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Abstract: High temperatures, toxic gases, and smoke resulting from indoor fires pose evident threats
to the lives of both trapped individuals and firefighters. This study aims to predict indoor fire
development effectively, facilitating rapid rescue decisions and minimizing casualties and property
damage. A comprehensive database has been developed using Computational Fluid Dynamics (CFD)
tools, primarily focused on basic fire scenarios. A total of 300 indoor fire scenarios have been simulated
for different fire locations and severity levels. Using fire databases developed from simulation tools,
artificial intelligence models have been developed to make spatial–temporal inferences on indoor
temperature, CO concentration, and visibility. Detailed analysis has been conducted to optimize
sensor system layouts while investigating the variations in prediction accuracy according to different
prediction horizons. The research results show that, in combination with artificial intelligence models,
the optimized sensor system can accurately predict temperature distribution, CO concentration, and
visibility, achieving R2 values of 91%, 72%, and 83%, respectively, while reducing initial hardware
costs. The research results confirm the potential of artificial intelligence in predicting indoor fire
scenarios and providing practical guidelines for smart firefighting. However, it is important to note
that this study has certain limitations, including the scope of fire scenarios, data availability, and
model generalization and interpretability.

Keywords: indoor fire; artificial intelligence; fire detection and deduction; CFD simulation; building
safety

1. Introduction

Fire is a major disaster in the maintenance of buildings and infrastructure that can
cause serious consequences, including loss of life, property, and facilities. With the majority
of people spending their time indoors [1], indoor fire safety is crucial. In 2022, China
experienced a notable surge in fire alarm cases and property loss, as reported by the
National Fire and Rescue Administration, underscoring the urgent need for effective
prediction and guidance in rescue and firefighting operations. The advancement of Industry
4.0 has enabled the integration of technologies like the Internet of Things (IoT), artificial
intelligence (AI), big data analytics, and cloud computing in building systems, facilitating
more intelligent operations [2–5]. These technological advancements have the potential to
enhance fire prevention, detection, and response capabilities, reducing the adverse effects
of fires. Timely and accurate prediction of fires is essential in guiding accurate fire rescue
strategies, personnel evacuation plans, and intelligent fire rescue systems.

In the field of fire practice and scientific research, real-time monitoring of key features
such as images, temperature, and smoke is commonly used for identifying and predicting
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indoor fires. Among these, image-based techniques for fire detection have been flourish-
ing [6–8]. However, these methods often raise privacy concerns, and their performance
can be severely compromised by camera malfunctions or poor image quality during fire
events [9]. In addition, some studies have also used algorithms such as artificial neural
networks for fire recognition based on environment-specific physical parameters like room
temperature, thus avoiding the limitations of image quality. For instance, Wu et al. [10]
succeeded in pinpointing tunnel fire location, fire severity levels, and ventilation wind
speed with a precision of 90% by implementing Long Short-Term Memory (LSTM) models
on temperature data.

Real-time prediction of the spatial and temporal development of indoor fires is crucial
for supporting personnel evacuation and rescue operations, as well as enabling intelligent
firefighting. So far, few studies have used sensor data to predict the key situation of indoor
fires based on AI. Su et al. [11] developed an artificial intelligence model that can accurately
predict smoke visibility profiles and available safety egress time for atrium fires. However,
obtaining parameters such as fire size, smoke removal rate, and fire start time for prediction
in real time remains challenging. Furthermore, Wu et al. [12] proposed a combined LSTM
and Transpose Convolution Neural Network (TCNN) model for real-time prediction of the
temperature distribution field in underground tunnels. By inputting sensor temperature
data, the model outputs a predicted temperature field image with approximately 97%
accuracy for temperature fields predicted 60 s ahead of time. While this research has made
significant contributions in predicting temperature distributions, there remains a need for
further advancements in predicting toxic gas concentrations and smoke visibility, which
represent critical aspects of indoor fire scenarios. Moreover, it is important to address the
limitations of existing research inference models. These models typically output grayscale
or color images, which are subsequently inversely normalized to obtain corresponding
temperature values based on pixel values. It is worth noting that grayscale images exhibit
lower prediction quality, while color images offer higher-quality predictions but at the cost
of longer model training times. Therefore, there is a clear demand for more reliable AI
models capable of rapidly and swiftly predicting multiple fire-related parameters.

