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Abstract: Bushfires are classified as catastrophic disasters capable of inflicting significant destruction.
The key detrimental consequences of bushfires include the loss of human lives, trauma within
communities, economic losses and environmental damage. For example, the estimated economic loss
from the September 2019 to March 2020 bushfires in New South Wales (Australia) was about AUD
110 billion, including more than 3000 burned houses. There has been a notable increase in both the
frequency and intensity of bushfires, as clearly demonstrated by recent bushfire events. Bushfires
are an intricate phenomenon that transpires across various spatial and temporal scales. Further,
the changing circumstances of landscapes, vegetation patterns, weather conditions and ecosystems
account for the complexity. Therefore, continual attention is essential for the development of bushfire
management strategies. In this context, this paper undertakes a comprehensive literature review
of bushfire management strategies, encompassing aspects such as bushfire prediction, detection,
suppression and prevention. Based on the review, a bushfire management framework is proposed
that can eliminate or successfully mitigate the consequences of bushfires. Further, the paper delves
into the domains of fire weather conditions, the initiation of bushfires and the adverse consequences
stemming from these fires. Both terrestrial and aerial remote sensing methods have proven to be
effective in predicting and detecting bushfires. Nevertheless, a simple unique solution cannot be
proposed for bushfire management. Changing weather conditions, topography and the geographic
mix of asset types need to be considered when deciding on bushfire management strategies and their
breadth and depth of application.

Keywords: bushfire; prediction; detection; management; economic loss; fire weather

1. Introduction

Bushfire, also known as wildfire, forest fire and unplanned fire, is one of the catas-
trophic disasters caused by natural causes or human activities that occur in most countries
around the world [1]. These events can pose severe destruction to human and animal
lives, infrastructure, biodiversity and the environment [2,3]. Examples of the occurrence
of worldwide fires can be found in different countries such as Australia [4,5], Canada [6],
the United States [7], China [8], South Africa [9], Greece [10], Portugal [11] and Brazil [12].
Among these countries, Australia has been more susceptible to bushfires over the past
decades, considering its topography, vegetation patterns and bushfire-prone weather con-
ditions [13,14]. The most recent severe bushfire events in New South Wales, Australia,
extended from September 2019 to March 2020, resulting in 34 fatalities and an estimated
amount of AUD 110 billion in economic loss, including 3000 burned houses [15,16]. The
highest number of fatalities from a bushfire in Australia was recorded on Saturday 7th,
February 2009 (Black Saturday) in the state of Victoria, in which 173 people lost their lives.
There were extreme weather conditions on this day such as temperatures reaching 46.4 ◦C
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and winds gusting up to 100 km/h, which initiated major fires in 14 geographical regions,
and the total burnt area was more than 350,000 hectares [4,17]. The degree of destruc-
tion caused by bushfires is evident from the long line of events of Australian bushfires
over the centuries, and controlling widespread bushfires become increasingly challenging,
specifically due to the upsurge in bushfire-prone weather conditions [18].

Bushfire management is a crucial aspect that researchers have investigated comprehen-
sively to understand the causes and subsequently to mitigate or minimise the catastrophes
caused by devastating bushfires (e.g., [19–21]). A bushfire management system plays an
essential role in controlling bushfires and associated losses to life and the economy while
preserving the environment and biodiversity. Some of the key steps in a bushfire manage-
ment system are prediction, detection, suppression and prevention of bushfires. Prediction
refers to forecasting or estimating the bushfire occurrences, fire risk and fire behaviour
such as rate of fire spread, intensity, flame length and angle, using climatic, environmental
and geospatial data which change over time [22,23]. This sort of bushfire prediction model
is often complex and computationally expensive since most input data change with time
and space, requiring separate simulations for different geographic extents with different
spatial resolutions [24]. Bushfire risk is most often defined in terms of “fire danger”, and
fire danger is quantified by defining different indices: wind speed, fuel type, fuel moisture
content, relative humidity, air temperature and precipitation. Bushfire prediction can be
from satellite imagery-based remote sensing techniques and scanning-based techniques.
Satellite imagery can be employed as a quick and reliable technique for identifying fuel
characteristics and bushfire susceptibility mapping [25]. However, satellite imagery has
a lower temporal resolution than its excellent spatial resolution, particularly with Earth-
orbiting satellites. Further, it can be challenging to mitigate the impacts of smoke and
identify details in the forest understory when using this method [26]. Satellite imagery and
scanning-based techniques often accompany advanced image processing techniques such
as super-resolution mapping and generative adversarial network schemes (e.g., [27,28]).

Bushfire detection is of paramount importance in a bushfire management system
since it determines the initial attack delay, which is the response time for the bushfire
suppression resources to arrive at the fire ground [29]. Suppose the bushfire detection
techniques are robust enough to detect a bushfire quickly just after initiation. In that case,
there are better chances of the fire being contained before it turns out to be a widespread
fire causing significant damage. Conventional bushfire detection techniques include smoke
detectors, watch towers, satellite images, wireless sensor networks and remotely operated
vehicles [21]. Images from satellites and remotely operated vehicles are analysed to detect
flagging pixels representing the potential of bushfires. On the other hand, smoke sensors
and temperature sensors in wireless sensor networks indicate the generation of smoke and
rise in temperature, which may indicate potential bushfires. In addition to these typical
techniques, using unmanned aerial vehicles for bushfire detection and using artificial in-
telligence for data processing have been extensively investigated as emerging techniques
that possess improved reliability and reduced cost (e.g., [30,31]). Further, the subjectivity
and human error involved with conventional detection techniques can be eliminated via
employing automated data processing algorithms [30]. Furthermore, relying solely on hu-
man observers to monitor vast forested areas is unfeasible. The main drawback of wireless
sensor network-based bushfire detection is the economic burden of installing sensors across
wide forests. Unlike terrestrially deployed systems, satellite imagery can cover very large
areas [32]. However, the operational cost of satellites and the required technical competence
is high compared to other techniques. Moreover, some satellite imagery’s temporal and
spatial resolution is low, which can negatively affect the detection accuracy.

Bushfire suppression is generally carried out by direct techniques where treatment
is directly applied to burning fuel, such as wetting and chemical quenching [33]. Indirect
techniques of bushfire suppression include fuel reduction, contingency fire lines and indi-
rect fire lines. Different aspects of bushfire suppression have been explored by researchers
such as modelling aspects [34], economic aspects [35] and aerial suppression aspects [36].
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The ultimate goals of any bushfire management system are to control fuels and thereby the
fire regimes, increase the infrastructure’s resistance to fires and achieve a quick recovery
after a devastating bushfire event while promoting adaptation [37].

The only possible solution to address the issue of bushfires is to minimise its effects by
making all the potential efforts to achieve the best possible outcomes. In this regard, bushfire
management is of paramount importance. This paper aims to conduct a comprehensive
review of the literature on bushfire management strategies, providing a specific focus
on bushfire detection techniques. Under the topic of bushfire management, this paper
reviews the existing literature on bushfire prediction, detection, suppression and prevention
techniques, highlighting the advantages and disadvantages of different approaches. By
identifying the advantages and limitations of different bushfire management strategies,
this paper motivates further research on this timely topic of bushfire management and
a bushfire management framework is proposed to guide the decision-making process to
control the initiation and spread of bushfires effectively. The paper is structured as follows.
Section 2 provides the methodology for the literature review, highlighting how papers were
selected based on keywords. A comprehensive description of fire weather conditions and
bushfire initiation is provided in Section 3. The adverse effects of bushfires are presented
in Section 4, considering economic, environmental and social aspects. Section 5 discusses
bushfire management strategies, specifically focusing on bushfire detection techniques.
Conclusions are drawn and presented in the final section of the paper.

2. Methodology for Literature Review

A thorough literature review was undertaken, focusing on state-of-the-art techniques
in bushfire detection and management, using peer-reviewed journal articles and other
publications. The Web of Science (WoS) database was utilised for conducting a bibliometric
analysis, and the search string used in this analysis consisted of four keywords such as
“Bushfire”, “Management”,” Prediction” and “Economy”. To explore and identify various
trends and occurrences of keywords within the literature, VOSviewer software (v.1.6.18)
was employed. A total of 2000 journal articles spanning the years 1990 to 2023 were
selected from WoS. Subsequently, a network visualisation diagram illustrating keyword
co-occurrences was generated using VoSviewer, as depicted in Figure 1. Different labels
are employed within this network visualisation diagram, and the size of each label (circle)
corresponds to the frequency of co-occurrences for that item. Larger labels indicate a higher
number of co-occurrences associated with the item. Additionally, the coloration of each item
signifies its membership in distinct clusters. The analysis encompasses a total of 449 items
distributed across eight different clusters, interconnected by a total of 8254 links. Based
on the network visualisation displayed below, prominent keywords within the context
include fire management, climate change, biodiversity, forest conservation, resilience,
prediction and identification. These keywords signify the most extensively studied topics.
Numerous additional keywords are connected to these primary keywords within the
network. Research articles highly relevant to the aforementioned keywords and the scope of
this study were selected from the WOS database and utilised for the comprehensive review.
Additionally, the reference list of each article was screened to identify any potentially
relevant articles that may have been overlooked. Finally, the selected articles were sorted
into categories considering the subsections of this paper, such as fire weather conditions
and bushfire initiation, adverse effects of bushfires and bushfire management strategies.
Fire weather conditions and bushfire initiation are described in Section 3, which consists
of a summary of 21 relevant studies, whereas the adverse effects of bushfires explained in
Section 4 consists of a review of 18 studies. The bushfire management component, which
is in Section 5, provides a comprehensive review of 93 studies. A summary of the papers
highlighting the above information is presented in the following sections.
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3. Fire Weather Conditions and Bushfire Initiation

