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Abstract: Ancient villages are precious architectural treasures that have been protected fromfire haz‑
ards for centuries through traditional fire prevention strategies. However, research on traditional fire
response strategies is limited, with existing studies mainly focusing on climate response strategies,
conservation, and renewal. No prior research has revealed the quantitative fire response strategies
used for ancient buildings. This paper takes the first ancient village in western Hunan, High‑Chair
village, as an example, and it (1) assesses the fire risk of High‑Chair village; (2) determines the tra‑
ditional fire response strategies of the ancient village, including fire prevention culture, residential
layout, wall forms, and fire resistant materials; and (3) uses CFD simulation to reveal and verify the
science and rationale of the traditional patio layout and hill wall forms. The study suggests utilizing
CFD simulation to quantitatively assess and validate fire response strategies. Such knowledge of fire
prevention can provide fire mitigation solutions for rural construction.

Keywords: traditional wisdom; fire mitigation; CFD; risk management; ancient village

1. Introduction
1.1. Background

Since ancient times, fire has been the ultimate threat to human safety and historical
buildings. Ancient people gave importance to building fire prevention since the construc‑
tion of buildings, and the issue of building fire prevention has a long construction history.
The ancient villages in Western Hunan are the largest legacy of the Chinese farming civi‑
lization [1,2], rich in historical information and cultural landscapes [3,4]; some were even
built over 1000 years ago. After thousands of years of coping with various disasters and
natural and cultural environments, ancient village dwellings developed a series of fire re‑
sponse strategies and methods that are highly ethnic. These effective strategies have pre‑
served the villages’ heritage and positively impacted various past and future disasters. It
is critical to disseminate this traditional fire prevention knowledge. Our responsibility is
to learn from our ancestors’ fire prevention knowledge and combine it with other modern
techniques to form effective disaster mitigation measures suitable for sustainable develop‑
ment in modern villages.

This study was conducted in the context of Western Hunan in China. Traditional Chi‑
nese villages are called ancient villages. The western Hunan region is one of the principal
gathering areas of traditional Chinese villages, preserving several villages [5]. There are
265 villages selected for the fifth batch of traditional villages in China, with 66% of them
in Hunan Province [6,7]. These ancient villages also represent the typical characteristics of
Western Hunan in terms of location, planning, and other aspects of the region, ethnicity,
and specific historical periods. However, the farming cultural heritage located in remote
mountainous areas is strongly impacted by modern civilization, influenced by excessive
commercial development and misinterpreted by new rural construction [8]. During the
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historical process, spontaneously formed fire and disaster prevention systems in ancient
villages have been severely damaged or destroyed, while traditional fire strategies that
have withstood long disasters have been preserved and combined with modern technol‑
ogy to produce more effective fire measures. This ancient ancestral wisdom is also impor‑
tant to the local ethnic culture, and it is our responsibility to record it, interpret it, and pass
it down to future generations.

1.2. State‑of‑the‑Art: Fire Response Strategies for Ancient Buildings
Several research results were obtained regarding different survival knowledge used

in ancient buildings. Compared to response strategies for natural hazards such as cli‑
mate [9], floods [10], wind hazards [11,12], and earthquakes [13,14] in ancient buildings,
conventional fire prevention strategies have been ignored in the field of ancient building
conservation research. Joseph Needham [15] investigated the unique feng shui culture
of traditional Chinese villages and their traditional passive disaster prevention concepts.
Chip Sullivan [16] explained the traditional ecological disaster prevention strategies of an‑
cient architects and gardeners by studying classical gardens in various countries. LiHequn
et al. [17] summarized the disaster preventionmeasures in ancient buildings, including fire
escapes, water sources, and technology and its management. Zheng Yihong [18] examined
the fire prevention strategy in ancient buildings using Huizhou ancient buildings as an ex‑
ample, based on five elements of culture. Scientific fire prevention strategies in ancient
buildings have been widely recognized and researched. However, existing research is pri‑
marily summarized and qualitatively explained from an ecological and natural standpoint
via field research, etc., and lacks quantitative scientific validation and revelation [19].

1.3. State‑of‑the‑Art: Fire Studies on Ancient Buildings
The philosophy of construction in harmony with heaven and mankind has always

guided Chinese architecture, instructing residents to build homes with local materials and
according to their local terrain [20]. This is a climate‑responsive strategy for ecological de‑
sign [21–25] that considers potential hazards, including fire in the case of wood. Wood is
the most commonly used building material in Chinese architecture, and the heavy use of
wood resulted in a large fire load on ancient structures. Through‑drawer structures with
good ventilation also contributed to the extent of fire spread [26]. Currently, the main
focus is on the assessment of fire risk and the application of modern fire prevention tech‑
niques and proposed fire rescue measures (Table 1) involving historical towns [27–29], sin‑
gle dwellings, heritage temples [30,31], bridges [32,33], and villages [34–36]. This is the
first quantitative study of traditional fire prevention strategies in ancient dwellings. Com‑
pared to timely rescue after a fire, it is more effective to reveal traditional fire strategies
and use them for rural development, reducing the chances of fire.

Table 1. Overview of fire‑related studies focusing on ancient buildings.

Reference Year Location Type(s) Method Results

Yufei Wang
et al. [37] 2022 Shanxi Province, China Heritage buildings Testing

Determining the burning
behavior of ancient wood
and its differences from

modern wood

Fupeng Zhang
et al. [34] 2022 Western Hunan Ancient buildings CFD

Revealing “survival design
strategies” for village sites,
layouts, and street patterns
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Table 1. Cont.

