15m
 dd=0.20m
 dd=0.3m
 dd=0.45m

(a) (b) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

2000

2500

3000

Te
m

pe
ra

tu
re

 (℃
)

Distance to the floor (m)

 dd=0.10m
 dd=0.15m
 dd=0.20m
 dd=0.3m
 dd=0.45m

 
0.0 0.5 1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60

70

80

Te
m

pe
ra

tu
re

 (℃
)

Distance to the floor (m)

 dd=0.10m
 dd=0.15m
 dd=0.20m
 dd=0.3m
 dd=0.45m

 
(c) (d) 

Figure 8. Grid independence verification. (a) Detector arrangement; (b) Group ① Simulation re-
sults; (c) Group ② Simulation results; (d) Group ③ Simulation results. 

2.4. Simulation Verification 
This work relies on experimental data for footing combustion in wooden buildings 

by Gao Xianzhan [31] to confirm the reliability of the FDS numerical simulation of fire in 
ancient structures. The same model is built with PyroSim for FDS numerical simulation 
to compare the FDS simulation results to the experimental results and verify the reliability 
of FDS in the numerical simulation of fire in ancient buildings. Gao’s combustion experi-
ment was conducted in a traditional house with a brick and wood structure in Yunnan 
Province, China. Burning tests were conducted in a room in the house, which is 3 m long, 
4 m wide, and 2.6 m high; the ceiling is 2.2 m from the floor; and the partition walls, roof, 
and top of the house are all made of wood. This experiment defined the wood pile (each 
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2.4. Simulation Verification

This work relies on experimental data for footing combustion in wooden buildings
by Gao Xianzhan [31] to confirm the reliability of the FDS numerical simulation of fire in
ancient structures. The same model is built with PyroSim for FDS numerical simulation to
compare the FDS simulation results to the experimental results and verify the reliability of
FDS in the numerical simulation of fire in ancient buildings. Gao’s combustion experiment
was conducted in a traditional house with a brick and wood structure in Yunnan Province,
China. Burning tests were conducted in a room in the house, which is 3 m long, 4 m wide,
and 2.6 m high; the ceiling is 2.2 m from the floor; and the partition walls, roof, and top
of the house are all made of wood. This experiment defined the wood pile (each 0.6 m
long, with a cross-sectional area of 0.025 m × 0.035 m) as the source of fire, placed vertically
across to achieve steady burning. In addition, four thermocouples (S1-1, S2-2, S3-3, and
S4-4) with height coordinates of 2.2 m, 1.7 m, 1.2 m, and 0.7 m, respectively, from the top
to the bottom of the ceiling were positioned at the corners of the stairs along the vertical
direction. The burning process lasted 8 min before the firefighters extinguished the fire.

In this paper, numerical simulations were performed using FDS under the same condi-
tions according to the actual model size, and thermocouple detectors were arranged at the
same locations, namely, THCP1, THCP2, THCP3, and THCP4, from top to bottom, respec-
tively. (Figure 9). In the simulation, the boundaries are open, and the environmental pa-
rameters such as the wind speed, room temperature, and certain material parameters were
assigned default software values. Considering the actual size of the model, the simulation
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grid area is defined as 4 m × 5 m × 3 m, and the grid size is set to 0.1 m × 0.1 m × 0.1 m
to ensure the accuracy of the results and the economy of the calculation process. The heat
release rate of the fire source was set to 1000 kW/s2, and the fire source growth model was
adopted in the t2 mode, in which the maximum heat release rate is reached in 350 s. Refer-
ring to Gao’s experiment, the reaction from the beginning of the wood pile fire source to
the end of the whole response is 600 s; in this paper, the simulation time is set to 600 s, after
which the simulation is validated, and the automatic sprinkler system starts to extinguish
the fire after 500 s to imitate the firefighter in Gao’s experiment.
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Figure 9. Numerical simulation scenarios.