There is a wide array of causes for bushfire initiation, as illustrated in Figure 2. Some
causes are inevitable natural events like lightning [38,39]. A slight spark in extreme weather
conditions and elevated temperature can initiate a spot fire, which can become a widespread
large-scale bushfire when combined with higher wind speeds. The amount of rainfall
and temperature preceding a bushfire also play a vital role in determining the spread of
fire. Compared to other parts of the world, Australia is more susceptible to fire weather
conditions, being the driest continent on earth [40]. Fire weather is generally expressed
as a combination of relative humidity, wind speed, rainfall and air temperature [41]. A
widely used empirical indicator for quantifying the weather conditions related to extreme
bushfire scenarios and related suppression difficulties was developed in 1960, known as
the MacArthur Forest Fire Danger Index (FFDI) [42]. The FFDI is defined as a function
of air temperature, relative humidity, average wind speed and drought factor, a relative
measure of fuel availability [41]. Elevated fire danger is present under severe drought in hot,
dry, humid, windy conditions. Even though the FFDI can provide a reasonably accurate
estimation of the bushfire danger for a considered region, this indicator does not account
for fuel’s physical texture and dryness [43,44]. The energy released in burning large fuel
elements such as branches is significantly higher when compared to that of fine fuels, which
is not accounted for in the FFDI. Further, the effect of heat waves on the dryness of fuel is
not comprehensively considered in the FFDI [41]. Other than the FFDI, there are several
indices that integrate different meteorological variables into a single indicator that reflects
the fire danger, such as the Canadian Forest Fire Weather Index System (FWI) [45] and the
United States National Fire Danger Rating System (NFDRS) [46]. A common observation
reported around the world is global warming and the rise of mean temperatures ([47]).
For example, the mean temperature in Australia has significantly increased over time, and
some areas have experienced a 1.5–2 ◦C rise in mean temperature since 1960 [48]. It was
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reported that a record-setting heat wave was present a few days before the initiation of
the devastating Black Saturday bushfires in Melbourne, where the city experienced three
consecutive days of maximum temperature exceeding 43 ◦C [44]. In addition, preceding
the Black Saturday bushfires, Melbourne had 35 days with no measurable rain, reported to
be Melbourne’s driest start of the year in more than 150 years [48]. Therefore, it is evident
that fire weather conditions play a vital role in bushfire initiation and spread.
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Accidental ignition is another key factor for bushfire initiation [49]. Human errors and
accidental ignitions are reported in the cases of unattended campfires, burning of debris and
improperly discarded cigarettes [50]. Further, there is a risk arising from faulty agricultural
machinery generating sparks leading to spot fires [51]. Another form of accidental ignition
is controlled burning, which turns into unmanageable fires due to negligence or extreme
fire weather conditions [52]. Even though controlled burning is a common agricultural
practice that has evolved for centuries, it carries the inevitable risk of bushfire initiation [53].
In addition to accidental ignitions, power distribution system faults can be a root cause of
fire initiation. Power distribution system faults can be broadly categorised into vegetation
related faults, electrical apparatus failures, power distribution infrastructure failures and
conductor failures [50]. In dry, hot, humid and windy conditions, sparks generated from
a power distribution fault can ignite the biomass, initiating a fire. It is vital to monitor
the structural health of power distribution systems to avoid potential faults, and power
distribution infrastructure reaching the end of service life needs to be replaced [54–57]. A
detailed investigation into the causes of the Black Saturday bushfires in Australia revealed
that a power line brought down by high winds generated sparks that initiated the fire
in the Kilmore East region, where 121 people were killed and approximately 100,000 ha
burned in less than 12 h [2]. Deliberate acts of arson are also found to be a major cause
for bushfire initiation identified by the fire agencies attending the bushfires [58,59]. The
size, spread and duration of a bushfire initiated due to any of the aforementioned causes
are determined by the fire weather conditions, which can result in large-scale, widespread,
uncontrollable bushfires.

4. Adverse Effects of Bushfires

There are numerous adverse effects of bushfires, among which fatalities, injuries
and trauma on bushfire-susceptible communities can be considered as the worst social
outcomes [3,60]. The actual cause of death during a bushfire has been explored, and the
main causes are identified as burnings from flames and heat, smoke inhalation, heart attack,
over-exertion and falling tree limbs [3]. Human behaviour and decision-making during an
event of bushfire determine survival, while bushfire awareness dominates the capacity to
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respond. Late evacuations, defending properties from bushfires, returning into burning
buildings to rescue people and waiting to be rescued most often increase the number of
fatalities [3]. Figure 3 illustrates a summary of the effects of bushfires, and these are broadly
categorised into three groups such as economic, environmental and social.

Fire 2023, 6, x FOR PEER REVIEW 6 of 32 
 

 

4. Adverse Effects of Bushfires 
There are numerous adverse effects of bushfires, among which fatalities, injuries and 

trauma on bushfire-susceptible communities can be considered as the worst social 
outcomes [3,60]. The actual cause of death during a bushfire has been explored, and the 
main causes are identified as burnings from flames and heat, smoke inhalation, heart 
attack, over-exertion and falling tree limbs [3]. Human behaviour and decision-making 
during an event of bushfire determine survival, while bushfire awareness dominates the 
capacity to respond. Late evacuations, defending properties from bushfires, returning into 
burning buildings to rescue people and waiting to be rescued most often increase the 
number of fatalities [3]. Figure 3 illustrates a summary of the effects of bushfires, and these 
are broadly categorised into three groups such as economic, environmental and social. 

 
Figure 3. Effects of bushfire. 

The economic effects of bushfires can be subdivided into cost in anticipation, cost as 
a consequence and cost in response [18]. Cost in anticipation refers to the cost of fire safety 
measures, fire safety education and training, maintenance of fire safety equipment and 
fire research. Cost as a consequence is from the property losses, cost of injury due to fire 
and loss of businesses such as tourism and farming. Fire service response costs and justice 
costs can be categorised as costs incurred in response [50]. Detailed investigations about 
the causes and effects of bushfires have estimated the economic loss of large-scale bushfire 
events. The estimated economic loss of the September 2019 to March 2020 bushfires in 
New South Wales (Australia) was about AUD 110 billion, that of the June 2017 bushfire 
in Pedrogao Grande (Portugal) was about EUR 500 million, and that of the 1939 January 
bushfires in Victoria and New South Wales (Australia) was about AUD 750 million 
[2,17,61]. A comprehensive summary of the economic losses and fatalities caused by major 
events of wildfires can be found in the authors’ previous work [50]. These numbers 
represent the implications of widespread, large-scale bushfires on the economy of a 
country. 

Fire regime (fire spread pattern, intensity, severity and frequency) and the smoke 
generated from bushfires can have significant effects on the environment [62]. Figure 4 
illustrates some of the adverse effects of bushfires. Air pollution caused by smoke and 
hazardous gas emissions affects the global atmospheric composition while having adverse 
effects on human and animal health [63,64]. Respiratory morbidity is often associated with 
bushfire smoke, whereas the particulate matter in smoke has the potential to trigger acute 
coronary events such as heart attacks [65]. In addition, an increase in the concentration of 

Figure 3. Effects of bushfire.

The economic effects of bushfires can be subdivided into cost in anticipation, cost as a
consequence and cost in response [18]. Cost in anticipation refers to the cost of fire safety
measures, fire safety education and training, maintenance of fire safety equipment and
fire research. Cost as a consequence is from the property losses, cost of injury due to fire
and loss of businesses such as tourism and farming. Fire service response costs and justice
costs can be categorised as costs incurred in response [50]. Detailed investigations about
the causes and effects of bushfires have estimated the economic loss of large-scale bushfire
events. The estimated economic loss of the September 2019 to March 2020 bushfires in
New South Wales (Australia) was about AUD 110 billion, that of the June 2017 bushfire
in Pedrogao Grande (Portugal) was about EUR 500 million, and that of the 1939 January
bushfires in Victoria and New South Wales (Australia) was about AUD 750 million [2,17,61].
A comprehensive summary of the economic losses and fatalities caused by major events of
wildfires can be found in the authors’ previous work [50]. These numbers represent the
implications of widespread, large-scale bushfires on the economy of a country.

Fire regime (fire spread pattern, intensity, severity and frequency) and the smoke
generated from bushfires can have significant effects on the environment [62]. Figure 4
illustrates some of the adverse effects of bushfires. Air pollution caused by smoke and
hazardous gas emissions affects the global atmospheric composition while having adverse
effects on human and animal health [63,64]. Respiratory morbidity is often associated with
bushfire smoke, whereas the particulate matter in smoke has the potential to trigger acute
coronary events such as heart attacks [65]. In addition, an increase in the concentration of
carbon dioxide due to the emissions from bushfires can affect the atmospheric composition
while increasing global warming [65]. Along with air pollution, bushfires impact the
water and soil quality, affecting animals and vegetation. Further, the remaining ash from
bushfires gets washed away into water streams, resulting in water pollution affecting
riverine biodiversity, and the remaining ash is a main source of environmental pollution [66].
There is an enormous effect of wildfires on ecology and terrestrial biodiversity, which can
even result in the ultimate adverse effect of the extinction of species [67,68]. Detecting the
effects of wildfires on animal species and plants is difficult. However, this is more often
measured in terms of burned area, and the 2019–2020 Australian bushfire season burned
more than 7 million hectares while affecting an estimated 3 billion animals [67]. Therefore,
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considering environmental and socio-economic aspects, bushfires pose a severe threat, and
bushfire management remains challenging.
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5. Bushfire Management

The changing temporal and spatial circumstances of bushfires create complexities in
adopting bushfire management strategies [70]. Conducting a spatiotemporal analysis of
the fire regime is essential to understand the changing bushfire patterns and to develop
robust bushfire management strategies (e.g., [71]). Bushfire management plans facilitate
predicting and controlling fire regimes while assisting short-term recovery. Long-term
aspects of bushfire management focus on promoting the adaptation of societies while
enhancing the preparedness for large-scale bushfire events [37]. Another crucial aspect of
bushfire management is to make assets more resistant to fire events. In addition, assets
can be relocated away from bushfire susceptible locations wherever possible. Building
elements such as cladding and vulnerable timber roofs can be made resistant to fires by
opting for nonflammable alternate materials [72]. Different stakeholders’ involvement in
policymaking and public awareness is another crucial aspect of bushfire management. For
example, the leave-early policy in Australia is well defined for people who are in the fire
path [73]. Public awareness about the best practices in the event of a fire is essential for
better outcomes. Further, bushfire-susceptible communities should be made aware of their
capacity to cope with fire when it arrives. Forest fire management information systems
are widely employed around the world for effective bushfire management, minimising
the potential consequences. For example, in Canada, there are four main national forest
fire management information systems, namely the Canadian Forest Fire Danger Rating
System, Spatial Fire Management System, Canada’s National Forest Fire Management
Information System and the Fire Monitoring, Mapping and Modeling system (Fire M3) [74].
These systems use remote sensing data, such as satellite data, along with physical data,
to present daily information about fire weather, probability of fire occurrence and fire
propagation. Bushfire management strategies explored in this study are categorised into
four aspects such as bushfire prediction, detection, suppression and prevention. The
following sections summarise the relevant studies falling into each of the aforementioned
categories, highlighting the advantages and shortcomings/limitations of each technique.