Reference Year Location Type(s) Method Results

Guanjie Hou
et al. [38] 2021 Southwest China Ancient town Multi‑objective

genetic algorithm

Proposed an innovative
procedure for determining

the optimal fire
station location

Julio Tozo Netoa
and Tiago Miguel

Ferreira [39]
2020 Ponta Delgada Ancient buildings GIS Tools

Analyzed the cost of
strategies to mitigate fire
risk in historical centers

Biao Zhou
et al. [40] 2012 Tianjin, China Yuan Residence CFD

Proposed fire risk
assessment and
control methods

Chunyan Yuan
et al. [41] 2018 Shanxi Province, China Dangjia Village Site investigations

Investigated fire hazards in
heritage villages and

provided fire
safety assessments

Jiang, ShaoFei
et al. [42] 2020 China Ancient buildings In‑situ test

Developed a structural
health monitoring system
based on FBG sensing

Zhang Xiaojin
et al. [43] 2022 Xijiang, China ancient buildings Gustav method

Proposed fire risk
assessment model for large

wooden structure
ancient buildings

Fupeng Zhang
et al. [44] 2022 Western Hunan ancient buildings CFD

Proposed a CFD‑based
framework to assess fire

risk in wood‑frame villages

1.4. Fire Research Methods for Ancient Buildings
Field studies are the traditional method for assessing fire risk in ancient buildings.

CFD (Computational Fluid Dynamics) software is also widely used to visualize and an‑
alyze building fire conditions (temperature, CO concentration, and visibility) [30,45–48].
Xu Lei et al. [49] conducted a numerical simulation study based on CFD software on the
effectiveness of water sprays in kitchen fires in ancient buildings. Using CFD software,
A. Manuello Bertetto et al. [50] calculated the spread of fire and smoke on the roof of
Notre Dame de Paris Cathedral. Weinschenk, Craig G. et al. [51] explained an attic fire
incident in a wood frame residential structure in Chicago, Illinois, using CFD software.
Wang Xiaoyu et al. [52] analyzed the flame spread behavior of fire‑retardant wood in an‑
cient Fuling buildings using CFD software. Therefore, this study used CFD software to
simulate fire combustion conditions in ancient village dwellings.

1.5. Purpose of the Current Study
The purpose of this paper is to (1) summarize traditional fire prevention strategies

in the ancient High‑Chair village through field research, (2) analyze the effectiveness of
different fire prevention strategies through quantitative visualization of CFD simulations,
(3) reveal and verify the scientific nature of traditional fire prevention strategies in the
ancient High‑Chair village. The geometry, courtyard layout, and building size of ancient
houses in Western Hunan are similar to those found in other parts of China, Korea, and
Japan. This study’s validation framework and methodology were also applied to ancient
dwellings in other regions.
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2. Methodology
2.1. Research Object

Xiangxi region is bordered by Hubei Province to its north and Chongqing city and
Guizhouprovince to itswest, and is located in the northeastern part of theYunnan‑Guizhou
Plateau [53]. The representative ancient village of Xiangxi region, High‑Chair village, be‑
came the object of the study (Figure 1). It is one of the largest and best‑preserved an‑
cient folk architecture villages of the Ming and Qing dynastic periods found so far in
Hunan Province. It is one of the top ten ancient villages in China and a key national
cultural relic protection unit. According to Feng Shui culture, the village site of High‑
Chair village is ideal and suitable. This village also preserves 104 ancient dwellings built
between 1380 and 1881. Its population is 2206 people, and its total construction area is
19,416 square meters [34].
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Figure 1. (a) Location of High‑Chair village in China; (b) current condition of the residen‑
tial dwellings in High‑Chair village; (c) situation of residential clusters; (d) roof and building
material conditions.

The study consisted of three phases: fire risk assessment, traditional fire prevention
strategy investigation, and the use of CFD simulation to validate the fire risk in the resi‑
dences in High‑Chair village. Figure 2 shows the roadmap of the three phases of the study.

The following are the current study’s innovations. To begin, the study proposes a
method for visualizing and quantitatively validating the fire prevention strategies of an‑
cient village dwellings usingCFD simulation. Second, it examines ancient village dwellings’
fire prevention strategies and lays the groundwork for future research on combining these
traditionalmeasureswithmodern technologies. These traditional disaster preventionmeth‑
ods may not prevent all modern disasters, but when combined with modern technology,
they may facilitate effective mitigation measures. This provides a reference for village con‑
struction in the western Hunan region and elsewhere.
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2.2. Field Research
2.2.1. Fire Risk

Western Hunan is a geographical environment dominated by mountains, hills, and
plains that rise higher in the northwest and lower in the southeast. Besides Han Chinese,
western Hunan is also inhabited by the Tujia, Miao, Dong, Yao, and other ethnic minori‑
ties [54]. The total population of these minority inhabitants accounts for 95% of the ethnic
minorities in Hunan [55] Province. The unique natural and human environments have
shaped unique ancient villages in Western Hunan. This study investigated the fire risks in
these ancient villages and included the following six aspects:
• Village site selection

Ancient villages in Western Hunan are often located in remote mountainous areas,
far from the firefighting units in towns (Figure 3a). For example, Dajing, Pingtan, and Qixi
villages are more than 20 km away from the nearest fire rescue unit, and their waiting time
for these units is more than thirty minutes [44]. These mountainous areas are also rich in
forest vegetation resources, which can quickly spread a fire.
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• Village layout

The layout of ancient villages in Western Hunan follows the mountainous terrain,
forming a narrow and winding street pattern (Figure 3b). The winding streets and alleys
are unconducive for crowd evacuation and firefighting operations. The lack of sufficient
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flat land to construct dwellings has even formed continuous clusters of buildings. When
a fire occurs, it is likely to result in a large‑scale residential fire accident if it is not extin‑
guished in a timely manner.

• Building materials and structures

In Xiangxi’s ancient villages, wood is the primary building material (Figure 3c,d).
Wood’s moisture content has an effect on its combustion performance [56]. A building’s
fire load is critical for determining fire scale and danger level [57]. Therefore, a Biaozhi
high‑precision wood moisture tester was used to measure the moisture content of wood
in High‑Chair village at 36 locations, including columns, walls, beams, window frames,
and stairs. The fire load of 23 residential houses in High‑Chair village was also surveyed
and estimated based on the Technical Code for Fire Protection of Building Steel Structures.
The density of common fir wood was 440 kg/m3, and the calorific value of wood combus‑
tion was 18.4 MJ/kg [44]. Due to the variability in active loads caused by objects such as
household goods and indoor furniture in different dwellings, the goal of this calculation
was fixed fire loads, such as dwelling structural members.

