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Abstract: To tackle the problem of missed detections in long-range detection scenarios caused by the
small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction
and detection precision of models designed for forest fire imagery. In this study, two algorithms,
DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You
Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to
YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-
YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average
precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in
precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5
algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed
the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.

Keywords: forest fire detection; DenseM-YOLOv5; SimAM-YOLOv5

1. Introduction

Forests serve as a vital natural resource within the Earth’s ecosystem, contributing
significantly to the preservation of biodiversity, climate regulation, and water resource
management [1,2]. The emergence of forest fires inflicts considerable ecological harm,
causing widespread loss of vegetation and devastation of habitats, which in turn adversely
affects biodiversity and the overall ecological equilibrium [3–5].

Forest fires, as a severe disaster, cause significant harm to the ecosystem and human
society [6]. In order to promptly detect and respond to forest fires, scientists and rescue
personnel are continuously exploring and developing various fire detection methods [7,8].
Common methods for forest fire detection include manual patrols, aerial remote sensing,
and fire detectors. Manual patrols rely on human resources for surveillance and reporting,
while aerial remote sensing utilizes remote-sensing technology to monitor vast areas.
Fire detectors, on the other hand, employ sensors and detection techniques to monitor
environmental parameters in real-time [9–11]. While manual patrols continue to play
a crucial role in fire monitoring, the deployment of advanced technologies, including
remote-sensing technology and fire detectors, can markedly improve the effectiveness and
efficiency of fire monitoring efforts. In addition, the integration of traditional machine
learning or deep learning algorithms with remote-sensing technology and fire detectors has
emerged as a trend in recent years [12]. Advanced systems are capable of learning from and
examining diverse data sources, such as remote-sensing data, environmental factors, and
visual media such as images and videos. These systems can estimate the likelihood of a fire
starting or detect fires in their early stages. Such capabilities can greatly diminish response
times, potentially protecting lives and property from harm. Effective forest fire detection
enables early detection and rapid response to fires, allowing for timely measures to control
the spread of fire, protect human lives and property, and mitigate ecological damage
and economic losses caused by fires [13–15]. Efficient fire detection helps to improve fire
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warning capabilities, and prompt timely fire response and rescue operations, ensuring that
fires are brought under control and extinguished as early as possible, thereby safeguarding
the stability and sustainable development of forest ecosystems [16,17].

The swift advancement of deep learning has introduced novel approaches to forest fire
detection. Deep-learning-based object-detection approaches exhibit distinct benefits when
applied to identifying forest fires [18–20]. These advantages include high accuracy, fast
detection speed, flexible installation and the ability to adapt to various fire features [21–23].
Mohnish et al. (2022) [24] preprocessed the images in the dataset and input them into a
convolutional neural network (CNN) for feature extraction and detection. The detection
accuracy on the training and testing datasets was 93% and 92%, respectively. Chen et al.
(2023) [25] introduced an enhanced multi-scale forest fire detection model called YOLOv5s-
CCAB, which is based on the YOLOv5s architecture. This model aims to tackle the issue of
low detection accuracy resulting from the multi-scale attributes and variable morphology of
forest fires. Experimental results reveal that YOLOv5s-CCAB, tested on a multi-scale forest
fire dataset, boosts AP@0.5 by 6.2% to 87.7% and achieves an FPS (frames per second) of
36.6, demonstrating its high detection accuracy and speed. Yar et al. (2023) [26] put forward
an enhanced YOLOv5s model that incorporates a stem module in the backbone, substitutes
the larger kernel with a smaller one in the spatial pyramid pooling (SPP, neck), and includes
a P6 module in the head. This model yields promising outcomes with low complexity
and a compact model size, and it is capable of detecting both small and large fire areas
within images. Ghali et al. (2022) [27] presented a new deep ensemble learning method that
merges EfficientNet-B5 and DenseNet-201 models to identify and categorize wildfires using
aerial imagery. Their suggested wildfire classification model attains an accuracy of 85.12%,
surpassing numerous leading research outcomes in the field. Zhou et al. (2023) [28] utilized
semi-supervised knowledge extraction (SSLD) during training to enhance the convergence
speed and accuracy of the model. This was achieved by incorporating the overall structure
of YOLOv5 and MobileNetV3 as the backbone network. Dilli et al. (2022) [29] employed
a deep-learning-based YOLO model from the target detection library to perform early
wildfire detection using thermal images from unmanned aerial vehicles (UAVs). To address
the limitations of using thermal images, they integrated a significance graph with the
thermal imagery. Their method is believed to offer valuable technical support for nighttime
monitoring, potentially mitigating the devastating impact on forest resources, human lives,
and wildlife during the initial stages of wildfires.