5.1. Bushfire Prediction

There are different aspects related to bushfire prediction such as the prediction of bush-
fire risk, bushfire occurrence, bushfire spread and bushfire-related consequences. Bushfire
risk is most often defined in terms of “fire danger”, which is evaluated by integrating
individual and combined effects of fire weather conditions, topography and fuel conditions
such as fuel type and fuel moisture content. The quantification of fire danger is carried
out by defining different indices, which are functions of air temperature, relative humidity,
precipitation, wind speed, fuel type and fuel moisture content [75]. Different countries have
defined their own fire danger indices considering the pertaining topography and other
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related factors. For example, the Angstrom index [76] is used in the Scandinavian coun-
tries, the Nesterov index is widely used in Russia [77], the Canadian Forest Fire Weather
Index (FWI) [45], the United States National Fire Danger Rating System (NFDRS) [46], the
McArthur Forest Fire Danger Index (FFDI) is used for open forests in Australia [42], and
the McArthur Grassland Fire Danger Rating System is used for grassland areas in Aus-
tralia [42,78]. These indices provide bushfire danger ratings representing the susceptibility
of a particular region to an event of bushfire. The broader aspect of bushfire risk must
consider both bushfire danger and fire vulnerability. Figure 5 illustrates a framework for
the assessment of bushfire risk. Bushfire danger is associated with the probability of fire
occurrence and spread, whereas fire vulnerability must account for the socio-economic and
environmental consequences of bushfires.
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Early attempts at the prediction of bushfire occurrence were by exploring the topo-
graphic conditions, meteorological variables, forest characteristics and fire statistics. The
correlation between these factors and the probability of bushfire initiation was investigated.
Zhang et al. [79] carried out a fire occurrence probability mapping of Northeast China by
employing a binary logistic regression model. The spatial distribution of the fire occur-
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rence probability was mapped by considering ten predictor variables, representing the
topography, vegetation characteristics, meteorological variables and proximity to critical
features such as water bodies. A multitemporal random sampling technique was employed
to create the training subset, and bushfire data from 2000 to 2009 from Northeast China
was used in developing the fire occurrence probability’s spatial distribution model, and
a 84.2% model fitness accuracy was obtained by assessing the area under the relative
operating characteristic (ROC) curve. Further, it was found that the Normalised Difference
Vegetation Index, which indicates the susceptibility of vegetation to fire, best explained
the fire occurrence probability in the selected geographic region. A similar study was
carried out by Catry et al. [11] to model the bushfire risk in Portugal. A 5-year period was
considered to extract data, and 127,490 ignitions during this period were analysed. Logistic
regression models were developed to estimate the likelihood of fire occurrence, and the re-
sults indicated that land cover, elevation and population density were crucial determinants
of bushfire occurrence. Fuel characteristics such as fuel type, fuel load, moisture content
and flammability heavily rely on the type of land cover, and it was found that 85% of the
bushfires in mainland Portugal were located in agricultural and urban–rural interspersed
areas. In addition, that study concluded that fire occurrence probability mapping can be
further improved by incorporating more accurate and updated information. Information
gained from remote sensing techniques like satellite imaging and other airborne sensing
techniques facilitates improving bushfire management strategies by providing an opportu-
nity to derive critical information. The following sections summarise the previous studies
on bushfire prediction techniques incorporating remote sensing.

5.1.1. Satellite Imagery-Based Remote Sensing Techniques for Bushfire Prediction

Different remote sensing techniques have been widely employed in bushfire man-
agement. Early attempts for bushfire prediction consisted of aerial infrared scanners and
radar-based techniques falling under the broad category of remote sensing (e.g., [80]).
However, with the advancement of space explorations and satellite programmes, satellite
imagery has emerged rapidly as a promising technique to aid bushfire prediction, con-
sidering the aspects of high spatial resolution, identification of fuel characteristics and
bushfire susceptibility mapping [25]. Chuvieco and Congalton [81] explored the potential
of producing bushfire hazard maps for the Mediterranean environment by incorporating
data from Geographic Information Systems (GIS) and the digitally processed Thematic
Mapper. The Thematic Mapper is an advanced multispectral scanning sensor introduced
in the Landsat programme. This high-resolution imagery was capable of providing fine
details about vegetation data while GIS processing created fire hazard models. To validate
the bushfire hazard maps, an area that was already affected by bushfire was selected as
the test area. The proposed integrated approach investigated different aspects such as
fuel-oriented vegetation mapping, topographic data, proximity analysis and fire hazard
modelling. Results indicated the enhanced bushfire mapping capability of the proposed
method by applying remote sensing and GIS.

The identification of fuel characteristics such as fuel type, fuel load and moisture
content is critical in determining bushfire danger and associated risk. Therefore, satellite
imagery techniques are widely employed in developing fuel-type maps. However, the
relatively coarse spatial resolution of data sources has limited the application of remotely
sensed data for fuel mapping [82]. Typical remote sensed data used in this field are SPOT
HRV (Systeme Pour l’Observation de la Terre-Haute Resolution Visible), Landsat MSS
(multispectral scanner), Thematic Mapper or Enhanced Thematic Mapper, NOAA-AVHR
and TERRA-AQUA MODIS. Arroyo et al. [82] presented a methodology for obtaining
fuel maps using high-spatial-resolution satellite imagery by object-oriented classification.
QuickBird imagery was used to classify the fuel type into one of six categories, and the
selected study region was Madrid, Spain. The proposed methodology employing high-
resolution imagery performed well compared with traditional pixel-based methods since
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the object-oriented approach allowed the context consideration. It was concluded that this
technique had the potential to create accurate fuel maps with greater spatial resolution.

A similar study was carried out by Lasaponara and Lanorte [83] to characterise fuel
type using very high resolution (VHR) QuickBird data. To evaluate the capability of the
proposed method to classify fuel properties, an area with mixed vegetation cover and
complex topography was analysed. The selected study area was in South Italy, with an
extent of about 60 km2. Actual field fuel-type classification was carried out before, after
and during the acquisition of QuickBird data, and this was used as labelled data to assess
the accuracy of the results of the test area. The main steps of the proposed method were the
adaptation of Prometheus fuel types, the model construction and an accuracy assessment.
Results indicated more than 75% accuracy for classifying fuel types using high-spatial-
and -spectral-resolution remotely sensed data. Jaiswal et al. [25] explored bushfire risk
zone mapping from satellite imagery and GIS. A bushfire-prone region in Madya Pradesh,
India, was selected as the study region, and images from the Indian remote sensing satellite
were used to produce vegetation maps. Topographic maps and field data were used in
determining the slope and proximity to roads and settlements. Bushfire risk zones of the
study area were identified by incorporating GIS and remote sensing satellite data. The
likelihood of ignition and risk of fire spread was integrated into a bushfire risk.

There is a significant effect from the moisture content of fuel for bushfire initiation and
fire propagation. Therefore, researchers have investigated different techniques to accurately
estimate fuel moisture content. Chuvieco et al. [84] proposed an empirical approach to
determine the fuel moisture content of Mediterranean grasslands and shrub species. Field
measurements of moisture content were carried out for 6 years, out of which data from
4 years were used to derive the empirical relationship and the remaining data from 2 years
were used to test the developed model. A multitemporal analysis was conducted for the
NOAA-AVHRR data. The basis of the proposed methodology was a statistical fitting of
the satellite remote sensing data and field-measured moisture content using a function
representing the day of the year. The developed model was able to provide consistent
fuel moisture content estimated with a coefficient of determination of more than 0.8 for
both grasslands and shrub species. Other than the fuel moisture content, soil moisture
and surface temperature also dictate the spread of bushfires. For example, lower surface
temperatures and wet soils limit the spread of bushfires. Therefore, Chaparro et al. [85]
explored the capability of predicting the extent of bushfires using remotely sensed soil
moisture and surface temperature. The Iberian Peninsula in northwestern Spain was
selected as the study area, and data extraction was carried out during the period from 2010
to 2014. Surface moisture and temperature conditions preceding a bushfire were analysed
using SMOS-derived soil moisture data and surface temperature data. A regression model
was developed between moisture-temperature conditions, land cover, region and month
of fire outbreak as input variables and the maximum fire extent as the output. Model
validation results showed around 83% accuracy, and the maximum error accounted for
about 40.5 hectares. Thus, the developed model could predict the bushfire extent up to a
reasonable accuracy by incorporating remotely sensed soil moisture–temperature trends.