• Fire‑related activities

The number of fires caused by electrical fires and careless fire use exceeds half of
all fires in rural Hunan [44]. There are several fire‑related activities in Western Hunan
(Figure 3e) with unique ethnic origins and habits. Along with worshiping the gods in
ancestral halls, temples, and wind and rain bridges [32] and worshiping ancestors indoors,
fire pits are essential in fire rooms for smoking bacon, family gatherings, receiving guests,
discussions, and rituals. In addition, solid fuels such as coal and wood are widely used
for cooking and heating [58]. The energy patterns and fire habits of the High‑Chair village
were investigated, which helped to assess the fire risk.

• The fire risk of tourism development

The ancient villages of Western Hunan are being developed for tourism (Figure 3f)
due to their unique ethnic culture and architectural forms [8,59]. Tourism development
has, in turn, developed the local economy. However, some tourists litter cigarette butts
while children play with fire. The prevalence of tourists during the peak tourist season
make residential fire prevention more difficult. Many commercial appliances and disorga‑
nized segments of directly exposed electrical wiring are potential fire hazards.

2.2.2. Residential Fire Wisdom
Fire control strategies in ancient villages have evolved over thousands of years, as

has the construction history, creating a series of local fire prevention strategies. Four
aspects of traditional fire prevention strategies in High‑Chair village were investigated
and analyzed, including fire prevention culture, residential layout, wall forms, and fire
prevention materials.

• Fire prevention culture

Before technology, traditional fire prevention culture had subjective and spiritual as‑
pects. Before discovering effective technical fire prevention measures, our forefathers as‑
pired to and spiritually pursued traditional fire prevention culture. It reminds residents to
deal with a focus on fire danger, to be on the lookout for fire hazards, and to learn about
technical fire prevention measures. The fire prevention culture of ancient villages is re‑
flected in the unique decorative and component forms of the dwellings, which are integral
to ancient dwellings.

The fire prevention culture of High‑Chair village mainly includes two aspects
(Figure 4). One is the folklore stories of animals, deities, and ornaments that can extinguish
fires and prevent disasters, such as scops, lion head patterns for door locks, Shi Gandang
(God), fire‑avoiding pearls, and eight diagram mirrors. Second, people believe that the
color black reduces the risk of fire. Black represents water in the five elements of culture
and can restrain fire, and is used in black tiles and the text of water‑related plaques.
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• Dwelling layout

Dwellings in High‑Chair village are called Jiaozi Houses or Yinzi Houses, which are
kinds of dwellings with a courtyard and fence. A Jiaozi House means defense and storage.
Depending on the layout of rooms and patio, Jiaozi Houses can be divided into three types:
the目‑shaped plan, the回‑shaped plan, and the日‑shaped plan (Figure 5 and Table A1).
The patio facilitates indoor ventilation and lighting and is also a semi‑public place for res‑
idents to communicate with each other in their daily lives and activities [60]. In terms of
fire prevention, the patio separates the house from the courtyard wall, creating effective
spatial fire separation. To investigate the role of patio fire protection, the patio dimensions
of 40 typical Jiaozi houses were measured and compared to the street dimensions and the
fire safety spacing between residential houses. The fire protection effects of various patio
types were also simulated, as detailed in Section 2.3.

• Hill wall form

The form of a hill wall, i.e., a fire‑sealing hill wall, is a crucial fire prevention measure
for villagers’ residences in High‑Chair. The orderly and zigzag variation parts of the hill
wall beyond the roof also form a distinctive architectural form. It is higher than the ridge
of the roof so that the two adjacent houses remain separated. Outer parapet walls in High‑
Chair village are constructed of brick, and interior partitionwalls and columns are of wood
frame construction. Brick and stone masonry walls have decent fire resistance with a fire
resistance duration of over 6 h. The fire‑sealing hill wall is 300–400 mm thick, larger than
the traditional brick wall of 240 mm, and has decent structural stability during fires.
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• Hill wall form

The form of a hill wall, i.e., a fire‑sealing hill wall, is a crucial fire prevention measure
for villagers’ residences in High‑Chair. The orderly and zigzag variation parts of the hill
wall beyond the roof also form a distinctive architectural form. It is higher than the ridge
of the roof so that the two adjacent houses remain separated. Outer parapet walls in High‑
Chair village are constructed of brick, and interior partitionwalls and columns are of wood
frame construction. Brick and stone masonry walls have decent fire resistance with a fire
resistance duration of over 6 h. The fire‑sealing hill wall is 300–400 mm thick, larger than
the traditional brick wall of 240 mm, and has decent structural stability during fires.

In addition to fire‑sealing walls, other types of hill wall surfaces can be found in High‑
Chair village. Based on the relationship between the wall and the roof, they can be divided
into four scenarios: Scenario 1 is a sealed firewall (Figure 6a); Scenario 2 is a sealed house‑
holdwall whose height is the same as that of the roof andwhere the rafters are not exposed
outside the wall (Figure 6b); Scenario 3 is a hill wall whose height is the same as the roof
and where the rafters are exposed outside the wall (Figure 6c); Scenario 4 is a wooden hill
wall (Figure 6d). The fire effects of the various types of walls were simulated as detailed
in Section 2.3.2.

2.3. Software Simulations
2.3.1. Impact of Patios on Fires

Pyrosim software helped model the fire situation of residential houses in High‑Chair
ancient village and the Yang Fangxiu house to study the effects of different patios on the
fire performance in these houses. Three scenarios were included in the requirements that
were chosen. The first scenario is a typical Jiaozi house as an independent building fire pro‑
tection unit, thereby excluding the influence of external fire factors in residential houses on
simulation results. In the second scenario, there are houses on both sides of the courtyard.
In the third scenario, the dwellings were kept intact and used.
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• Simulation Model

First, based on the actual measurement results, a model of the Yang house was cre‑
ated using SketchUp software; then, the DXF model output from the software was loaded
into Pyrosim software. Finally, the burning situation was simulated by setting parameters
on Pyrosim [32,44] (Figure 7). There was some variability between active loads, due to
objects such as furniture and household items, in different homes; thus, the target of this
calculation was mainly fixed fire loads, such as structural members.
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Four scenarios were designed to investigate the effect of the patio on fire performance
in the dwelling. In all scenarios, the dwellings are modeled based on real measurements
and are kept the same. Patio size and type are the variables. Based on the findings in
Section 2.2.2 regarding the size and average depth of the patio, a depth of 4 m was chosen
for scenarios 1, 2, and 4. Table 2 and Figure 8 show the specific parameters and models.
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Table 2. The specific parameters of four scenarios.