This paper focuses on the value of AI-enabled data-driven models in predicting critical
indoor fire characteristics, including the spatial distribution of temperature, CO concen-
tration, and smoke visibility, based on which optimal sensor layouts can be derived for
practical applications. More specifically, a comprehensive numerical simulation database is
firstly developed to simulate indoor fire scenarios with various fire locations and severity
levels. Deep learning models are then trained to accurately predict the temperature dis-
tribution, CO concentration distribution, and smoke visibility distribution. The resulting
model accuracies are used to evaluate the performance of different sensor layouts, aim-
ing to ensure the cost-effectiveness of fire monitoring systems. Additionally, the study
investigates the influence of different prediction horizons on the effectiveness of predic-
tions. In discussing our findings, we also thoroughly discuss the limitations of this study,
which include factors such as the scope of the fire scenarios, data availability, and model
generalization and interpretability.

2. Research Methodology
2.1. Research Outline

Figure 1 shows the research outline. First, numerical simulations based on CFD tools
are conducted to generate fire scenario databases with different fire locations and severity
levels. Secondly, data preprocessing is performed to transform the original simulation
data into suitable formats for predictive modeling. Thirdly, data experiments are designed
to investigate the prediction performance of AI models considering different sensor data
availabilities and prediction horizons. Comparative studies are then performed to derive
suggestions on cost-effective solutions for smart fire prediction.
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tations that facilitate AI-based fire predictions using the simulation data [13,14]. The Com-
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Simulation (FDS) software developed by the National Institute of Standards and Technol-
ogy (NIST) [15]. The outstanding feature of PyroSim is its provision of a 3D graphical pre-
processing function, freeing users from the tedious and complex command line, enabling 
the rapid and precise setup of intricate fire models, and invoking FDS for simulation cal-
culation. As a professional fire dynamics software, this tool can calculate and output nu-
merous fire-related results, compute the relevant data of all grids at each time step, and 
offer abundant post-processing functions to preserve the calculated results. Previous stud-
ies have demonstrated the validity and reliability of CFD fire simulation data, making 
PyroSim a favored tool for fire simulation research [16–18]. In our previous study, we 
conducted numerical simulations and corresponding fire experiments in an experimental 
utility tunnel located in Yichang, Hubei. These experiments were conducted under differ-
ent fire conditions. The validation results showed an agreement coefficient of about 75% 
between the two datasets. Considering these factors, such as wind speed instability and 
manual reading errors during the experiments, we can consider the fire data obtained 
from CFD numerical simulations to be accurate and valid.  
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2.2. Basics on Numerical Simulation Models

Given the difficulty of conducting real fire experiments in situ, numerical simula-
tion techniques are employed in this study to construct physical models and execute
computations that facilitate AI-based fire predictions using the simulation data [13,14].
The Computational Fluid Dynamics (CFD) models are established using PyroSim, a Fire
Dynamics Simulation (FDS) software developed by the National Institute of Standards
and Technology (NIST) [15]. The outstanding feature of PyroSim is its provision of a 3D
graphical pre-processing function, freeing users from the tedious and complex command
line, enabling the rapid and precise setup of intricate fire models, and invoking FDS for
simulation calculation. As a professional fire dynamics software, this tool can calculate
and output numerous fire-related results, compute the relevant data of all grids at each
time step, and offer abundant post-processing functions to preserve the calculated results.
Previous studies have demonstrated the validity and reliability of CFD fire simulation
data, making PyroSim a favored tool for fire simulation research [16–18]. In our previous
study, we conducted numerical simulations and corresponding fire experiments in an
experimental utility tunnel located in Yichang, Hubei. These experiments were conducted
under different fire conditions. The validation results showed an agreement coefficient
of about 75% between the two datasets. Considering these factors, such as wind speed
instability and manual reading errors during the experiments, we can consider the fire data
obtained from CFD numerical simulations to be accurate and valid.

2.3. Basics on Deep Learning Algorithms

The study utilizes deep learning algorithms such as LSTM, Convolutional Neural
Network (CNN), and TCNN for analysis. This section briefly describes the algorithmic
foundation of the model.