In addition, because the different wood parameters and reference temperatures could
lead to inconsistent simulation results, the study selected three experimental scenarios
(Table 6) for simulation in this paper. Finally, the FDS simulation results were compared to
the experimental data of Gao (Figure 10); the simulation results of Group 3 were similar to
those of Group 1, the simulation results of Group 2 and the experimental results were closer,
and the highest temperature in the experiment could reach 700 ◦C. However, overall, the
simulation results are higher than the experimental results. The time to validate the data is
also earlier than the experimental combustion time because the actual combustion experi-
ment was conducted in an unsteady-state environment. The real-life indoor temperature is
low, reflecting its slow occurrence over time. The external wind speed and air pressure can
interfere with the experiment. At the same time, the numerical simulation in this paper
was conducted under ideal steady-state conditions, which are not affected by external
factors. The material parameters are default software values, which can result in errors
relative to the actual values. In addition, the simplification of the model affects its accuracy.
Therefore, the final numerical simulation results are significant, and the reaction occurred
600 s earlier than in Gao’s experiment. However, the FDS numerical simulation results
are consistent with the overall fire development trend and the maximum temperature
reached, and the absolute and relative errors are within the allowable range. Therefore, it
is feasible to use FDS for numerical simulation of fire in Huizhou fire seal walls, and the
reference temperature of 100 ◦C and the reaction heat of 6000 kJ/kg selected for the wood
thermal parameters in this paper are consistent with the actual values. They can be used as
numerical simulation parameter conditions. The reaction time of 1200 s in the numerical
simulation above can be interpreted as 1200 s after the material starts to react.
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Table 6. Reference temperature for wood combustion.

Group Reference Temperature/◦C Heat of Reaction/(kJ/kg)

1 150 5000
2 150 6000
3 100 6000
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3. Results and Discussion
3.1. Comparative Analysis of the Fire Performance of Different Fire Seal Walls

To compare the differences in the fire performance of fire seal walls with single eaves,
triple eaves, and quintuple eaves under the influence of the same environmental factors
and provide a reference for the fire retrofitting of different fire seal walls, this study selected
the most common scenes—F2, F5, and F8 of 27—simulation scenarios to analyze the smoke
spread and temperature transfer results. In the simulation scenario, the parameters were
set to be the same, including a wind speed of 1.6 m/s, a temperature of 20 ◦C, a building
spacing of 1.6 m, and a vertical ridge height of 0 m.

3.1.1. Analysis of Smoke Spread

A fire in a traditional wood building burns rapidly and produces toxic, hazardous,
and high-temperature smoke. Once this smoke spreads, it can threaten human safety and
damage adjacent buildings. Therefore, in this paper, smoke spreading was selected as an
evaluation metric to assess the difference in fire performance between different fire seal
walls.
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Figure 11 shows the smoke spread of the three types of fire seal walls. In terms of
combustion within 150 s, the three scenarios are similar. This may be attributed to the fact
that combustion is in its initial stages and smoke diffusion is slow. From 150 to 750 s, the
fire seal wall with triple eaves (scenario F5) spread smoke faster than the fire seal walls
with single eaves (scenario F2) and quintuple eaves (scenario F8), and the smoke’s spread
could cover the entire wall. This may be attributed to the fact that the façade form of the
fire seal wall with triple eaves provides weaker smoke protection than that of the fire seal
wall with a single eave and quintuple eaves. From 750 to 1200 s, the smoke spread of the
three kinds of fire seal walls tended to remain stable. This may be attributed to the fact that
combustion is in a stabilization phase. Therefore, it could be preliminarily concluded that,
under the same conditions, the type of fire seal walls has less influence on smoke protection
in the early and stabilized stages of a fire. However, the smoke-blocking effect and fire
performance of the fire seal wall with triple eaves are worse than those of the fire seal wall
with single and quintuple eaves during the fire growth phase.
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3.1.2. Analysis of Temperature Transfer