Scenario Patio Form Patio Depth Patio Width Patio Partition

1 homocentric squares 4 10 Patio
2 shaped like目 4 10 Patio
3 shaped like目 1 10 Patio
4 shaped like日 4 10 Wall
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Figure 8. Four types of patio forms in residential models: (a) scenario 1; (b) scenario 2;
(c) scenario 3; (d) scenario 4; (e) actual patio conditions.

• Simulation parameters

The fire source, simulation grid, slices, measurement points, material parameters,
wind speed, wind direction, ambient temperature, and simulation time were set.

Fire source: The maximum heat release rate of the ignition source is 1 MW, based on
Chow, C.L. and Chow, W.K. [61] and Kim, H.J. and Lilley, D.G. [62]. The ignition source
is controlled with time to reach a maximum after a period of time and declines to extinc‑
tion thereafter. The model considers that the fire occurs indoors, and the interior building
materials are flammable except for the courtyard wall. The fire source is the indoor fire pit
area of the Yang Fangxiu residence. A Large Eddy Simulation (LES) [63] was used.

1. The simulation grid was set up according to the grid division method recommended
by the software user manual, and the simulation was consistent with the grid inde‑
pendence test experiment.

2. A Z‑plane slice was placed at the normal height of the human eye, 1.6 m above the
ground, on the first floor of the house. On the face of the hill wall, a Y‑plane slice
was placed.

3. Three monitoring points were set up, one at a distance of 0.5 m from the first‑floor
roomof the fire source residence and a height of 1.6m, and two on the other side of the
patio at a distance of 0.5 m from the room and heights of 1.6 m and 4.6 m, to simulate
changes in smoke temperature, visibility, and CO concentration for
three fires.

4. The wind speed is the annual average wind speed in High‑Chair village. To consider
the most dangerous situation, the wind direction is the same as the direction of the
residential arrangement.

5. Based on relevant studies and historical weather data inWestern Hunan, the ambient
temperature was set to 17 ◦C [64].

6. The simulation time is 1800 s.

The specific parameter settings are shown in Figure 7b, Tables 3 and 4.
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Table 3. Specific parameter settings for the four types of patio scenarios.

Scenario Fire Source Grid Size Fire Size Grid Number Ambient Temperature Wind Direction Wind Speed Time

1 1 MW 0.2 × 0.2 × 0.2 m 1 m × 1 m 78,039 17 ◦C North 1.5 m/s 1800 s
2 1 MW 0.2 × 0.2 × 0.2 m 1 m × 1 m 78,039 17 ◦C North 1.5 m/s 1800 s
3 1 MW 0.2 × 0.2 × 0.2 m 1 m × 1 m 70,122 17 ◦C North 1.5 m/s 1800 s
4 1 MW 0.2 × 0.2 × 0.2 m 1 m × 1 m 78,039 17 ◦C North 1.5 m/s 1800 s
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Table 4. Parameters of the materials recommended for fire control.

Material Density kg/m3 Specific Heat Capacity kJ/(kg·K) Thermal Conductivity W/(m·K)
Fire wood 500 2.52 0.108

Small green tile 2800 0.92 0.76
Stone 2800 0.92 3.49
Brick 1700 1.05 0.75 (100)

2.3.2. Impact of Hill Wall Form on Fires
• Simulation Model

Fire simulations were conducted for residential houses with different hill wall forms
to study their influence on the fire performance of residential houses in the ancient High‑
Chair village. The first house in the ancient village and the Yang Yungui house were se‑
lected for case study. The Yang Yungui house is a Qing Dynasty wooden structure, which
is a typical wooden residence in High‑Chair village (Figure 9a), and the first house in the
ancient village is an existing Ming Dynasty Jiaozi house in High‑Chair village, which is
well‑preserved and still used today (Figure 9b). Themodel‑buildingmethodwas the same
as in Section 2.3.1 (Figure 9c).
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Figure 9. (a) Measured dimensions of the Yang Yungui House; (b) measured dimensions of the first
house; (c) simulation model created based on actual dimensions.

Four scenarios were created to investigate the impact of hill wall shape on the fire per‑
formance of residential houses (Figure 10). The Yang Yungui house remained unchanged
throughout the scenarios, and four different types of dwellings were created by changing
the wall form of the first house in the ancient village. The plan dimensions of all models
were created based on real measurement data.
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Figure 10. (a) Simulation model of fire sealing hill wall; (b) simulation model of fire sealing house‑
holdwall; (c) simulationmodel of rafters sticking out of the hill wall; (d) simulationmodel ofwooden
hill wall; (e) hill wall actual condition.

• Simulation parameters

The firewall had good fire resistance, and the fire source was set to 2 MW [65–67]
to consider more dangerous fire conditions. Three measurement points were placed in
the middle of the hill wall of the adjacent dwelling, the first house of the ancient village,
at heights of 1.6 m, 4.6 m, and 7.6 m. A Y‑plane slice was set on the orthographic plane.
Furthermore, ambient temperature, wind speed, and simulation time parameters were the
same as those in Section 2.3.1. The specific simulation parameters are shown in Figure 9c
and Table 5.
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Table 5. Specific parameter settings for the four types of hill wall scenarios.