2.3.1. Long Short-Term Memory

Recurrent Neural Networks (RNNs) are a type of neural network that excels at pro-
cessing sequential data. LSTM is a special type of RNN which can better capture long-term
correlations in time-series data and overcomes challenges such as the diminishing and
explosion of gradients during model training [19,20].

LSTM is a type of Recurrent Neural Network introduced by Hochreiter and Schmidhu-
ber in 1997 [21]. It consists of three types of gates, namely forgetting gates, input gates, and
output gates, along with cell states that determine whether to block or pass data and how
to process it. LSTM has the ability to capture non-linear and non-stationary time-series
information and is particularly well-suited to processing long time-series data with large
datasets. This is due to its ability to extract essential information from historical data,
selectively remembering important information and forgetting irrelevant information. As
a result, it is an effective tool for predicting events with long intervals and lags in time
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series [22]. In this study, a single LSTM layer is used to extract features from time-series
temperature data.

2.3.2. Convolution Neural Network and Transpose Convolution Neural Network

CNN is a type of feedforward neural network with artificial neurons that can respond
to part of the surrounding units’ coverage. Due to their proficiency in extracting superior
features from images by executing convolution, pooling, and full connectivity operations,
CNN is extensively applied in image processing. This is attributed to their structural
characteristics of local connectivity, weighting, and downsampling [23,24]. Recently, a
novel neural network model termed TCNN has been introduced as a variant of CNN
typically employed for upsampling to increase the input’s height and width and enhance
the image resolution [25]. In this study, a 1-layer TCNN is utilized to enlarge the predicted
array of fire situation distribution and a 1-layer CNN is used to extract array spatial features,
thereby improving fire prediction accuracy.

The AI model employed in this study combines LSTM and CNN algorithms to process
sequential temperature data and generate heat maps of temperature, CO, and visibility.
The LSTM algorithm captures long-term dependencies in temperature data, while the
CNN algorithm extracts spatial features from the heat maps. The amalgamation of these
two algorithms enables the model to effectively predict critical fire dynamics and provide
essential information for intelligent firefighting decision making.

3. Case Study
3.1. Development of Simulation Models

This section details a fire simulation study conducted in a computer room of a univer-
sity building information modelling (BIM) laboratory. The simulation model, depicted in
Figure 2a, was developed using PyroSim with FDS version 6.7.9, while Figure 2b shows an
actual image of the equipment room. Smoke and heat transport of a fire is simulated using
a one-step, mixing-controlled combustion model. For easier analysis and comparison, some
aspects of the physical structure of the model were simplified. The total volume of the sim-
ulated space was 1280 m3, with a single computational grid size of 0.4 m × 0.4 m × 0.4 m.
The wall material is set as concrete. The door has a thickness of 0.2 m, and is kept in the
‘open’ state, while the window is in the natural ventilation state to allow the transfer of air,
heat, and smoke. The ambient temperature was set at 20 ◦C, and there were no mechanical
smoke extraction systems or sprinkler systems. Eighty temperature sensors were evenly
distributed throughout the room’s ceiling at 2 m intervals to monitor temperature distri-
bution. Considering that there are many types of combustible materials in the laboratory,
the fire source in the model is set as a 1 m × 1 m polyurethane burner with a constant
heat release rate, and the specific parameter values are kept as the values recommended
by FDS. The data acquisition frequency is 1 Hz, i.e., one acquisition per second. The total
burning time of each simulation is 300 s. At a horizontal height of 1.6 m, corresponding
to the characteristic height of the human eye, the slices of temperature distribution, CO
concentration distribution, and smoke visibility distribution were recorded. The size of the
array of slices was 21 × 101.
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The database of simulated cases considered two main variables: the location of the
fire source and the fire severity levels. The purpose is to analyze and compare the fire
development characteristics and critical fire development distribution at different fire
source locations.

(1) Fire location: A spatial rectangular coordinate system was established, with the room’s
lower left corner as the origin, for studying fire behavior in the computer room. As
shown in Figure 3, twenty fire locations were placed separately in the room at a
uniform distance of 4 m.