Lozano et al. [86] modelled the bushfire occurrence probability by conducting a logistic
regression analysis using multitemporal Landsat data. That study aimed to investigate
the effect of prefire spectral indices on the prediction capability of fire occurrence. The
Normalised Difference Moisture Index (NDMI), Normalised Difference Vegetation Index
(NDVI), Normalised Burn Ratio (NBR) and the greenness of the Tasseled Cap transfor-
mation were considered as variables other than landscape variables when modelling the
bushfire occurrence probability. It was found that the inclusion of spectral indices improved
the fire prediction capability. These indices provided site-specific conditions while adding
extra information other than the basic spatial patterns, ultimately contributing to the en-
hanced performance. It was concluded that a regression analysis incorporating satellite
imagery and geographical information has the potential to better predict fire occurrence.
The effect of satellite-based indices towards forecasting the fire danger in Boreal forests was
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explored by Akther and Hassan [87]. In that study, the Normalised Multiband Drought
Index (NMDI), Temperature Vegetation Wetness Index (TVWI) and surface temperature for
boreal forest regions of Alberta were determined from MODIS satellite data for the period
from 2006 to 2008. The resulting predictions incorporating all three variables showed
that 91.63% of the fires were categorised as very high, high and moderate fire danger
classes. Therefore, the proposed technique had a good potential to forecast fire conditions
by incorporating satellite-based indices and variables. A similar study was carried out by
Chowdhury and Hassan [88] to develop a forest fire danger forecast system focusing on the
Canadian province of Alberta. MODIS-derived data of the Normalised Multiband Drought
Index (NMDI), NDVI and surface temperature were used as input variables in predicting
the fire danger conditions. Considering the spatial and temporal dimensions, a gap-filling
technique was implemented in that study to eliminate the gaps in input variables and to
have a complete data set. The proposed methodology was implemented in estimating the
fire danger in the 2011 fire season in Alberta, and the fire danger class “very high” resulted
for most of the regions where actual severe fires occurred, illustrating the fire forecasting
potential of the method.

Mallinis et al. [89] presented an integrated approach for fire management by com-
bining local-scale fuel-type mapping with a fire behaviour simulation. High-resolution
satellite imagery was used in performing fuel type mapping, and a site-specific fuel model
was developed for the Mediterranean area. CART statistical modelling was employed
to categorise the images into respective fuel types, and an overall accuracy of 80% was
achieved. Once fuel sampling, image segmentation and classification were carried out, fire
behaviour maps were generated using the FARSITE fire simulation model. Fire behaviour
and growth were determined for different fuel models to facilitate bushfire management.
In addition, fire line intensity and flame length maps were derived, which are of utmost
importance for fire management authorities, illustrating the spatial scale of fire suppression.
Bui et al. [90] mapped bushfire susceptibility for the Cat Ba National Park area in Vietnam.
A GIS-based kernel logistic regression model was employed in predicting bushfire suscep-
tibility. The first step of the study was data collection (historical fires and related factors)
to develop the GIS database. Twenty-two historical bushfires in the selected study area,
which occurred from 2009 to 2013, were extracted, and ten related factors determining the
susceptibility to bushfires were investigated. Prefire spectral indices, landscape features
and topography, weather conditions, proximity to settlements and roads were among the
selected factors. The prediction capability of the trained kernel logistic regression model
was evaluated using the ROC curve and five statistical evaluation parameters. Results
indicated the capability of the proposed technique for bushfire susceptibility mapping to
facilitate effective bushfire management practices.

With the advancement of computational power, there are vast developments in the
field of machine learning, and these algorithms can be implemented for regression, clas-
sification and clustering [91]. Satellite imagery-based techniques for bushfire prediction
integrate remote sensing data, GIS, topography and other related factors to predict bush-
fire risk, occurrence, propagation and consequences. Therefore, machine learning can
effectively automate the prediction algorithms while improving the prediction capability.
In addition, the generalisation and robustness of the algorithms can be improved when
exposed to more data collected using satellite-based remote sensing. Researchers have
effectively employed machine learning algorithms for feature extraction and model devel-
opment for bushfire prediction. Maeda et al. [92] developed artificial neural network (ANN)
models to forecast the spatial distribution of bushfire risk in the Brazilian Amazon using
MODIS imagery. Similarly, Bisquert et al. [93] developed ANN and logistic regression
models to obtain a fire danger model for the Galicia region of Northwest Spain using
MODIS data. Lall and Mathibela [75] presented a novel data-driven system employing
ANN models to predict the bushfire risk in the city of Cape Town in South Africa. In
most of these studies, the output is a fire danger rating, which is a categorical variable
such as “high risk”, “moderate”, and “low”. Storer and Green [94] employed particle
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swarm optimisation instead of backpropagation to train ANN models to predict the bush-
fire size in Montesinho Natural Park in Portugal. Yu et al. [95] developed random forest
models to predict bushfire risk using remotely sensed data for a study area in Cambodia.
Bushfire risk ratings were derived using the trained models where the inputs were pre-
cipitation, land surface temperature, NDWI, NDVI, elevation, land cover and fire mask.
Halgamuge et al. [96] explored the possibility of using deep learning techniques for predict-
ing bushfire occurrences using actual weather data for a considered location. Six different
optimisers, such as different gradient-based optimisation algorithms, were tested to iden-
tify the best optimiser to forecast the fire occurrence. Sharma et al. [23] investigated the
use of remote sensing and meteorological data fusion in predicting bushfire severity for a
study area in Australia. Four different tree-based ensemble machine learning models were
employed, namely, random forest, fuzzy forest, extreme gradient boosting and boosted
regressing tree. From the summary of the aforementioned studies, the potential of machine
learning is evident for bushfire prediction.

5.1.2. Radars and Scanning-Based Techniques for Bushfire Prediction

The early conventional techniques to map the fuel types for bushfires were extensive
fieldwork and aerial photography (e.g., [97]). However, as described in the previous sec-
tion, satellite imagery-based remote sensing has evolved as a quick, reliable and efficient
technique to use in bushfire prediction, given its high temporal and spatial resolution. Nev-
ertheless, the difficulty in differentiating forest understory is a major limitation associated
with interpreting satellite-based imagery. Light detection and ranging (LIDAR) techniques
have the potential to address this issue. Airborne LIDAR techniques have demonstrated
the capability to separate tree crowns from other canopy data, producing better results
in predicting fire behaviour [98]. Riano et al. [80] used airborne LIDAR data to develop
a model to automatically extract critical forest information to improve the fire behaviour
models. A cluster analysis was employed to differentiate crown base height; thus, trees and
understory canopy heights could be determined. Total tree laser hits and a total number of
laser hits were used in determining the tree cover. Parameters such as tree height and cover,
canopy height, surface canopy cover and crown bulk density were estimated from the
proposed methodology, which could be used as inputs for fire models. It was concluded
that LIDAR technology could enhance fuel characterisation capability to improve bushfire
prediction accuracy. Mutlu et al. [99] presented a methodology to assess fuel models using
LIDAR and multispectral remote sensing. The study area focused on was East Texas. In
that study, several techniques, such as principal component analysis and minimum noise
fraction, were explored for the data fusion of LIDAR and QuickBird imagery to assess
fuel models. Further, the accuracy of fuel maps generated using LIDAR and QuickBird
imagery were compared. Finally, accurate digital fuel maps were produced with a good
spatial resolution. It was found that LIDAR-derived products accurately assessed fuel
models, while the fusion of LIDAR data and QuickBird imagery increased the accuracy of
classifying surface fuels.

The estimation of forest biomass and canopy fuel loads was carried out by
Saatchi et al. [100] using radar remote sensing data. Multifrequency polarimetric syn-
thetic aperture radar (SAR) imagery was used in that study to investigate the fuel load in
Yellowstone National Park in the United States. Semiempirical algorithms were developed
to predict the biomass, canopy fuel weight, canopy bulk density and foliage moisture
content. These estimates were compared with field measurements to validate the proposed
methodology, and a classification accuracy of more than 85% was obtained when different
fuel load classes were considered. It was found that crown biomass and height were the
most influential variables in estimating forest canopy fuel loads. It was concluded that
high-resolution radar images integrated with weather data had great potential for predict-
ing fire hazards. It is evident from these studies that radar and scanning-based techniques
can be implemented effectively to address some shortcomings of satellite imagery-based
remote sensing for bushfire prediction. A summary of the studies on bushfire prediction
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techniques is illustrated in Table 1. Previous studies covering the aspects of predicting
bushfire risk, occurrence, spread and related consequences are summarised. Further, the
studies on fuel type characterisation and fuel moisture content determination are included
in Table 1.

Table 1. Summary of the studies on bushfire prediction techniques.

Study Category Content, Methods and Analysis Techniques

[79] Mapping fire occurrence probability Developed a fire occurrence probability spatial distribution model for
Northeast China using binary logistic regression

[11] Modelling and mapping bushfire risk Estimated the likelihood of fire occurrence in Portugal via logistic
regression models

[25] Mapping bushfire risk zones Identification of bushfire risk zones integrating GIS and remote
sensing satellite data. Study region in Madya Pradesh, India

[81] Mapping bushfire hazard
Produced bushfire hazard maps for the Mediterranean environment
by incorporating data from GIS and digitally processed
Thematic Mapper

[82] Mapping fuel types
Developed fuel maps for Madrid, Spain, using
high-spatial-resolution QuickBird satellite imagery by employing
object-oriented classification

[83] Characterising fuel types Classified fuel types for a study area in South Italy using high-spatial-
and -spectral-resolution satellite imagery

[84] Determining fuel moisture content

Developed an empirical methodology to determine fuel moisture
content by employing statistical fitting of the satellite remote sensing
data and field-measured moisture content for Mediterranean
grasslands and shrub species

[85] Predicting bushfire extent
Developed a regression model to predict the extent of bushfires using
remotely sensed soil moisture and surface temperature. Study area in
the Iberian Peninsula in northwestern Spain

[86] Modelling bushfire
occurrence probability

Investigated the effect of prefire spectral indices on the prediction
capability of fire occurrence by conducting a logistic regression
analysis using multitemporal Landsat data

[87] Assessing bushfire danger conditions Assessed the effect of satellite-based indices in forecasting the fire
danger in Boreal Forest regions of Alberta, Canada

[88] Predicting bushfire danger conditions
Developed a forest fire danger forecast system for Alberta, Canada,
using MODIS-derived data. A gap-filling technique was
implemented in this study to eliminate the gaps in input variables

[89] Fuel-type mapping and fire
behaviour simulation

High-resolution satellite imagery was used in performing fuel-type
mapping, and a site-specific fuel model was developed for the
Mediterranean area. CART statistical modelling was employed to
categorise the images

[90] Mapping bushfire susceptibility
A GIS-based kernel logistic regression model was developed to
predict bushfire susceptibility of the Cat Ba National Park area
in Vietnam

[92] Forecasting bushfire spatial distribution Developed ANN models to forecast the spatial distribution of
bushfire risk in the Brazilian Amazon using MODIS imagery

[93] Modelling bushfire danger
Developed ANN and logistic regression models to obtain a fire
danger model for the Galicia region of Northwest Spain using
MODIS data

[94] Predicting bushfire size
Trained ANN models by employing particle swarm optimisation
instead of backpropagation to predict the bushfire size in Montesinho
Natural Park in Portugal

[95] Predicting bushfire risk Developed random forest models to predict the bushfire risk using
remotely sensed data for a study area in Cambodia
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Table 1. Cont.