Scenario Fire Source Fire Size Grid Size Grid Number Ambient Temperature Wind Direction Wind Speed Time

1 2 MW 1 m × 1 m 0.2 × 0.2 × 0.2 m 173,376 17 ◦C East 1.5 m/s 1800 s
2 2 MW 1 m × 1 m 0.2 × 0.2 × 0.2 m 151,180 17 ◦C East 1.5 m/s 1800 s
3 2 MW 1 m × 1 m 0.2 × 0.2 × 0.2 m 151,180 17 ◦C East 1.5 m/s 1800 s
4 2 MW 1 m × 1 m 0.2 × 0.2 × 0.2 m 151,180 17 ◦C East 1.5 m/s 1800 s
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3. Results
3.1. Field Research Results
3.1.1. Wood Moisture Content and Residential Fire Loads

The investigation results on moisture content and fire load of the timber used in
High‑Chair village houses are shown in Figure 11 and Table A2. The averagemoisture con‑
tent of the wood in these houses is 11%, which is “full dry wood” and easily causes a fire.
The average amount of wood used in residential buildings is 0.26 m3/m2, 5.8 times more
wood than used in modern buildings (0.045 m3/m2). The average fire fixed load density of
the residential dwellings is 2133 MJ/m2, about 5.1 times more than that of modern houses
(420 MJ/m2). The fire load density of residential houses will be greater if active loads such
as household goods and furniture are considered.
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Figure 11. Investigation results on moisture content and fire load of the timber in High‑Chair
village houses.

3.1.2. Fire‑Related Activities
Figure 12 depicts survey results on energy patterns and fire habits in High‑Chair vil‑

lage. A total of 73.9% of residents cook with wood, and 87% store wood in their daily lives.
Indoors, 91.3% of residents use fire, and 56.5% of residents smoke. Indoor and outdoor
ritual fire behavior were performed by 30.4% and 91.3% of residents, respectively. 69.6%
of the residents also have wood frame walls.
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Highly flammable woodwas abundantly used to build the dwellings, fire loads of the
houses exceeded modern building standards, and the high frequency of multiple types of
fire use by the residents created serious fire hazards in the village. However, it is amazing
that no serious village fire accident has ever been recorded since it was built 600 years ago.
This is certainly due to the dwellings’ scientific and rational fire prevention strategies. It is
worthwhile to study the strategies for fire prevention in dwellings created by our ancestors
with limited knowledge and a multitude of experiences.

3.1.3. Patio Size
The investigation results on the patio dimensions of Jiaozi houses are shown in

Figure 13. The patio length of the Jiaozi houses corresponds to the length of the residential
openings, averaging 11 m. It is 4.09 m wide on average, 1.63 times wider than the High‑
Chair village streets (2.51 m) and twice as wide as the Lahao village streets (1.90 m). The
patio has an average width‑to‑height ratio of 0.78, which is 1.63 times the D/H value of the
High‑Chair village streets (0.48), 1.53 times theD/H value of the Lahao village streets (0.51),
and 1.34 times the D/H value of the Laodong village streets (0.58). The average width and
D/H value of the patio exceed those of the street. The patio creates a partition between
two dwellings, facilitates lighting and ventilation of the dwellings’ interior, and blocks the
direct spread of fire.

Fire 2023, 6, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 12. Survey results on energy patterns and fire habits in High-Chair village. 

Highly flammable wood was abundantly used to build the dwellings, fire loads of 
the houses exceeded modern building standards, and the high frequency of multiple types 
of fire use by the residents created serious fire hazards in the village. However, it is amaz-
ing that no serious village fire accident has ever been recorded since it was built 600 years 
ago. This is certainly due to the dwellings’ scientific and rational fire prevention strategies. 
It is worthwhile to study the strategies for fire prevention in dwellings created by our 
ancestors with limited knowledge and a multitude of experiences. 

3.1.3. Patio Size 
The investigation results on the patio dimensions of Jiaozi houses are shown in Fig-

ure 13. The patio length of the Jiaozi houses corresponds to the length of the residential 
openings, averaging 11 m. It is 4.09 m wide on average, 1.63 times wider than the High-
Chair village streets (2.51 m) and twice as wide as the Lahao village streets (1.90 m). The 
patio has an average width-to-height ratio of 0.78, which is 1.63 times the D/H value of the 
High-Chair village streets (0.48), 1.53 times the D/H value of the Lahao village streets 
(0.51), and 1.34 times the D/H value of the Laodong village streets (0.58). The average 
width and D/H value of the patio exceed those of the street. The patio creates a partition 
between two dwellings, facilitates lighting and ventilation of the dwellings’ interior, and 
blocks the direct spread of fire. 

 
Figure 13. Investigation results on the patio dimensions of Jiaozi houses.

3.2. Software Simulation Results
3.2.1. Fire Simulation Results for Different Patio Layouts
• Combustion situation: First item

Figure 14 depicts simulated combustions of Jiaozi houses with various patios. In
terms of combustion within 200 s, the four scenarios are similar. In scenario 1, the fire
spread to the patio area in 400 s, half of the opposite side of the house ignited in 600 s,
and the entire first floor on the opposite side ignited in 800–1000 s. The house on the other
side burned for the next 800 s (Figure 14a). In scenario 2, at 400 s, the fire spread in the
residential house of its source; at 1200 s, the entire first floor on the other side ignited, and
over the following 600 s, the dwelling on the other side continued to burn (Figure 14b). In
scenario 3, in 800 s, everything ignited on the other side of the first floor of the dwelling,
at 200 s and 400 s earlier compared to scenarios 1 and 2, respectively (Figure 14c). In
scenario 4, the fire always occurred in the dwelling containing the fire source within
1800 s, and the dwelling on the other side did not ignite (Figure 14d).
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Figure 14. Simulated combustions of Jiaozi houses with different patios: (a) scenario 1;
(b) scenario 2; (c) scenario 3; (d) scenario 4.