(2) Fire severity levels: The Heat Release Rate (HRR) is a critical parameter that charac-
terizes the severity levels of a fire. The maximum fire heat release rates corresponding
to the different building types are listed in Table 1. Considering the worst case, the
maximum heat release rate at steady state in the event of a fire in the laboratory is
10 MW. In order to cover all possible HRR values as much as possible, 12 sets of HRR
values uniformly distributed within 10 MW were selected for the study to construct
the model dataset. Specifically, HRR values of 0.5, 1, 2, 3.3, 4, 5, 6, 6.7, 7, 8, 9, and
10 MW were set for each of the 20 fire points, resulting in a training dataset consisting
of 240 (=20 × 12) scenarios. This approach ensures that the training dataset covers
a wide range of fire severity levels and facilitates accurate prediction of fires in the
target environment.

Table 1. Maximum heat release rate of different building types.

Building Types Install Sprinklers Maximum Heat Release Rate (MW)

Offices, classrooms, guest rooms, walkways Yes 6.0
No 1.5

Stores, exhibition halls
Yes 10.0
No 3.0

Other public places Yes 8.0
No 2.5
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Figure 3. Distribution map of all fire locations in the training set.

Moreover, 60 randomly generated test scenarios were constructed by randomly gener-
ating 60 fire location coordinates and 60 heat release rate values within the room coordinate
system and a range of heat release rates from 0 to 10 MW. These test scenarios were used to
evaluate the fire prediction model.

The training and test databases consist of a total of 300 cases, with each case simulating
300 s of combustion at 1 s intervals. The output includes temporal temperature data tables
for 80 temperature sensors and three slice profiles sets representing temperature, CO, and
visibility distributions per second. Each slice of data is distributed with 21 × 101 grids of
temperature values, CO concentration values, or visibility values. An example of a single
scene from the output is shown in Figure 4.
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3.2. Data Preparation for Deep Learning Models

To meet the requirements of the model construction, sliding window processing was
used to intercept sequence segments from the time-series data in the sensor data tables.
The window size was set to 30, and the sliding step was set to 1, resulting in a time length
of 30 s for each sample, with samples taken at 1 s intervals. Thus, the first three samples
consisted of data from 1 to 30 s, 2 to 31 s, and 3 to 32 s, respectively, resulting in 212 such
data samples per data table as the input. In total, this method generated 50,880 training
samples (240 training scenarios × 212 data samples). To ensure independence of the test
dataset, it was processed separately following the same approach as the training dataset,
resulting in a total of 12,720 test samples (60 test scenarios × 212 data samples). The training
dataset was then randomly divided into 38,160 data samples for model training, with the
remaining 12,720 samples used for model validation. The test dataset was used to evaluate
the accuracy of the deep learning agent model in predicting the fire field. Overall, the
proportions of the training, validation, and test datasets were 60%, 20%, and 20% of the
total dataset, respectively, as shown in Figure 5a.
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Three critical fire characteristics were extracted and stored in the form of arrays using
the third-party Python package fdsreader. Three characteristics sets of 300 s slice arrays for
each scenario were combined every second to generate the label data for the deep learning
agent model. For example, the temperature distribution array (shape 21 × 101), the CO
concentration distribution array (shape 21 × 101), and the smoke visibility distribution
array (shape 21 × 101) at the 90th second were superimposed and combined to form the
label data (shape 3 × 21 × 101) for the 1–30 s temperature time-series data, as shown in
Figure 5b. Figure 5b shows the heat map obtained from the array.
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3.3. Development of Deep Learning Models

The architecture of the AI model network is constructed by employing the PyTorch
framework from Python. The fire prediction model takes sensor temperature data with a
shape of 30 × 80 (30 s × 80 sensors) as input. The input data are passed through an LSTM
layer to extract timing data features, which are then expanded using a fully connected
layer. The expanded features are then reshaped and passed through a TCNN layer and a
CNN layer. The model outputs a situation distribution array with a shape of 3 × 21 × 101
(i.e., temperature distribution array, CO concentration distribution array, and visibility
distribution array), which is mapped into heat maps. The primary structure of the model is
depicted in Figure 6.
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The model’s performance is significantly influenced by its hyperparameters. This
study adopts random weight initialization and the Adam optimization algorithm, with
the learning rate set at 0.0001. To avoid overfitting, an EarlyStopping strategy is utilized,
whereby the model’s training ceases when no reduction is observed in the loss of the
validation dataset across 20 continuous epochs.