Study Category Content, Methods and Analysis Techniques

[96] Predicting bushfire occurrences
Explored the possibility of using deep learning techniques for
predicting bushfire occurrences using actual weather data for a
considered location

[23] Predicting bushfire severity

Investigated the use of remote sensing and meteorological data
fusion in predicting bushfire severity for a study area in Australia.
Random forest, fuzzy forest, extreme gradient boosting and boosted
regressing tree machine learning models were employed.

[80] Improving fire behaviour models

Developed a model using airborne LIDAR data to automatically
extract critical forest information to improve the fire behaviour
models. A cluster analysis was employed to differentiate crown base
height and to determine trees and understory canopy heights

[99] Generating and assessing fuel maps

Assessed fuel models using LIDAR and multispectral remote sensing.
Principal component analysis and minimum noise fraction
techniques were explored for the data fusion of LIDAR and
QuickBird imagery

[100] Estimating forest biomass and canopy
fuel loads

Developed semi-empirical algorithms to predict forest biomass and
canopy fuel loads using SAR remote sensing data. Study region in
Yellowstone National Park in the United States

5.2. Bushfire Detection

There are different techniques implemented for bushfire detection and monitoring.
Over the years, significant efforts have been put into developing advanced and reliable
early bushfire detection methods to supplement efficient bushfire management systems.
Early attempts at bushfire detection were made by human observers on watch towers.
However, the subjectivity of human observations has hindered the reliability of detection.
Furthermore, relying solely on human observers for monitoring vast forested areas is
unfeasible, and the challenging working conditions for human observers have spurred the
development of alternative surveillance methods. Modern bushfire detection techniques
can be categorised as terrestrial systems and aerial systems [101].

Terrestrial systems are based on wireless sensor networks, camera surveillance and
video surveillance (e.g., [102–104]). Camera surveillance and video surveillance can provide
automatic bushfire detection, replacing conventional human observation. These techniques
are often integrated with advanced image processing methods and computer vision to
enhance the accuracy of bushfire detection. Surveillance instruments like cameras, video
monitoring devices and sensor devices can be placed in watch towers, and the output
data from these systems are linked with alarm systems to notify relevant authorities. In
addition to traditional low-resolution cameras, thermal and infrared cameras can also
be utilised for bushfire detection, particularly for nighttime and low-light surveillance
situations [21]. Key advantages of camera surveillance are the wider coverage area from
multiple cameras, which can be operated from a single monitoring spot and zooming
capability to have fine observations in a suspected area. Further, video surveillance can be
extremely useful in postfire analysis [101]. Wireless sensor networks are used to monitor
field conditions such as the surface temperature, relative humidity and wind speed, along
with GPS locations. Sensor data are transmitted to a base station, which then transfers the
gathered data to software running on a database server for the purpose of concluding the
decision-making process [104]. Nonetheless, installing sensors across wide forests may
not be economically viable. This is the main drawback of wireless sensor-based bushfire
detection techniques, and up to date, there is only a limited percentage of forests covered
by cameras and sensors [101].

Aerial systems for bushfire detection consist of observations from manned and un-
manned aerial vehicles and satellites. Aerial vehicles can efficiently manoeuvre into im-
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pacted areas for fire monitoring, and they are often equipped with sensors such as LIDAR
and infrared to assess field conditions. Considering the financial benefits and simplicity of
operation, unmanned aerial vehicles (UAVs) have become a feasible alternative to address
the issues in bushfire detection [21]. In addition, aerial systems can provide imagery of
difficult-to-reach locations, providing safer operation conditions. Unlike terrestrially de-
ployed systems, satellite imagery can cover large areas [32]. However, the operational cost
of satellites and the required technical competence is high compared to other techniques.
In addition, some satellite imagery’s temporal and spatial resolution is low, which can
negatively affect the detection accuracy.

5.2.1. Satellite Imagery and Sensor Data-Based Bushfire Detection

Satellite imagery effectively tracks ongoing wildfires across extensive spatial and
temporal ranges [26]. These monitoring systems require frequent and well-characterized
information to perform analysis and make decisions. Satellites can be broadly categorised
as geostationary and non-geostationary. Non-geostationary satellites offer a larger spatial
coverage along with the drawback of longer refresh intervals. Non-geostationary satellites
include NASA’s earth observing TERRA and AQUA satellites and Landsat satellites jointly
managed by NASA and the US Geological Survey [105]. MTSAT (Multifunctional Transport
Satellite), GOES (Geostationary Operational Environmental Satellites), COMS (Communi-
cation, Ocean and Meteorological Satellite) and MSG (Meteosat Second Generation) are
some examples of geostationary satellites employed for bushfire detection [106–110]. These
satellites are well equipped with sensors and other instruments to facilitate imagery. Some
of these instruments are Moderate Resolution Imaging Spectroradiometer (MODIS), Ad-
vanced Very High Resolution Radiometer (AVHRR), Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper (ETM) [111–113]. Even
though polar orbiting satellites can provide excellent imagery that can cover wide areas,
the temporal resolution of this information may not be sufficient to monitor active fires. For
example, the temporal resolution of non-geostationary satellite data MODIS is six hours in
Australia [26]. Further, detecting small bushfires, nocturnal fire detection, the elimination
of cloud effects and the extraction of bushfire features from satellite imagery have been
challenging. Therefore, significant effort has been put into developing active fire products,
advanced image processing, machine learning and automated fire detection techniques
based on satellite imagery.

Remotely sensed fire data sets produced by MODIS are known as MODIS active fire
products, and these fire products undergo periodic reprocessing to incorporate algorithm
modifications and refinements. Giglio et al. [114] presented improvements made to the
MODIS fire detection algorithms. The main intention of that work was to address the issues
related to the previous version of the fire product. Some of these issues were the occurrence
of false alarms, often triggered by minor forest clearings, and the possibility of overlooking
significant fires concealed by thick smoke. In addition, a radiance-based approach was
utilised to retrieve the fire radiative power (FRP), resulting in only a marginal reduction in
FRP for high-intensity fire pixels while having a significant reduction for all other events.
The proposed advancements were confirmed through validation using reference fire maps
generated from over 2500 ASTER images.

Fire products from satellites can be categorised into two groups. One is referred to as
active fire detection, where binary fire maps (“yes/no”) are derived using flagging pixels.
The other group is where satellite pixels are partitioned into smouldering, flaming and
unburned areas by assigning temperature values [115]. Csiszar et al. [115] investigated
the validation of MODIS active fire products in Siberia. Spatial patterns of flaming were
characterised at the pixel level using ASTER imagery. This study highlighted the issues
related to active fire validation. It was found that the MODIS algorithm existing at that
time had lower-than-expected detection rates for Siberia, mainly due to the overseen flames
under heavy smoke. A cluster-based analysis was proposed in that study to address the
issues related to heavy smoke. The detection of smaller fire events using MODIS fire
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products and the minimisation of bushfire false alarm rates are two key areas that have
been investigated. Giglio et al. [111] presented an enhanced contextual fire detection
algorithm for MODIS. This improved algorithm was found to be more sensitive to smaller,
cooler fires while significantly reducing false alarms. A performance evaluation of the
proposed method was carried out using a theoretical simulation and ASTER imagery.
Results indicated that the improved algorithm reduced the false alarm rates 10–100 times
while detecting bushfires approximately half the minimum size of those detected from the
original algorithm.

Lightning is a major natural cause of the initiation of bushfires. Analysing the lightning
patterns in a specific area can aid in comprehending the occurrences of bushfires ignited
by lightning strikes. Bar-Massada et al. [105] combined satellite-based fire observations
(MODIS data) and ground-based lightning detections to detect lightning-caused bushfires
in the USA. Data from the National Lightning Detection Network were employed to identify
lightning strikes, and the developed algorithm searched for the correlation between these
strikes and MODIS fire clusters. Results showed the capability of the proposed method
in detecting broad-scale spatiotemporal patterns of lightning-initiated bushfires in the US.
Nevertheless, it should be noted that the detection of smaller bushfires was constrained,
which is an inherent limitation associated with MODIS data. Similar to MODIS data
acquired from the TERRA and AQUA earth-orbiting satellites, Landsat operational land
imager data can be effectively employed in active fire detection.

Schroeder et al. [32] presented an active fire detection algorithm based on Landsat
operational land imager data. This algorithm utilised fire-sensitive infrared shortwave chan-
nels and incorporated a multitemporal analysis to enhance pixel classification outcomes.
Through initial visual image analysis, it was observed that the algorithm demonstrated a
high accuracy and consistency across various scenarios involving biomass burning and
gas flares. Further, field-data verification corroborated the algorithm’s capability to detect
fires in considerably smaller areas when compared to existing operational satellite fire
products. The introduction of multitemporal analysis tests applied to pixels located in
the same vicinity resulted in a substantial reduction in commission errors, with a global
average of less than 0.2%. Thus, active fire detection algorithms utilising Landsat data hold
significant potential.