• Wall temperature

The simulatedwall temperatures in the four patio scenarios are shown in Figure 15. In
Scenario 1, at 600 s, the temperature of the patio corridor exceeded 900 ◦C. At 900 s, the tem‑
perature of the adjacent dwelling’s first floor exceeded 300 ◦C. During
1200–1800 s, full‑scale combustion occurred on the first floor of the adjacent dwelling, and
the temperature exceeded 900 ◦C. In Scenario 2, the fire did not spread to the adjacent
dwelling at
600 s. At 900 s, the temperature of the wall near the patio of the adjacent dwelling exceeded
260 ◦C. During 1200–1800 s, the area where the temperature of the first floor of the adja‑
cent dwelling exceeded 260 ◦C gradually increased. In Scenario 3, at 600 s, the wall near
the patio of the adjacent dwelling had a temperature exceeding 260 ◦C, earlier than that in
Scenario 2. The area where the temperature of the first floor adjacent to the patio exceeded
830 ◦C gradually increased between 900 and 1800 s. During 0–1800 s in scenario 4, the roof
temperature of the adjacent dwelling near the patio was approximately 150 ◦C, and the
temperature of the interior walls was unaffected. Scenario 4 was the most severe, followed
by Scenario 2, Scenario 1, and Scenario 3.
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• Measurement point parameters

Temperature variation results with time for each measurement point are shown in
Figure 16a. Scenario 1 showed a rapid temperature increase at measurement point 1 to
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the maximum (1000 ◦C) within 400–700 s, decreasing to 400 ◦C within 700–800 s, and fluc‑
tuating around 400 ◦C over the following 1000 s. Scenario 2 showed a slow increase in
the temperature at measurement point 1 within 400–1000 s, a rapid increase to a maxi‑
mum (about 680 ◦C) within 800–1200 s, and a fluctuating change near 680 ◦C over the next
600 s. Scenario 3 showed a rapid increase in temperature at measurement point 1 to a
maximum (about 700 ◦C) within 400–900 s and fluctuating changes around 700 ◦C for the
next 900 s. Scenario 4 showed the temperature at the threemeasurement points fluctuating
around 20 ◦C throughout the simulation time. The curves of scenario 3 were the first to
show a significant increase, followed by scenario 1, while scenario 4 changed the least. The
four scenarios were affected by fire in descending order: scenario 3, scenario 1, scenario 2,
and scenario 4.
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Figure 16. (a) Temperature variation results with time for each measurement point; (b) the visibility
variation results of eachmeasurement point with time; (c) and the CO concentration variation results
of each measurement point with time.

Visibility variation results at each measurement point with time are shown in
Figure 16b. The visibility variation sequence at each measurement point was the same
as that of the temperature, and the visibility in scenario 3 rapidly decreased from 30 m to
0 m at the three measurement points. The visibility reduction rate at each measurement
point in scenario 2 was less than those in scenario 1 and scenario 3. The visibility at each
measurement point in scenario 4 fluctuated at 30 m. The trend of CO concentration with
time for each measurement point was the same as that of the temperature, and visibility is
shown in Figure 16c.

3.2.2. Fire Simulation Results for Different Hill Wall Forms
• Combustion situation
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Figure 17 shows simulated fire combustions in dwellingswith different hillwall forms.
In scenarios 1 and 2, the fire‑burning situation hadno significant difference, and the dwelling
adjacent to the fire source was unaffected by the fire throughout 1800 s (Figure 17a,b). In
scenario 3, during 0–1000 s, a fire broke out in the dwelling containing the fire source and
continued to burn. During 1000–1200 s, the fire spread to the adjacent residential roof
area. During 1500–1800 s, the fire spread from the roof to the second‑floor rooms, which
were not completely destroyed (Figure 17c). Scenario 4 was the most severely affected. At
800 s, the adjacent dwelling’s roof was completely ignited. During 1000–1800 s, the fire
spread to the entire second floor of the adjacent dwelling (Figure 17d).
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Figure 17. (a) Simulated fire combustion of dwellings with different hill wall forms: (a) scenario 1;
(b) scenario 2; (c) scenario 3; (d) scenario 4.

• Wall temperature

Figure 18 shows the simulated wall temperatures of dwellings with different hill wall
forms. The simulation results in scenarios 1 and 2were similar, with the temperature of the
adjacent dwelling only exceeding 260 ◦C at the hill wall surface within 1800 s
(Figure 18a,b). In scenario 3, the roof frame area was where the temperature mainly ex‑
ceeded 260 ◦C. At 1200 s, about 1

3 of the roof frame exceeded 260 ◦C. At 1800 s, the area
exceeding 260 ◦C remained mainly in the roof frame area, and the maximum tempera‑
ture remained below 900 ◦C (Figure 18c). The fire most severely damaged the adjacent
dwellings in scenario 4. At 600 s, the temperature on most of the roof frame of the adja‑
cent dwellings exceeded 260 ◦C, and during 900–1800 s, the temperature of the entire roof
frame andmost of the second‑floor areas exceeded 900 ◦C (Figure 18d). The fire in scenario
4 was the most severe, followed by the fire in scenario 3, while the fires in scenarios 1 and 2
were contained.
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• Measurement point parameters

Temperature variation results with time for each measurement point are shown in
Figure 19a. The temperature at measurement point 1 in the four scenarios did not change
significantly with time and did not exceed 260 ◦C. The temperature at point 2 exceeded
260 ◦C in scenario 4, increasing rapidly to about 500 ◦C in 600–800 s, and then fluctuated
and grew over the next 1000 s, but remained always less than 260 ◦C in scenarios 1, 3, and
4. The temperatures in all scenarios at measurement point 3 exceeded those at points 1
and 2, and all fluctuated and varied in the range of 20–400 ◦C. The temperatures at all
times at measurement point 3 in scenario 1 were lower than those at points 2 and 3. The
temperature at point 3 in scenario 4 exceeded 260 ◦C at 450 s with a steadily increasing
trend for the next 1250 s.
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ture; (b) visibility; (c) CO concentration.