Random weight initialization is a common practice in deep learning to prevent the
model from getting stuck in a local minimum during training by initializing the weights
with random values. The Adam optimization algorithm, a popular optimization methodol-
ogy, is highly compatible for deep neural network training. It amalgamates the benefits
of both AdaGrad and RMSProp algorithms, adjusting the learning rate for each weight
parameter individually, based on the gradients’ first and second moments. The learning
rate of 0.0001, a smaller learning rate, helps to prevent the model from taking large steps
during gradient descent and potentially overshooting the minimum of the loss function.
The EarlyStopping strategy is an approach utilized to avert overfitting of the model to
training data. Overfitting occurs when the model becomes too complex and learns the
training data extremely well, but is unable to generalize to new data that have not been seen.
The early stop strategy stops the model training process if the validation set performance
fails to improve after a specific number of epochs. This strategy helps to prevent the model
from continuously learning the noise in the training data, thereby improving its ability to
generalize to new data.

3.4. Performance Evaluation Metrics

Loss functions and model evaluation metrics are crucial components of machine
learning models, serving as the model’s accuracy and performance indicators.
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The loss function quantifies the error degree between the predicted and actual values
in a regression model. Of the available loss functions, the Mean Squared Error (MSE) is a
commonly used measure that calculates the squared errors’ average between the predicted
and actual values, considering the prediction error’s variance. Compared to other loss
functions, such as Mean Absolute Error (MAE), MSE is more sensitive to deviations between
predicted and actual values, thus better guiding the model towards optimal performance.
Consequently, MSE is employed as the loss function in this study.

The coefficient of determination, or R2, is a widely utilized model evaluation metric
in regression analysis. R2 assesses the extent to which a regression model’s dependent
variable’s variability can be explained by the independent variables. Its values range
between 0 and 1, with a value closer to 1 denoting better predictive model performance.
Compared to other evaluation metrics, such as Root Mean Squared Error and MAE, R2

offers a more intuitive evaluation result and facilitates a better understanding of the model’s
predictive power. Moreover, R2 is highly interpretable and can provide insights into the
influence of independent variables on the dependent variable, thereby improving the
understanding of the data and the model. Thus, R2 is selected as the model evaluation
index in this paper.

The experimental results show that the R2 of the predicted temperature distribution,
CO distribution, and visibility distribution is about 89.1%, 75.6%, and 84.2%. The overall
R2 is 82.9%. These results indicate that the model is efficient in predicting all three critical
fire evolutions.

4. Results and Discussion

In Section 4.1, we investigate the predictive performance of AI models by considering
different numbers of sensors and variations in sensor placement. The goal is to determine
the most cost-effective sensor number and arrangement that can be applied in real-world
scenarios, reducing hardware and software investment while maintaining prediction ac-
curacy. Additionally, we examine the predictive effect of different prediction horizons to
ensure reliable predictions. In Sections 4.2–4.4, we select two representative scenarios from
60 test scenarios, called case A and case B. We analyze the predictions of temperature, CO
concentration, and visibility fields using AI models under optimal sensor placement. In
case A, the ignition source possesses a heat release rate of 2.8 MW, while in case B, it has a
heat release rate of 7.4 MW. The location of the fire source also differs between the two cases.
These scenarios allow us to visually evaluate the performance of AI models in predicting
fire under different conditions.

4.1. Sensor Layout Optimization

Figure 7 shows the model prediction accuracy for different sensor numbers and differ-
ent locations in the spatial domain. The horizontal axis represents the distance between
adjacent sensors on the x-axis, and the vertical axis represents the distance between adjacent
sensors on the y-axis. The central value in each box in the figure represents the prediction
accuracy, while the red number in the red box in each box denotes the corresponding
sensor count. The experiment takes these two values into account to determine the best
arrangement of sensor points and the corresponding number.