A traditional wooden building produces substantial heat in the burning process,
transferring thermal radiation to the surrounding area. The temperature of the adjacent
wooden building reaches 260 ◦C, which easily produces a fire. Therefore, this study
analyzed the heat-blocking effect of different fire seal walls to determine the difference in
fire performance between the various types of Huizhou fire seal walls.
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Figure 12a shows the results of the average temperature change curve of adjacent
measurement points. From 0 to 400 s, the temperature increase rate of the fire seal wall
with triple eaves is faster than that of the other two walls. From 400 to 1200 s, the average
temperature of all three kinds of fire seal walls steadily fluctuates above and below 32 ◦C,
which is well below the flash ignition temperature of wooden buildings. This finding
aligns with previous research that reports the fire performance of fire seal walls with triple
eaves [32]. In addition, the average temperature of the fire seal wall with a single eave
is lower than that of the other two walls. This may be attributed to the fact that fire seal
walls have good fire resistance, and the fire resistance of the fire seal wall with a single
eave is higher than that of the other two walls. In addition, as shown in the temperature
change cloud (Figure 13), the heat transferred by the fire is mainly concentrated at the top
of the fire seal wall, and more heat is concentrated at the highest point on the left side. This
may be attributed to the fact that fire resistance is weaker at the top of the fire seal wall
compared to other parts of the wall.
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Figure 12. Temperature change curve of the detector at the different positions. (a) The average tem-
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Figure 12. Temperature change curve of the detector at the different positions. (a) The average
temperature change curve of adjacent measurement points; (b) The temperature change curve of the
detector at the highest point in the middle; (c) Temperature change curve of the detector at the highest
point on the right; (d) Temperature change curve of the detector at the highest point on the left.
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Figure 13. Temperature variation clouds of adjacent slices.

To further study the difference in fire performance between the tops of different fire
seal walls under the same conditions, the detector at the highest point in the middle of the
fire seal wall, the highest point on the left, and the highest point on the right were selected
for in-depth analyses (Figure 12b–d). With respect to the temperature change trend, from 0
to 200 s, the curves for the three kinds of fire seal walls are close. From 200 to 1200 s, the
temperature at the highest point on the left side of the fire seal wall is higher than that at
the highest point in the middle and the highest point on the right side. In addition, the
temperature change trend of the maximum middle moment of the fire seal wall with a
single eave is slightly lower than those of the fire seal walls with triple and quintuple eaves;
the temperature change trend of the maximum right point is higher than that of the fire
seal walls with triple and quintuple eaves; and the temperature change trend of the left
complete end is the same for all three wall types.

To further quantify the rapidity of fire spread at different locations on top of the
fire seal walls, this study defines the ratio of the maximum temperature achieved by the
detector to the time taken to reach the peak as the average temperature increase rate. As
shown in Figure 14 and Table 7, the average temperature increase rate of the fire seal wall
with triple eaves is higher than that of the fire seal walls with quintuple eaves, and the
fire seal walls with quintuple eaves are higher than that of the fire seal wall with a single
eave. In addition, the average temperature increase rate at the highest point on the left side
of the three fire seal walls is higher than that at the highest point in the middle and the
highest point on the right side. This may be attributed to the fact that the greater area of
windows and doors on the south side of the building results in quicker conduction of heat,
resulting in a more rapid increase in temperature at the highest point on the left side of the
fire seal wall. Thus, it could be concluded that, under the same conditions, the performance
of the fire seal wall with single eaves is superior to that of the fire seal walls with quintuple
eaves in terms of performance, and the fire seal walls with quintuple eaves are superior
to fire seal walls with triple eaves in the middle and late stages of a fire. Furthermore, fire
performance at the highest point on the left side of the three fire seal walls is weaker than
that at the highest point in the middle and on the right side.
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3.2. Analysis of the Impacts of Different Factors on the Fire Performance of Fire Seal Walls

From the above, under the same conditions, the overall and top fire performance of
the fire seal wall with single eaves is superior to that of fire seal walls with quintuple eaves,
and fire seal walls with quintuple eaves are superior to those with triple eaves in the middle
and late stages of a fire. To further study the fire performance of fire seal walls, this study
selected a fire seal wall with a single eave, which has the best fire performance, and a fire
seal wall with triple eaves, which has the weakest fire performance, in order to analyze
the effects of different wind speeds (Scenarios W1–W3) on the fire performance of fire seal
walls with single eaves; moreover, the impacts of different building spacings (Scenarios
F4–F6) and vertical ridge heights (Scenarios H4–H6) on the fire performance of fire seal
walls with triple eaves were also analyzed.