Visibility at points 1 and 2 also showed fluctuating variations in all scenarios. Visibil‑
ity at point 3 wasmost significantly affected. The visibility in all scenarios decreased to 0m
at 50 s at point 3. Scenario 1 showed fluctuations in the 0–25 m range from 400–1800 s, and
its visibility was significantly better than that of the remaining three scenarios. Scenarios
3 and 4 had visibility of less than 2 m at all times. Scenarios 1–4 had visibility ranked from
highest to lowest (Figure 19b). The concentration of CO at each measurement point varied
with temperature. The fire affected the four scenarios in the following order: scenarios 1–4
in descending order (Figure 19c).
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4. Discussion of the Traditional Fire Prevention Wisdom of Ancient Village Dwellings
4.1. Fire Prevention Culture

The fire prevention culture in ancient dwellings was slanted towards fire prevention
by residents before effective fire prevention techniques existed. It warned the residents to
always be aware of fire hazards and encouraged them to create technology‑based fire pre‑
ventionmeasures. Although these fire prevention cultures did not solve the fire prevention
problem, they helped positively impact the consciousness aspect of fire prevention among
ancestors with limited knowledge. When science and technology were undeveloped in
the early days, ancestral knowledge of fire causes was limited, but these fire prevention
cultures cannot be dismissed outright. These, along with other living cultures, form the
core national culture and are integral to fire prevention in ancient dwellings.

4.2. Patio Form
As an important part of the ancient village houses, the patio is the essential outdoor

area for daily activities and actively aids in fire prevention. Its average size in High‑Chair
village exceeds the street’s average size, and its D/H value exceeds the street’s. The tem‑
perature variation at each measurement point in a homocentric square patio (scenario 1)
and a日‑shaped plan patio (scenario 2) is more dispersed than at points without a patio
(Figure 20a), and the average visibility is lower than at those without a patio (scenario 3).
The partition wall, in scenario 4, has the best fire protection, and adjacent dwellings are un‑
affected by the ignited dwelling (Figure 20b). The presence of the patio slows the spread
of fire in directly adjacent dwellings, reducing the fire hazard (Figures A1 and A2). Fur‑
thermore, the outer parapet walls of Jiaozi houses are taller brick walls, and each dwelling
serves as its own fire protection unit. It also prevents fire from spreading to
adjacent dwellings.
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4.3. Hill Wall Form
The spread of fire in ancient village dwellings inWestern Hunan can be blocked using

fire‑resistant building materials such as bricks and stones, and the construction of outer
parapets prevents the spread of fire. Due to smoke buoyancy, the temperature and smoke
concentration at measurement points 3 were higher than those at measurement points 1
and 2. The dwellings in High‑Chair village use walls projecting from the roof to block the
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spread of fire to the wooden roof frame structure, reducing the risk of fire (Figure 21). The
fire and household sealing hill wall perform well in blocking fire. In scenario 3, compared
to scenarios 1 and 2, the fire spread to the roof timber structure by igniting wood purlins
(Figures A3 and A4). However, the hill wall over the roof effectively blocked the fire from
spreading to the interior.
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The ancient villages in Western Hunan are located in mountainous areas with abun‑
dant timber resources, and local inhabitants procure wood from local sources, making
it a crucial building material for dwellings. Considering the fire factor, several wooden
walls, columns, and roof frames were used for the interior, and exterior walls were built
with bricks for proper fire resistance. This maximizes the optimum use of local natural
resources. It creates a comfortable living environment while reducing the adverse effects
of fire and also creates a unique architectural style.

5. Conclusions
This study investigates and assesses the fire risk in ancient High‑Chair village, West‑

ern Hunan’s first village. It identifies traditional fire prevention strategies and quantifies
and reveals the science and rationality of traditional fire prevention measures. It even
helps us understand why the ancient village has been preserved over millennia. Several
significant findings are presented here, allowing the following conclusions to be reached.

• The survey results indicate a serious fire hazard in High‑Chair village. The average
moisture content of the wood in village houses is 11%, which is considered “fully
dry” and can easily cause fires. The average amount of wood used in these houses
(0.26 m3/m2) is 5.8 times the limit of wood used in modern buildings (0.045 m3/m2).
The average fire fixed load density of residential houses (2133 MJ/m2) exceeds that of
modern residential buildings (420MJ/m2) by approximately 5.1 times. The percentage
of residents using wood for cooking, storing wood, indoor fires, and smoking was
73.9%, 87%, 91.3%, and 56.5%, respectively. A serious fire incident has never been
recorded in High‑Chair Village since it was built 600 years ago, even with a fire load
that surpassesmodern disastermitigation standards and a high frequency ofmultiple
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types of fire use by residents. The residential fire prevention strategies developed
through hundreds of incidents deserve to be studied and learned.

• The residential fire prevention wisdom survey results indicate the existence of mul‑
tiple types of fire prevention culture in the High‑Chair village, including decorative
patterns, architectural components, and living apparatus derived from residential leg‑
ends and stories, the five elements of culture. The average width‑to‑height ratio of a
typical residential cellar house patio in a High‑Chair village dwelling (0.78) is also
1.63 times the street D/H value (0.48). The patio acts as an effective spatial partition
between two dwellings, preventing fire spread. Meanwhile, the hill walls between
High‑Chair village’s residential houses, with 300–400 mm thick masonry, serve as in‑
dependent fire protection units, preventing fire from spreading to adjacent dwellings.
A 6m high fire escape is also built between two hill walls to aid in resident evacuation
and fire rescue.

• Fire simulation scenario results show that temperature, visibility, and CO concentra‑
tion at each measurement point on iambic and day patios are less affected by fire than
points without patios. The patio also reduces fire risk by slowing the spread of fire
directly to adjacent dwellings. Dwellingswith fire‑sealed gablewalls block the spread
of fire from adjacent dwellings. Dwellings with purlins projecting beyond the gable
wall are unable to stop the spread of fire, and the fire spreads to the wood structure
of the roof frame by igniting the purlins. Wall forms with hill walls extending be‑
yond the roof are an effective fire prevention measure, and should be appreciated in
rural development.

• The survival wisdom of the ancient village dwellings, formed through thousands of
years, including ethnic culture, architectural layout, wall forms, and scientific and
reasonable use of local building materials, is an important reference for modern rural
construction, especially in remote mountainous areas. Currently, limited studies are
revealing the response strategies of ancient buildings to various disasters. These price‑
less experiences, however, are part of our ancestors’ cultural heritage. These response
strategies are long‑term, low‑cost, and appropriate for the local cultural environment
and climate. It is our responsibility to learn from our forefathers’ wisdom, develop it,
and pass it on to future generations.