The coefficient of variation (CV) is calculated by dividing the standard deviation
of a dataset by its mean and is used to compare the dispersion of multiple datasets. In
general, higher CV values indicate greater dispersion, which makes model prediction more
challenging. In this study, the CV values for temperature, CO, and visibility were 0.74,
0.93, and 0.78, respectively. CO distribution was the most difficult to predict, followed by
visibility and temperature. These results correspond with the observed trends in Figure 7.
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As can be seen from Figure 7, when more than four sensors are arranged, the overall
prediction accuracy can be basically maintained at or above 80%. In addition, when the
number of sensors is fixed, the greater the distance between adjacent sensors (especially
the x-axis), the more accurate the prediction becomes. This may be due to the fact that
the temperature data recorded by sensors with greater distances have greater differences
and more obvious features, which are more conducive to model prediction. Balancing
prediction accuracy and number of sensors, the optimized sensor layout is as follows.
Four sensors are placed along the central axis of space, with two columns spaced 36 m apart
along the x-axis and two rows spaced 6 m apart along the y-axis. This optimized layout
results in an accuracy of 91% in terms of R2 for predicting the distribution of temperature
distribution, 72% accuracy for predicting CO distribution, and 83% accuracy for predicting
visibility distribution. The overall predicted accuracy is approximately 82%. The specific
arrangement of measurement points is shown in Figure 8. Figure 9 compares the prediction
effect of the AI model with four sensors and eighty sensors. Despite a 20-fold difference
in the number of sensors between the two arrangements, both accurately predict the
evolution of the fire situation. With the four-sensor arrangement, there may be occasional
slight deviations in predicting the fire source point at certain moments. However, the
model quickly corrects this error with the input of more time-series data. As expected, the
80-sensor arrangement captures more details of eddies and turbulence due to the larger
number of sensors.
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Based on the optimal arrangement, the prediction effect of different prediction horizons
(10 s to 120 s) was further explored. The results show that the influence of prediction
horizons on prediction effect is not obvious. This might be due to the relatively stable state
of simulated indoor fire situation development over an extended period. Therefore, the
influence of prediction horizons on prediction effect is not obvious, as shown in Figure 10.
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Sections 4.2–4.4 compare the prediction effect of temperature distribution, CO
distribution, and visibility distribution for 30 s, 60 s, 90 s, and 120 s based on the
optimal arrangement.

4.2. Prediction Performance on Spatial Temperature Distributions

This section quantifies the quality of the forecast and the difference between the
forecasted and true temperature distributions. Figure 11 shows the model predicted
temperature distribution of the 200th and 300th seconds for different prediction horizons
and the actual temperature distribution of the simulated data in case A and case B. For
visual understanding of the predictions, the temperature array is presented in the form of a
heat map. Each colored block corresponds to a numerical value; lower values are shown in
blue hues, suggesting cooler temperatures, while higher values are depicted in red hues,
indicating warmer temperatures. It is important to note that severe skin burns can occur
within one minute in an environment with a temperature of 175 ◦C [26]. It is assumed that
a temperature up to 200 ◦C is considered safe when firefighters are wearing protective suits.
Deep red consistently represents temperatures exceeding 200 ◦C.

The proposed AI model is effective in predicting the hot areas close to the fire source
and the cold areas further away. By counting all the predicted results in a single case,
it is concluded that in case A, the average temperature differences after prediction steps
of 30 s, 60 s, 90 s, and 120 s are about −12.30 ◦C, −12.28 ◦C, −12.30 ◦C, and −12.68 ◦C,
and the standard deviations are about 31.06 ◦C, 32.81 ◦C, 31.52 ◦C, and 31.98 ◦C. In case
B, the average temperature differences after prediction steps of 30 s, 60 s, 90 s, and 120 s
are about −12.82 ◦C, −13.12 ◦C, −15.95 ◦C, and −11.91 ◦C, and the standard deviations
are about 65.35 ◦C, 64.04 ◦C, 62.45 ◦C, and 67.13 ◦C. As can be seen from the line chart
in Figure 11, the accuracy rate is relatively stable with the enlargement of the prediction
horizon, showing no increasing or decreasing trend.

However, the model appears to be biased in its ability to predict the precise location
of the fire source. As can be seen from the figure, there are deviations in the prediction
of the high-temperature region of the temperature field. This is attributable to the fire
source locations in the test set being randomly generated, in contrast to the fixed 20 fire
source locations used during model training. Models tend to bias towards known data
when encountering unknown data, which explains the observed deviation in the model’s
prediction of the fire source’s high-temperature region. Expanding the training set is
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expected to improve the model’s performance in handling such scenarios. At the same
time, the position of the high-temperature fire source shown by the forecast results is not
fixed, because the plume will sway and tilt under the influence of local airflow [27], so
there will be obvious deviations. In practice, the model’s prediction of the ignition source
is usually off by no more than 3 m, usually within the acceptable range. As stated earlier,
AI models struggle to predict complex fire behavior such as convection and turbulence.
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4.3. Prediction Performance on Spatial CO Distributions