The use of National Oceanic and Atmospheric Administration (NOAA) AVHRR data
for fire detection was explored by Flasse and Ceccato [116]. In that study, a contextual
algorithm was developed for AVHRR data-based fire detection. In visual image interpreta-
tion, the human eye often identifies a fire because of the noticeable contrast in temperature
between the fire itself and its environment. The contextual algorithm functioned in a
comparable way, making a determination about whether a pixel corresponded to a fire
by examining its characteristics in comparison to those of its neighbouring pixels. Initial
results indicated the applicability of the proposed technique for automatic fire detection.
Nonetheless, commission errors did occur as a result of clouds and cooler backgrounds
that were not uniformly distributed around a hot area. Schroeder et al. [117] introduced a
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data-based active fire detection
algorithm. That algorithm utilised thermal infrared imagery data to identify daytime
and nighttime burnings as well as other thermal anomalies. The proposed algorithm was
constructed based on the well-established MODIS fire product, which was developed,
validated and refined over the course of several years. VIIRS fire data exhibited notably
improved mapping capabilities in comparison to the existing MODIS fire detection data. In
addition, the outcomes revealed the enhanced consistency of the proposed algorithm in
differentiating the bushfire perimeter.

Nocturnal fire detection is another crucial aspect of a bushfire management system.
Polivka et al. [118] explored the use of VIIRS data to develop a fire detection algorithm
that detected gas flares and biomass burning at night. That technique characterised fire
pixels integrating both infrared signatures and visible light. The validation of the proposed
technique was carried out using fine-resolution ASTER data. The reported findings sug-
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gested that, in contrast to the traditional VIIRS fire algorithm employed during the study
period, the proposed technique, which incorporated adjustments to enhance the detection
of low-temperature hotspots, exhibited a significant increase in the number of identified
fire pixels.

Information gathered from geostationary satellites can also be analysed and utilised to
develop techniques for detecting and tracking bushfires. Xu and Zhong [26] investigated the
utilisation of infrared imagery acquired from the Himawari-8 geostationary satellite for the
development of a real-time bushfire detection algorithm. In Australia, that satellite provides
infrared imagery at a spatial resolution of 2 km at intervals of 10 min. The foundation for
creating that algorithm stemmed from the MODIS fire product, and multispectral imagery
from Himawari-8 was employed to identify hotspots, with updates available every 10 min.
The performance of the developed algorithm was evaluated by analysing a case study of
the 2015 Western Australia bushfires. The results demonstrated that that technique was
sensitive to small bushfires and remained robust in the presence of smoke and thin clouds.
A similar study was conducted by Xu et al. [119], employing imagery from Geostationary
Operational Environmental Satellites (GOES) to detect active fires and assess the FRP.
That approach used near-real-time FRP products from Spinning Enhanced Visible and
Infra-Red Imager (SEVIRI) and developed an algorithm considering the study regions of
North, South and Central America. Outputs of the algorithm from GOES imagery were
compared with well-established MODIS fire products. The identification of clouds and
fires from GOES imagery closely aligned with the MODIS fire product when the omission
error was less than 10%. Advanced geostationary sensors have the capability to supply
supplementary data that describe the background temperature. Hally et al. [120] proposed
a multitemporal technique for diurnal temperature fitting from Himawari imagery in
that context. The fitting of the idealised background temperature served as a reference
for setting thresholds on the sensor’s brightness temperature data. That approach was
employed to establish a method for determining both the timing and likelihood of thermal
anomalies. The outcomes revealed that the suggested approach could detect between 75
and 99% of thermal anomalies that were identified by low-Earth-orbiting satellites during
the study duration.

Analysing satellite imagery for active fire detection is a complex process given the
aspects of small fire detection, nocturnal fire detection, disturbance from clouds and diffi-
culty in identifying fires concealed by smoke. Therefore, the possibility of incorporating
machine learning and deep learning algorithms for fire detection and classification from
satellite imagery has been explored by researchers. Priya and Vani [121] investigated the
use of convolution neural network-based transfer learning to classify satellite imagery into
fire and nonfire classes. That technique could overcome the manual selection of input
features from satellite imagery and hand-crafted algorithms for classification, which are
commonly used in conventional algorithms. Experimental results illustrated the proposed
method’s higher classification accuracy, which incorporated automatic feature extraction.
A similar study was conducted by Kumar et al. [122], where K-nearest neighbour and
artificial neural network (ANN) algorithms were explored to classify active bushfires in
Australia. Training and testing were carried out using actual data extracted from satel-
lite imagery. Reasonable classification accuracies were obtained for both techniques, and
the trained ANN model had better accuracy than the K-nearest neighbour algorithm.
Phan et al. [123] developed a multiscale deep neural network model to detect and locate
bushfires from satellite imagery integrated with weather data. The research demonstrated
that a precise spatiotemporal alignment of weather information could significantly enhance
the classification accuracy of the proposed deep learning technique based on satellite im-
agery. When evaluating the performance of the proposed algorithm using real-world data,
an overall classification accuracy of 93.4% was achieved. The potential of machine learning
approaches for active bushfire detection is evident from these studies. A summary of the
studies on satellite imagery-based bushfire detection techniques is illustrated in Table 2.
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Table 2. Summary of the studies on satellite imagery-based bushfire detection techniques.

Study Satellite, Sensors and Data Content, Analysis Techniques and Remarks

[114] TERRA and AQUA satellites, MODIS Proposed improvements to the MODIS fire detection algorithms by
integrating a radiance-based approach

[115] MODIS, ASTER
Investigated the validation of MODIS active fire products in Siberia.
Spatial patterns of flaming were characterised at the pixel level using
ASTER imagery, and a cluster-based analysis was proposed.

[111] MODIS, ASTER
Presented an enhanced a contextual fire detection algorithm for
MODIS, and the improved algorithm was found to be more sensitive
to smaller, cooler fires while significantly reducing false alarms

[105] MODIS, ground-based
lightning detections

Detected lightning-caused bushfires in the USA by combining
satellite-based fire observations (MODIS data) and ground-based
lightning detections

[32] Landsat, operational land imager
Developed an active fire detection algorithm based on Landsat
operational land imager data. The introduction of multitemporal
analysis tests resulted in a substantial reduction in commission errors.

[116] NOAA-AVHRR

Developed a contextual algorithm for AVHRR data-based automatic
fire detection. Commission errors were present because of clouds and
cooler backgrounds that were not uniformly distributed around a
hot area.

[117] VIIRS, MODIS fire product
Developed an active fire detection algorithm utilising thermal
infrared imagery data to identify daytime and nighttime burnings as
well as other thermal anomalies

[118] VIIRS, ASTER Explored the use of VIIRS data to develop a fire detection algorithm
that detects gas flares and biomass burning at night

[26] Himawari-8 geostationary satellite,
infrared imagery

Investigated the utilisation of infrared imagery acquired from the
Himawari-8 satellite for the development of a real-time bushfire
detection algorithm. The developed technique was sensitive to small
bushfires and remained robust in the presence of smoke and
thin clouds.

[119] GOES, SEVIRI
Employed GOES imagery to detect active fires and assess fire
radiative power for the study region of North, South and
Central America

[120] Himawari satellite
Proposed a multitemporal technique for diurnal temperature fitting
from Himawari imagery. Established a method for determining both
the timing and likelihood of thermal anomalies.

[121] TERRA and AQUA satellites, MODIS Investigated the use of convolution neural network-based transfer
learning to classify satellite imagery into fire and nonfire classes

[122] LANCE FIRMS Explored K-nearest neighbour and artificial neural network (ANN)
algorithms to classify active bushfires in Australia

[123] GOES, weather data Developed a multiscale deep neural network model to detect and
locate bushfires from satellite imagery integrated with weather data

5.2.2. Wireless Sensor Network Data-Based Bushfire Detection

Bushfires are associated with pertaining environmental and weather conditions. There-
fore, measurement data about these conditions can assist bushfire detection and monitoring
systems. With the advancement of sensor technology, more powerful sensors offer addi-
tional benefits such as smaller size, lower cost and increased power efficiency [21]. Wireless
sensor networks can be employed to measure field conditions such as surface tempera-
ture, relative humidity, light condition, wind speed and smoke density, which are directly
related to bushfire initiation and propagation. Various types of sensors, such as thermal,
LIDAR, infrared and vision sensors, can be deployed to acquire field measurements. The
description of attributes for each sensor type is not presented here, and it can be found in
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the works of Partheepan et al. [21]. Measurements of sensor networks can be integrated
with topography, vegetation patterns and fuel characteristics in a particular area to estimate
bushfire risk, while sensor data alone can detect and monitor bushfires.

Chen et al. [124] designed a fire detection system based on multisensor data fusion.
Surrounding temperature, smoke density and carbon monoxide (CO) density were recog-
nised as the primary parameters for fire detection, as they represent key characteristics
inherently associated with fires. Data-fitting characteristics and fire-experience characteris-
tics were extracted and fused via a fuzzy inference system to obtain the final fire probability.
The experimental testing yielded satisfactory results for various fire types. Data fusion has
the potential to enhance detection precision while mitigating the impact of disturbances.
Hefeeda and Bagheri [125] designed a wireless sensor network for early bushfire detection.
The problem of forest fire detection was formulated as a node k-coverage problem within
wireless sensor networks. The sensor network was designed based on the fine fuel moisture
code and the Fire Weather Index, which are the key components of the FWI system. Simu-
lation results demonstrated the proposed technique’s enhanced performance considering
detection accuracy, faster convergence and extended network lifetime. A similar study
was carried out by Zervas et al. [126], which proposed a fire detection methodology based
on multisensor data fusion. Two types of sensors were employed in that sensor network
such as infield and outfield sensors. In the urban–rural interface area, infield sensors were
distributed to collect temperature and humidity measurements, whereas outfield sensors
consisted of vision sensors that monitored the same geographical region. Information from
nearby sensor nodes was analysed by comparing it to identify changes in the underly-
ing data distribution, serving the purpose of identifying potential fires and generating
fire alarms.