These studies contribute to a clear understanding of the ancestral response to fire in
ancient villages. However, this study has certain limitations. Factors such as daily activity
behavior in the dwellings and indoor activity loadswere not consideredwhile creating this
model. This study also reveals the scientific nature of fire prevention measures but does
not provide a practical demonstration of their use in village construction. There are further
studies possible on combiningmodern technology to create fire prevention andmitigation
measures that include ethnic characteristics, regional culture, and good performance. Our
ancestors also created a very rich and effective diverse disaster mitigation culture. Their
preservation should begin in all regions, beginning inWestern Hunan, and should include
fire prevention. We must learn from history to build a better future.
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Appendix A
Table A1. Patio forms in dwellings in High‑Chair Village.

Num Type Owner Depth of Patio/m Patio Width/m Patio Form Opening

1 目‑shaped plan Y.J. 7.4 10.4 Irregular shape 3
2 目‑shaped plan Y.F. 6.3 11.4 Irregular shape 3
3 目‑shaped plan M.H. 7.2 9.6 Rectangular 3
4 目‑shaped plan Y.J. 7.1 10.5 Trapezoidal 3
5 回‑shaped plan Y.Y. 2.5 12.3 Trapezoidal 3
6 回‑shaped plan Y.F. 3.1 11.2 Rectangular 3
7 日‑shaped plan Y.F. 3.6 11.9 Trapezoidal 3
8 日‑shaped plan Y.R. 3.8 10.8 Rectangle 3
9 日‑shaped plan Y.Y. 2.3 5.9 Rectangle 2
10 日‑shaped plan Y.H. 2.4 10.1 Trapezoidal 3
11 日‑shaped plan Y.L. 3.1 12 Rectangle 3
12 日‑shaped plan Y.M. 2 10 Trapezoid 3
13 日‑shaped plan Q.B. 4.5 9.2 Trapezoidal 3
14 日‑shaped plan Y.R. 1.7 11.4 Rectangle 4
15 日‑shaped plan H.J. 9.1 11.8 Rectangle 3
16 日‑shaped plan Y.F. 5.8 6.2 Rectangle 3
17 日‑shaped plan W.Y. 3.2 12.5 Trapezoid 4
18 日‑shaped plan Y.G. 2.9 10.8 Trapezoid 3
19 日‑shaped plan Y.Y. 2.7 10.8 Trapezoidal 3
20 日‑shaped plan Y.Y. 2.9 10.9 Rectangle 3
21 日‑shaped plan Y.H. 2.2 12.1 Rectangle 3
22 日‑shaped plan W.H. 3 11.2 Rectangle 3
23 日‑shaped plan Y.Z. 2.5 11.6 Rectangle 3
24 日‑shaped plan Y.F. 4.5 11.8 Irregular shape 3
25 日‑shaped plan H.F. 2.1 10.8 Irregular shape 3
26 日‑shaped plan M.G. 3.4 14 Irregular shape 3
27 日‑shaped plan Y.R. 4.1 11.2 Rectangle 3
28 日‑shaped plan Y.R. 3.4 12.2 Trapezoidal 3
29 日‑shaped plan Y.G. 4 13 Rectangle 4
30 日‑shaped plan Y.Y. 2.7 15 Trapezoidal 5
31 日‑shaped plan Y.R. 3.5 12.8 Irregular shape 3
32 日‑shaped plan H.Y. 2.1 15.6 Trapezoidal 4
33 日‑shaped plan M.Y. 3.3 5.2 Irregular shape 1
34 日‑shaped plan Y.F. 2.7 10.5 Trapezoidal 3
35 日‑shaped plan Y.Y. 5.6 12.3 Rectangular 3
36 日‑shaped plan Y.Y. 4 16.5 Trapezoid 4
37 日‑shaped plan Y.X. 3.3 5.7 Trapezoidal 2
38 日‑shaped plan Y.R. 6.5 9.1 Rectangular 3
39 日‑shaped plan M.Y. 11.1 8.1 Trapezoidal 3
40 日‑shaped plan Y.Y. 6.2 15 Rectangle 5

Table A2. Investigation results of the fire loads of dwellings in High‑Chair Village.

Owner Wood Amount per Square Meter Mass/(Kg) Heat Released/(MJ) Fire Load Density/(MJ/m2)

Y.H. 0.29 17,569.2 323,273.28 2347.84
Y.R. 0.34 17,723.2 326,106.88 2752.64
Y.F. 0.29 18,044.4 332,016.96 2347.84
H.Y. 0.24 26,910.4 495,151.36 1943.04
Y.G. 0.3 15,298.8 281,497.92 2428.8
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Table A2. Cont.

Owner Wood Amount per Square Meter Mass/(Kg) Heat Released/(MJ) Fire Load Density/(MJ/m2)

Y.F. 0.27 22,008.8 404,961.92 2185.92
Y.R. 0.27 17,512 322,220.8 2185.92
J.G. 0.28 20,200.4 371,687.36 2266.88
Y.F. 0.28 18,216 335,174.4 2266.88
Y.R. 0.3 15,914.8 292,832.32 2428.8
M.Y. 0.32 6371.2 117,230.08 2590.72
Y.Y. 0.26 29,022.4 534,012.16 2104.96
H.J. 0.24 21,014.4 386,664.96 1943.04
Y.F. 0.22 17,446 321,006.4 1781.12
M.H. 0.22 16,038 295,099.2 1781.12
Y.Y. 0.27 12,504.8 230,088.32 2185.92
Y.J. 0.24 19,764.8 363,672.32 1943.04
Y.J. 0.29 18,801.2 345,942.08 2347.84
X.P. 0.23 12,012 221,020.8 1862.08
W.Y. 0.22 14,894 274,049.6 1781.12
Y.G. 0.21 13,323.2 245,146.88 1700.16
Y.G. 0.24 12,016.4 221,101.76 1943.04
Y.Y. 0.24 7924.4 145,808.96 1943.04
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