Figure 12 shows the CO concentration distribution predicted by the model at the 200th
and 300th seconds, considering different prediction horizons. It also shows the actual dis-
tribution of the simulated data, visualizing the discrepancy between the model predictions
and the actual data in both scenarios. Arrays in the shape of 21 × 101 are represented as
heat maps, with each color block representing a numerical value. Purple colors represent
lower CO concentrations, while yellow indicates higher concentrations. The risk threshold
for human life concerning CO is generally set at 500 ppm, with concentrations exceeding
500 ppm consistently shown in yellow.
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The proposed artificial intelligence model demonstrates effective prediction of CO
concentration distribution in fire scenarios. Specifically, in case A, the average CO concen-
tration difference after 30 s, 60 s, 90 s, and 120 s between the predicted and simulated values
is approximately −39.54 ppm, −37.32 ppm, −39.15 ppm, and −39.11 ppm, with a standard
deviation of about 78.17 ppm, 80.37 ppm, 79.24 ppm, and 81.88 ppm, respectively. In case
B, the average CO concentration difference after 30 s, 60 s, 90 s, and 120 s is approximately
−47.63 ppm, −44.01 ppm, −54.02 ppm, and −47.37 ppm, with a standard deviation of
about 182.80 ppm, 182.16 ppm, 181.83 ppm, and 185.33 ppm, respectively. These findings
demonstrate that the model does a relatively good job of forecasting the distribution of
CO concentrations and accurately predicting the overall trend. Similarly, the line chart in
Figure 12 indicates the relatively stable accuracy rate with the enlargement in the prediction
horizon, showing no ascending or descending trend.

However, the model exhibits a bias in predicting high CO concentrations near the
fire source. This is due to the randomness of the test set and the instability of the flame.
Furthermore, the model’s performance in predicting complex convection and turbulent
flow behaviors is not optimal. These factors influence the model’s ability to predict high-
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CO-concentration areas. Further research is needed to enhance the model or to introduce
expert knowledge to strengthen the predictive ability for complex fire scenarios.

4.4. Prediction Performance on Spatial Visibility Distributions

Figure 13 illustrates the predictive performance of the model for smoke visibility
distribution at the 200th and 300th seconds across various prediction horizons, along with
the corresponding differences. The model predictions are compared with the reality of the
simulated data for different fire source locations and randomly generated heat release rates.
The heat maps comprise 21 × 101 arrays, with each color block representing a numerical
value. Deep blue represents lower visibility values, while yellow represents higher visibility
values. Visibility is a critical factor for safe evacuation, and the visibility threshold for
smaller spaces, such as an office building, should not be less than 5 m. In the heat maps,
visibility values below 5 m are shown in deep blue.
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The experimental results show that the proposed AI model is effective in predicting
the distribution of visibility in fire scenarios. Specifically, in case A, the mean difference
between the predicted and simulated values of visibility is approximately −0.35 m, 0.69 m,
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1.92 m, and −3.07 m, with a standard deviation of approximately 6.91 m, 6.12 m, 5.03 m,
and 5.24 m. In case B, the mean difference in visibility is approximately −1.50 m, −0.37 m,
−0.46 m, and 0.09 m, with a standard deviation of approximately 4.56 m, 3.68 m, 3.64 m,
and 3.48 m. These results suggest that the model is capable of accurately predicting overall
trends and performs well in predicting visibility distributions. Similarly, it can be seen from
the chart in Figure 13 that the accuracy rate is relatively stable with the expanding of the
prediction horizons, without displaying an increasing or decreasing trend.

The model’s prediction of visibility is slightly more accurate than its prediction of
temperature and CO concentration distributions, and still provides essential information for
fire safety analysis. Nevertheless, the model predictions may contain some errors, which are
generally within acceptable limits and do not significantly affect the overall prediction. The
sophisticated nature of convection and turbulent behavior is difficult for the AI model to
learn. In order to improve the predictive ability of the model, it is recommended to improve
its training on more cases and to collect more training data to improve the adaptability and
generalization of the model. In addition, the predictive performance of the model can be
improved by incorporating more refined physical models and advanced algorithms.