Díaz-Ramírez et al. [127] developed bushfire detection algorithms that relied on infor-
mation fusion techniques, leveraging data collected from wireless sensor networks. One of
the devised algorithms utilised a threshold-based approach, and the sensor nodes were
equipped with light, humidity and temperature sensors. The Dempster–Shafer theory
was employed in another algorithm, assuming that the nodes utilised temperature and
humidity sensors. Results demonstrated both algorithms could detect fires in the initial
stage. Nevertheless, false positives were observed when motes were exposed to direct
sunlight. To mitigate this issue, it was necessary to provide cover for the motes to prevent
direct sunlight exposure. Doolin and Sitar [104] designed a bushfire detection system
integrating wireless sensor data and field-testing results. Environmental sensors recorded
relative humidity, temperature and barometric pressure along with GPS locations. A per-
formance evaluation of the proposed technique was conducted via two prescribed burns in
California. Sensors within the burn area detected the flame front before it could escalate
into a widespread fire. The sensors recorded a rise in temperature along with a decrease in
barometric pressure and humidity as the flames approached. Results demonstrated the
potential of the developed technique for commercial development.

The interpretation of large quantities of sensor data in a wireless sensor network can
be complex. Therefore, machine learning algorithms have been integrated into sensor data
analysis to automate bushfire detection algorithms. Arrue et al. [128] developed a bushfire
detection algorithm that reduced false alarm rates. That algorithm incorporated visual
infrared image matching, meteorological and geographic data, memory of past events
and image processing techniques. ANN models were utilised to conduct the analysis,
aiming to derive a probability score indicating the likelihood of a bushfire triggering an
alarm. In a similar study conducted by Yu et al. [129], ANN models were employed to
process the data gathered from wireless sensor networks for bushfire detection. Relative
humidity, wind speed, smoke and temperature data were collected from field sensors. The
developed ANN model operated on a large volume of raw data, effectively extracting
valuable information for decision-making, while minimising communication overhead and
conserving energy. Nosouhi et al. [30] developed a machine learning-based approach to
detect bushfires using sensor measurements of environmental parameters. The machine
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learning model was trained using one year of field sensor data, demonstrating the typical
spatiotemporal patterns in environmental data. When there were deviations from the
normal, these anomalies were recognised as having the potential to trigger a bushfire.
Experimental results demonstrated the effectiveness of the proposed method in detecting
early bushfire symptoms. These studies demonstrate the capability of wireless sensor
networks for bushfire detection. The summary of the studies employing wireless sensor
networks for bushfire detection is illustrated in Table 3.

Table 3. Summary of the studies on wireless sensor network-based bushfire detection techniques.

Study Sensors Collected Data Content, Analysis Techniques and Remarks

[124] Surrounding temperature, smoke density and
carbon monoxide (CO) density

Designed a fire detection system based on multisensor data
fusion. Data-fitting characteristics and fire-experience
characteristics were extracted and fused via the fuzzy inference
system to obtain the final fire probability.

[125] Fine fuel moisture code and Fire Weather Index Formulated the bushfire detection problem as a node
k-coverage problem within wireless sensor networks.

[126]
Infield sensors (collected temperature and
humidity measurements), outfield sensors
(vision sensors)

Proposed a fire detection methodology based on multisensor
data fusion. Information from nearby sensor nodes was
analysed by comparing it to identify changes in the underlying
data distribution to identify fires and generate fire alarms.

[127] Light, humidity and temperature sensors

Developed bushfire detection algorithms that relied on
information fusion techniques, leveraging data collected from
wireless sensor networks. Adopted Dempster–Shafer theory
and threshold-based approaches.

[104]
Environmental sensors (recorded relative
humidity, temperature and barometric
pressure), GPS locations

Designed a bushfire detection system integrating wireless
sensor data and field-testing results to detect flame front before
it could escalate into a widespread fire

[128] Visual infrared images, meteorological and
geographic data

Developed a bushfire detection algorithm that reduced false
alarm rates by employing ANN models to perform the analysis,
aiming to derive a probability score indicating the likelihood of
a bushfire triggering an alarm

[129] Field sensors (collected relative humidity, wind
speed, smoke and temperature data)

Employed ANN models to process the data gathered from
wireless sensor networks for bushfire detection. The developed
model operated on a large volume of raw data, effectively
extracting valuable information for decision-making.

[30] Temperature and humidity data

Developed a machine learning-based approach to detect
bushfires using sensor measurements of environmental
parameters. Utilised classification and regression trees (CARTs),
random forest (RF) and support vectormachine algorithms.

5.2.3. Application of Unmanned Aerial Vehicles (UAV) for Bushfire Detection

Unmanned aerial vehicles (UAVs), more commonly known as drones, can be employed
for data collection while patrolling over forests, with the primary goal of detecting and
monitoring bushfires. The primary benefits of UAV-based fire detection systems include
enhanced personal safety, extended operational coverage and swift manoeuvrability. UAV-
based data collection is carried out via different types of sensors such as visual cameras,
infrared cameras, thermal cameras, optical flow sensors, gas sensors, humidity sensors and
GPS [21,130]. Another critical component of a UAV-based fire monitoring and detection
system is the guidance, navigation and control system for both single and multiple UAVs.
When a fleet of UAVs is deployed, control systems should be capable of finding optimum
paths to cover the fire areas. Furthermore, it is essential to establish a ground station to
support communication, perform ground-based computations and trigger automatic fire
warning alarms. The predominant challenge associated with UAV imagery is the impact
of vibrations and motion, which can lead to image blurring [131]. Consequently, ongoing
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efforts encompass software and hardware development to mitigate this issue. UAV-based
fire detection systems are extensively used in conjunction with computer vision for image
processing. This is done to extract fire-related features, enabling informed decision-making
and the generation of fire warning alarms in automated detection systems. Machine
learning algorithms are also incorporated with UAV-based fire detection systems to collect
the information from sensors and automate the decision-making process while enhancing
detection accuracy (e.g., [132,133]). Table 4 provides an overview of past research regarding
the use of UAVs in the field of bushfire detection and monitoring. The outcomes of previous
research demonstrate the potential of UAVs, when equipped with suitable sensors, to detect
bushfires early and activate warning alarms.

Table 4. Applications of UAVs for bushfire detection.

Study Sensors Content, Analysis Techniques, Remarks

[134] Visual camera

Developed a bushfire detection and monitoring technique by leveraging
visual sensors mounted on UAVs. This approach capitalised on both colour
and motion features to augment the algorithm’s performance and reduce
false alarms.

[135] Optical flow sensors

Developed a bilateral aerial teleoperation system for detecting and
monitoring bushfires. Velocity synchronisation was proposed to achieve
motion tracking of the master and slave UAVs, while a modified wave
variable method was employed to address time-varying delays.

[136] Visual and infrared cameras

Proposed an automatic fire detection methodology integrating the
information from a fleet of UAVs. The improved endurance of UAVs and
their enhanced resilience to smoke effects bolstered the detection
capabilities of that technique

[137] Smoke detector, microwave
radiometer and gas sensors

Developed an early bushfire detection system employing UAVs equipped
with smoke detectors, gas sensors and thermal cameras to detect hotspots

[138] Infrared camera

Introduced an efficient UAV path-planning algorithm that leveraged
real-time infrared image data collected onboard multiple small UAVs for
the purpose of monitoring forest fires. Challenges of refuelling and
accommodating irregular and growing fire shapes need to be addressed.

[139] Visual and infrared cameras
Developed a perception system for bushfire monitoring which involved a
fleet of UAVs. That system integrated information to estimate the real-time
evolution of bushfires.

[140] Surveillance camera
Introduced a block-based bushfire detection method using deep neural
network models, which utilised transfer learning to enhance the
detection rates

[132] Humidity sensor, barometer, global
positioning sensor and compass

Developed an automated early-warning system for bushfires by
harnessing multiple sensor data collected from UAVs and employing deep
learning and YOLO algorithms

[133] Visible or infrared camera
Developed a deep learning-based bushfire detection approach using UAV
imagery. Leveraging the existing computational resources onboard, a
convolutional neural network was implemented using YOLOv3.

[141] Infrared camera, GPS
Developed a video-based fire detection system by utilising deep learning
approaches. The developed model demonstrated a high average precision
and fast inference speed, enabling real-time fire detection.

Despite the promise exhibited by UAV-based fire detection and monitoring systems,
technical challenges must be tackled to enhance the capabilities of UAVs in this domain.
The energy limitation of UAVs stands out as a primary concern that demands resolution.
UAVs rely on onboard batteries to power all their operations, and the payload capacity
limitations of UAVs make it impractical to carry large batteries [142]. Therefore, UAV
operations cannot be continued for extended periods. Furthermore, there are constraints
associated with lightweight cameras, particularly concerning their radiometric and ge-
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ometrical properties [21]. There are special requirements for cameras used for remote
sensing compared to general-purpose cameras. The inaccuracy of GPS signals during
UAV operations is identified as another challenging issue, particularly for path planning.
Relying solely on onboard sensors may not suffice for accurate localisation. Moreover,
the collaboration of multiple UAVs to minimise synchronisation issues and optimise path
planning is crucial. These aspects warrant further investigation to enhance the accuracy of
bushfire detection through UAV-based techniques.

5.3. Bushfire Suppression and Prevention

Bushfire suppression, often referred to as firefighting, is carried out to minimise the
extent of the burned area by containing the fire within a limited region before it has the
chance to escalate into a widespread blaze. The effectiveness of suppression efforts is
typically assessed based on two key metrics: the time taken to achieve containment and
the ultimate extent of the burned area. A wide array of factors can influence bushfire
suppression efforts, including factors such as prevailing weather conditions, the type of
vegetation in the area, the topography of the terrain and the speed of the response to the
fire. The probability of containing a bushfire reduces with the increase in the severity of fire
weather conditions, which are generally measured by the Forest Fire Danger Index [143].
Additionally, the kind of vegetation strongly influences the associated fuel type, resulting
in varying fire behaviours across different vegetation types [144]. The fuel loads, which
impact spread rates, spot-fire generation, flame dimensions and accessibility, show a strong
correlation with the likelihood of successfully containing forest fires [145].