3.2.1. Analysis of the Effect of Different Wind Speeds on Smoke Spread

Figure 15 shows the smoke spread of the fire seal wall with a single eave under
different wind speed scenarios. In scenario W1, under windless conditions (Figure 15a), the
smoke spreads uniformly around the building, and the spread is greater on the southern
side. This may be attributed to the fact that the lack of wind in the area causes fires to spread
slower in the building. Furthermore, more doors and windows are located on the southern
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side of the building than on the northern side. Most indoor heat is transferred outward
via doors and windows on the southern side, which causes a more favorable range of
temperature changes on the southern side of the building. In scenario W2, under the wind
speed condition of 1.6 m/s (Figure 15b), the wind accelerated the fire spread. Substantial
amounts of smoke spread toward the right side of the fire seal wall, and most of the heat
transferred by the fire was concentrated above the fire seal wall. In scenario W3, under the
7 m/s wind speed condition (Figure 15c), the smoke diffusion toward the northern and
southern sides of the building increases, and the amount of spread toward the right side of
the building is significantly reduced. This behavior is consistent with experiments on the
effect of wind speed on fire spread [33]. This may be attributed to the fact that the stronger
wind blows away a large amount of heat and smoke, which slows the spread of fire to the
right side of the building. Therefore, it can be concluded that the windless scenario and the
higher wind speed scenario have less impact on the fire performance of the fire seal wall.
Moreover, the lower wind speed scenario has a greater impact on the fire performance of
the fire seal wall, which can promote the spread of fire to neighboring buildings.
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Figure 15. Smoke spread of the fire seal wall with a single eave under the different wind speed
scenarios. (a) Smoke spread under the 0 m/s wind speed scenario; (b) Smoke spread under the
1.6 m/s wind speed scenario; (c) Smoke spread under the 7 m/s wind speed scenario.
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3.2.2. Analysis of the Effect of the Different Building Spacings and Vertical Ridge Heights
on Temperature Transfer

Traditional Huizhou villages are densely laid out with different alley widths; the
spacing is usually 0.8 m, 1.6 m, and 2.4 m, and there are different types of fire seal walls
surrounding the buildings with varying ridge heights, e.g., usually 0 m, 0.5 m, and 1 m,
which are the key factors affecting the spread of fire in traditional Huizhou villages and
buildings. Therefore, we selected the building spacing and vertical ridge height as the key
factors influencing the fire seal wall’s performance.

Figure 16 and Table 8 show the average temperature variation of the fire seal wall with
triple eaves under different building spacings and vertical ridge heights. In scenarios F4–F6,
from 0 to 200 s, the simulation results are similar for three different building spacings. From
200 to 1200 s, the average temperature of the detectors with respect to the 2.4 m building
spacing is lower than the 0.8 m and 1.6 m scenarios. In scenario H4–H6, from 0 to 800 s, the
average temperature of the detector decreases with increasing vertical ridge height. From
800 to 1200 s, the average detector temperature remains stable. This finding aligns with
previous research that reports a decrease in temperature with respect to increasing vertical
ridge height and building spacing [34].
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Figure 16. Temperature change curve of the fire seal wall with triple eaves under the different
factor scenarios. (a) Temperature change curves under the different building spacing scenarios;
(b) Temperature variation curves under the various vertical ridge height scenarios.

Table 8. Average temperature variation of the fire seal wall with triple eaves under the different
building spacings and vertical ridge heights.

Scenes Time 200 s 400 s 600 s 800 s 1000 s 1200 s

F4
Building spacing

0.8 m 22.84 32.90 31.98 32.82 29.54 35.88
F5 1.6 m 22.92 31.91 38.28 30.88 31.25 37.71
F6 2.4 m 22.90 30.27 30.47 26.65 30.09 28.99

H4
Vertical ridge height

0 m 22.92 31.91 38.28 30.88 31.25 37.71
H5 0.5 m 22.38 32.51 29.53 30.34 28.93 34.33
H6 1 m 22.36 31.35 28.74 26.64 29.83 35.47