5. Conclusions

This study proposes a deep learning model for predicting indoor fires in advance
and established an optimization method for the layout of fire sensor systems based on
a deep learning agent model. The goal is to predict the distribution of temperature, CO
concentration, and smoke visibility in advance using an optimized sensor system layout,
providing support for intelligent fire decision making.

To validate the approach, the researchers built a database of 300 indoor fire scenarios
based on a lab, which varied in fire location and heat release rate. A fused neural network
model incorporating LSTM, TCNN, and CNN was developed to output arrays of tempera-
ture, CO concentration, and smoke visibility distribution based on input temperature series
data from temperature sensors. By varying the input information of the AI model, the
impact of different spatial layouts of sensors and different prediction horizons on the fire
situation prediction is investigated.

The major findings are as follows.

• The number and arrangement of sensors significantly influence the prediction accuracy.
The optimization results suggest that if four sensors are evenly spaced around the
room, with an x-interval of 36 m and a y-interval of 6 m, the overall prediction accuracy
will be greater than 80%. The optimized sensor system layout can significantly reduce
the number of sensor layouts while maintaining effective prediction, consequently
reducing the total cost of equipment investment.

• The prediction horizon has no significant effect on the prediction accuracy. This may
be because the indoor fire development simulated in this study is relatively stable, and
the prediction effect under different prediction horizons is basically the same.

Despite some biases, the model demonstrates satisfactory accuracy in predicting major
fire developments, providing valuable information about the fire scene. However, the
model’s ability to predict fire turbulence and convection behavior is limited, potentially
due to a lack of expert input.

Beyond the particular scenario discussed above, the research methodology outlined in
this paper can be applied to various scenarios to achieve an improved sensor layout. In
such cases, we would recommend re-evaluating the sensor distribution through protocols
proposed in this study. The study underscores the potential of AI models for practical
applications to predict the evolution of critical indoor fires, significantly contributing to
our ability to monitor and predict such fires. Furthermore, the application of AI models
in firefighting decisions promises to reduce the threat of fire to human life and property
substantially, such as in combination with path planning to plan escape and rescue routes
in advance.
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6. Limitations and Future Research

The limitations of the study and potential directions for future research are as follows.

1. Scope of fire scenarios: The study focuses on basic fire scenarios, but fire scenarios in
practice are more complex, as they include factors such as hidden spaces and attics.
The model’s ability to generalize to more complex scenarios is limited. Future research
should aim to train AI models on a wider range of fire scenarios to enhance their
applicability and generalization.

2. Lack of experimental data: The study relied on CFD simulations instead of real
experimental data for model validation. While CFD simulations are valuable for
understanding various aspects of indoor fire scenarios, they may not fully capture
the complexity of certain factors, such as CO generation during combustion. CO
generation is known to be sensitive to factors like fuel type and combustion conditions,
which can vary widely in real-world fire incidents. Incorporating a broader range of
experimental data, particularly data related to CO generation, would improve the
accuracy and generalizability of the deep learning model. Future research should
strive to obtain measured data (e.g., fire field slice data) from real fire incidents for
validation purposes.

3. Collaborative data collection: Collaborating with researchers, firefighters, and stake-
holders is essential for gathering diverse and comprehensive real-world fire incident
data. By involving domain experts and incorporating their input, future models
can better address the challenges and complexities of firefighting, leading to more
accurate predictions.

4. Model interpretability: Deep learning models are often seen as black boxes, hindering
the interpretation of underlying decision-making processes. In critical domains like
firefighting, understanding the rationale behind predictions is crucial. Future research
should explore techniques to enhance interpretability and transparency, enabling
stakeholders to better comprehend and trust the model’s outputs.

In conclusion, the study makes a valuable contribution to the field of fire prediction
using deep learning techniques. However, it is important to acknowledge and address the
limitations associated with scenario representation, data availability, model generalization,
and interpretability. These limitations highlight areas for further research and collaborative
efforts to advance the accuracy, applicability, and transparency of fire modeling and predic-
tion. By addressing these limitations, we can improve the effectiveness of deep learning
models in predicting and managing fire incidents, ultimately enhancing safety and decision
making in firefighting scenarios.
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