The most common approaches employed for bushfire suppression include deploying
ground firefighters and utilising aerial bushfire suppression methods [146,147]. The chem-
icals used in firefighting efforts may encompass a range of substances, including water,
water enhancers like foams and gels, as well as specially designed fire retardants [148]. In
aerial suppression, firefighting aircraft play a crucial role in enhancing the effectiveness and
efficiency of ground suppression forces. Aerial drops are frequently employed to combat
flames and decelerate the advance of fires ahead of ground resources. This approach makes
the process of extinguishing flames safer and facilitates the overall firefighting efforts.
Plucinski et al. [146] compared bushfires’ containment time with and without aerial sup-
pression’s support. An analysis of 251 bushfire incidents, incorporating input from senior
firefighting personnel, led to the conclusion that aerial suppression is the most effective
method for reducing fire containment time in challenging wildfire suppression scenarios.
These challenges can be high fuel hazard ratings, adverse weather conditions, steep slopes,
extended resource response times and large burning areas at the initial attack.

The time taken for the initial attack, which refers to the first response of firefighting
assets in fire suppression, plays a pivotal role in the success of bushfire suppression
efforts. When there is a delay in the initial attack, the fire head can become excessively
intense, the perimeter can expand significantly, and the fire’s growth rate may be too rapid
for immediate containment when fire crews arrive at the scene [37,149]. Plucinski [145]
identified the most influential predictor variables for defining the success of an initial
attack based on both time and area, using a dataset that focused on Australian wildfires
occurring in areas dominated by forests and shrubs and involving aerial suppression.
That analysis of 334 Australian bushfires determined that the likelihood of widespread
bushfires was associated with factors such as the fire area at the time of the initial attack,
the level of fuel hazard, and the Forest Fire Danger Index. Furthermore, there was a
strong correlation between the fire area at the time of the initial attack and the delay in
aerial suppression efforts. Podur and Martell [34] developed a simulation model for the
growth and suppression of bushfires in Ontario, Canada. A logistic regression model
was constructed using weather and suppression data to forecast the probability that a
bushfire would escape the initial attack and expand to cover an area exceeding 100 hectares.
This research revealed that severe weather conditions can limit the effectiveness of fire
suppression efforts, even though bushfire suppression itself has a significant impact on
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reducing the extent of fire burn areas. In addition to these studies, the economic aspect of
bushfire suppression has been comprehensively investigated by researchers to optimise the
cost while enhancing the benefits of fire suppression (e.g., [35,150,151]).

Preventive measures to minimise the adverse effects of bushfires include relocating
assets to fire-free or less exposed places, increasing the robustness of infrastructure to
resist fires and managing flames responsibly. In addition, bushfires initiated due to the
failure of the power distribution infrastructure can be minimised by employing accu-
rate and reliable condition assessment techniques to detect their defects at an early
stage [50,54,55,152]. Failure preventive maintenance should be carried out to have safe
power distribution infrastructure. Further, community awareness regarding bushfire re-
sponse and knowing the immediate actions to take in the event of a bushfire is of utmost
importance in minimising the destruction caused by bushfires [153]. In addition to im-
plementing preventive measures against bushfires, developing strategies that focus on
enhancing recovery efforts following a bushfire event is essential.

6. Summary and Discussion

This paper provides a comprehensive discussion of various facets related to bushfires,
encompassing topics such as bushfire initiation, fire weather conditions, the detrimental
impacts of bushfires and strategies for bushfire management. Bushfires can originate from
a multitude of sources, including power distribution system malfunctions, unintentional
ignitions, natural phenomena and deliberate acts of arson. While certain causes like
lightning strikes are beyond our control, others are susceptible to mitigation or even total
prevention. If severe fire weather conditions persist, the influence of these factors in
triggering a spark is greatly intensified. These adverse fire weather conditions typically
involve increased wind speeds, elevated air temperatures and decreased relative humidity.
Moreover, the amount of rainfall that precedes a bushfire plays a crucial role in determining
the moisture levels in both the soil and the fuel, which are pivotal factors influencing the
initiation and spread of bushfires. Additionally, the topography and vegetation patterns in
a specific area dictate fuel characteristics that can contribute to fire initiation. A thorough
comprehension of the factors contributing to bushfire initiation, encompassing weather
conditions, topographical features and fuel characteristics, can enable a precise assessment
of fire danger within a specific region.

Among the various adverse impacts of bushfires, the loss of lives stands as a prominent
and tragic outcome. In addition to fatalities, injuries and the trauma experienced by
bushfire-prone communities, health issues arising from exposure to smoke containing
harmful gases emerge as significant social aspects of bushfires. The adverse economic
consequences of bushfires encompass a range of factors, including infrastructure damage,
disruptions to farming, tourism and other industries, expenses related to injuries resulting
from fires, the cost of implementing fire safety measures and the financial burden of fire
service response efforts. In addition to social and economic consequences, bushfires also
have substantial environmental implications. Some of the primary environmental concerns
associated with bushfires include their impact on ecology and biodiversity, air pollution
stemming from smoke and hazardous gases, effects on water and soil quality, influence on
climate patterns and environmental pollution primarily arising from the residual ash. In
summary, when considering both environmental and socio-economic factors, it becomes
clear that bushfires present a significant and serious threat, and the management of these
fires remains a formidable challenge.

The development of reliable and accurate bushfire management strategies is an urgent
necessity to tackle the problem of increasingly frequent and severe bushfires. Fundamental
elements of a bushfire management system encompass bushfire prediction, detection,
suppression and prevention. Within the domain of bushfire prediction, efforts are focused
on forecasting bushfire risk, the occurrence of bushfires, their spread and the resulting
consequences. Generally, fire risk is assessed through the concept of “fire danger,” which
is quantified using various fire indices. Different countries have established their own
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fire danger indices, considering the specific characteristics of their topography, vegetation
and other relevant factors. Furthermore, meteorological variables, forest attributes and
fire statistics are scrutinised to assess fuel characteristics and generate maps indicating
the probability of fire occurrences and bushfire susceptibility. The spatial and temporal
distribution of fire danger mapping plays a crucial role in identifying regions potentially
prone to bushfires.

Advanced bushfire prediction and detection are primarily achieved by making use
of satellite imagery, data from wireless sensor networks and information collected from
UAVs. Past research indicates that automated algorithms developed using machine learn-
ing hold substantial potential for analysing and interpreting the gathered data. Each
of these techniques has its own set of advantages and limitations. Satellite imagery, for
instance, offers an excellent spatial resolution but tends to have a lower temporal reso-
lution, particularly with Earth-orbiting satellites. Additionally, it can be challenging to
mitigate the impacts of smoke and identify details in the forest understory when using
this method. Furthermore, operating satellites demands a high technical expertise and
entails significant expenses. Conversely, wireless sensor networks can help overcome the
challenges associated with distinguishing the forest understory. Nonetheless, the need
for a significant number of sensors distributed throughout the field remains imperative to
adequately cover expansive forests when it comes to predicting and detecting fires. The
potential of UAVs for bushfire management is evident from previous studies, especially
considering the enhanced personal safety, extended operational coverage, reduced cost
and swift manoeuvrability. However, the applicability of UAVs for bushfire management
is impeded by constraints related to energy limitations, payload capacity limitations, as
well as challenges associated with path planning and coordinating multiple UAVs. While
placing the emphasis on aspects like bushfire prediction, detection and suppression, it is
equally critical to incorporate preventive measures into the overall bushfire management
strategy. Enhancing the resilience of structures to withstand bushfires, relocating assets
to areas less prone to fires or with reduced exposure, and practicing responsible flame
management are all key components to take into account. Irrespective of the robustness of
bushfire prediction and detection algorithms, there always remains a residual probability
of experiencing devastating bushfires. Therefore, having personal knowledge about escape
routes and understanding how to protect oneself is crucial in order to minimise the poten-
tial for fatalities and injuries during bushfire events. Additionally, enhancing recovery and
promoting adaptive behaviour is of utmost importance from a social standpoint.

A sustainable bushfire management framework for a given geographic area should be
developed by integrating different bushfire management techniques, given each technique’s
relative advantages and disadvantages. For instance, relying solely on satellite imagery
may not offer a viable solution for effective bushfire management. Conversely, when
satellite imagery is combined with on-ground field sensors and information collected from
UAVs, it has the potential to deliver improved bushfire prediction and detection accuracies.
It is challenging to propose a simple, unique solution for bushfire management given the
complexity of bushfires, considering the changing circumstances of landscapes, vegetation
patterns, weather conditions and ecosystems. Therefore, it is imperative to conduct separate
investigations in distinct geographic areas, pinpointing the influential parameters essential
for crafting viable bushfire management strategies. Figure 6 illustrates an overall frame-
work for bushfire management considering the aspects of bushfire prediction, detection,
suppression and prevention. The optimal techniques for addressing various aspects of
bushfire management should be chosen according to the resources accessible within a spe-
cific geographical area. Therefore, the most effective strategies for managing bushfires can
differ from one country to another, and a single solution may not be universally applicable.
The primary benefit of the proposed bushfire management framework lies in its capacity
to rely on the advantages of various management strategies. This is because it integrates
various techniques rather than concentrating solely on a single approach. Furthermore, the
proposed framework allows for addressing the spatial and temporal variation in bushfire
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weather conditions while considering topographical attributes and fuel characteristics. This
may lead to accurate bushfire detection and prediction. Nevertheless, employing multiple
approaches can impose significant resource and financial demands. Therefore, it is essential
to conduct a meticulous selection of the most appropriate combination of methods, with a
strong emphasis on the allocated budget and available resources.
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