Figure 17 and Table 9 show the average temperature increase rate of the different
locations on top of the fire seal wall with triple eaves with different building spacings and
vertical ridge heights. In scenarios F4–F6, the average temperature increase rate of the
top of the fire seal wall with triple eaves with respect to the 1.6 m building spacing was
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higher than that under the 0.8 m and 2.4 m scenarios. In addition, with increasing building
spacing, the average temperature increase rate at both the middle of the fire seal wall with
triple eaves and at the highest point on the left side of the screen wall showed an increasing
and then decreasing trend, and the average warming rate at the highest point on the right
side gradually increased. In scenarios H4–H6, the average temperature increase rate of
the top of the fire seal wall with triple eaves with respect to 0 m vertical ridge heights was
higher than that of the 0.5 m and 1m scenarios. In addition, with the increasing height of
the vertical ridge, the average temperature increase rate at the highest point in the middle
and the highest point on the right side of the fire seal wall with triple eaves showed a
decreasing and then increasing trend. Then, the increasing trend and average warming rate
at the highest point on the left side showed apparent decreasing trends.

Table 9. Temperature change of the fire seal wall with triple eaves under the different factor scenarios.

Schematic Scenen Detector Peak Point
Temperature (◦C)

Time to the
Peak (s)

Average Temperature
Rise Rate (◦C·s−1)
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Therefore, it could be concluded that, with increasing building spacing and vertical
ridge height, the fire seal wall provided better overall fire performance during the fire’s
growth and stabilization phase. In addition, the highest point in the middle, the highest
point on the left, and the highest point on the right of the fire seal wall had the worst
fire performance with respect to the 1.6 m building spacing and 0 m vertical ridge height
scenarios.

4. Conclusions

Twenty-seven fire simulation scenarios under the influence of different wind speeds,
building spacings, and vertical ridge heights were constructed to analyze the characteristics
of the fire performance of different types of Huizhou fire seal walls. The simulation’s
conclusions are as follows:

1. The results of the fire simulation scenarios at different fire seal walls show that, under
the same conditions, the fire seal wall with single eaves is superior to that of the fire
seal walls with quintuple eaves in terms of performance, and the fire seal walls with
quintuple eaves are superior to the fire seal wall with triple eaves in the middle and
late stages of a fire. Furthermore, the fire performance at the highest point on the left
side of the three fire seal walls is weaker than that at the highest point in the middle
and on the right side.

2. The results of fire simulation scenarios at different wind speeds show that the windless
scenario and the higher wind speed scenario have less impact on the fire performance
of the fire seal wall. Moreover, the lower wind speed scenario has a greater impact
on the fire performance of the fire seal wall, which can promote the spread of fire to
neighboring buildings.

3. The results of the fire simulation scenarios at different building spacings and vertical
ridge heights show that, with increasing building spacing and vertical ridge height,
overall, the fire seal wall provided better fire performance during the fire increase
and stabilization phase. In addition, the highest points in the middle and on the left
and right of the fire seal wall had the worst fire performance with respect to the 1.6 m
building spacing and 0 m vertical ridge height scenarios.

4. When performing the fire retrofitting of emblematic fire seal walls, the focus should
be on repairing the top of the fire seal wall with triple eaves and near areas with
many windows and doors. When performing the fire retrofitting of emblematic fire
seal walls for areas with low wind speeds year-round, the focus should be on fire
protection between neighboring buildings.
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5. An increase in the height of the vertical ridge and the fire separation distance can
be used as a fire protection retrofitting measure for future fire seal walls. Moreover,
for fire seal walls with a vertical ridge height of 0 m and a fire separation distance of
1.6 m, measures such as brushing fireproof paint can be adopted to strengthen the fire
protection performance of the weak points at the top of the wall.

This study contributes to improving the fire protection renovation of Huizhou fire
seal walls. However, this study has certain limitations. For example, the Huizhou fire seal
wall in the traditional fire protection system was simplified into three types, namely, fire
seal walls with single eaves, triple eaves, and quintuple eaves, and the model comprised a
simplified primary wall type. In addition, only 27 simulated scenarios were constructed
for analysis, and it is impossible to completely simulate and analyze fire seal walls consid-
ering all styles and fire scenarios. Therefore, this study only provides reference ideas for
optimizing and transforming traditional fire protection technology.
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