At present, YOLOv5 has demonstrated commendable performance in the field of object
detection, as evidenced by various studies [30,31]. However, when it comes to long-range
detection, particularly in the context of forest fires, the model encounters certain limitations.
At times, the targets for detection in forest fires are typically quite small, and this becomes
even more challenging during the initial stages of a fire. In certain scenarios, the flames and
smoke plumes at the onset of a fire may be hidden by dense foliage and are often not large
enough to be easily detected by the model. The intrinsic nature of forest fires presents a
considerable obstacle for the detection performance of the YOLOv5 model. As a result, there
can be instances of missed detections, where the model fails to identify the early signs of a
fire. This not only compromises the timeliness of fire detection but also impacts the overall
accuracy of the network. Therefore, while YOLOv5 has shown promise in object detection,
its effectiveness in the early and long-range detection of forest fires remains an area that
requires further improvement and exploration. Furthermore, the Cross Stage Partial (CSP)
module in the YOLOv5 model is primarily intended for multi-class detection tasks, which
may not be optimal for feature extraction in forest fire recognition, given the relatively low
complexity of such scenarios. To overcome this limitation and improve the network’s ability
to capture features of small targets, this study proposes targeted enhancement strategies
with two new network models: DenseM-YOLOv5 and SimAM-YOLOv5, both of which
are built upon the backbone network of the YOLOv5 algorithm. The DenseM-YOLOv5
model incorporates Densely Connected Convolutional Networks (DenseNet), a network
that improves feature propagation and reduces parameters. Additionally, a DenseM
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module was designed specifically for detecting small targets in forest fire recognition [32].
The SimAM module, equipped with an optimized energy function, takes into account
both spatial and channel dimensions, enabling the network to acquire more discerning
neurons. This attention module infers 3D weights for feature maps without introducing
additional parameters. By emphasizing important features and suppressing background
interference, the SimAM-YOLOv5 model achieves improved detection accuracy compared
with YOLOv5. These strategies aim to enhance the network’s representation capability and
optimize feature extraction specifically for forest fire detection.

2. Materials and Methods
2.1. Hyperparameter Settings and Dataset
2.1.1. Hyperparameter Settings

The hyperparameter settings used for experimentation in this study are displayed in
Table 1. The settings for these hyperparameters are consistent across all three tested models.
These settings play a crucial role in determining the performance of the proposed ap-
proach. The selection of hyperparameters is determined by considering a balance between
system processing capabilities (demands for computation and memory) and accuracy, in
conjunction with the results of multiple experiments and empirical evaluations. By carefully
selecting and tuning these hyperparameters, we aim to achieve optimal results in the forest
fire recognition task. The table provides a comprehensive overview of the specific values
chosen for each hyperparameter, including image size, epochs, batch size, initial learning
rate (Lr0), and optimizer. In the realm of deep learning, the image size, typically measured
in pixels, determines the volume of input data for the neural network model, as well as
the computational complexity and resource requirements. The term epochs represents the
number of times the model learns from the entire dataset, with an excessive or insufficient
number of epochs potentially affecting the outcome of model training. Batch size refers to
the number of samples used each time the model weights are updated, directly impacting
the stability of model training and the utilization of computational resources. The initial
learning rate (Lr0) sets the pace of learning at the onset of model training. It requires
meticulous adjustment based on the specifics of the model to ensure that the model can
effectively and swiftly converge to the optimal solution. Furthermore, SGD (stochastic
gradient descent) is an optimization algorithm employed to discover the local minimum of
the loss function. In comparison to gradient descent (GD), SGD estimates the gradients
using only a subset of samples during each iteration. As a result, SGD requires significantly
less time for each update, leading to faster convergence. It possesses the characteristics of
high computational efficiency and excellent scalability [33]. The chosen settings, derived
from initial experiments and empirical evaluation, were established to guarantee the effec-
tiveness of the modified approach. Hyperparameter tuning is an iterative process, and it is
worth noting that the optimal values may vary depending on the dataset, the problem at
hand, and the model architecture. As such, it is crucial to regularly reassess and fine-tune
the hyperparameters as new data becomes available or as the problem being solved evolves.
Continuous monitoring and adjustment of hyperparameters can help ensure that the model
remains optimized and performs well over time.

Table 1. Hyperparameter settings.

Type Value

Image Size 640 × 640
Epochs 200

Batch Size 8
Lr0 0.01

Optimizer SGD



Fire 2023, 6, 291 4 of 14

2.1.2. Dataset

To obtain the necessary forest fire images for model training, a mix of conventional
forest fire photos and photos without forest fire were gathered through web scraping
methods [34]. Additionally, a series of forest fire images were extracted from downloaded
forest fire videos by capturing frames. This comprehensive approach ensured a diverse and
representative dataset for training the model. In addition, some authors of research papers
have also made certain fire datasets publicly available, such as the BoWFireDataset [35]. In
the end, we gathered a total of 2328 images. Among these, 716 images captured instances
of forest fires, while the remaining 1612 images were of forest environments without fire.
These images were then used to create a comprehensive forest fire dataset. To ensure reliable
evaluation, we partitioned 80% of the dataset as the training set, and 20% as the validation
set [36]. This division allows for comprehensive training and effective validation of the
dataset’s performance. Importantly, the partitioning was carried out randomly to maintain
the diversity and representativeness of both the training and validation sets [37]. Figure 1
showcases a collection of fire and non-fire images included in the acquired dataset.

(a) (b)

(c) (d)

Figure 1. Dateset of forest fires: (a,b,d) fire images; and (c) non-fire image.

2.1.3. Model Performance Evaluation Index

The main task of our research is treated as a binary classification problem, where
the outcome is either fire or non-fire. Within the forest fire classification, fire represents a
positive example, while non-fire constitutes a negative example. In the binary classification
problem of forest fire detection, there are four possible situations: true positive (TP), when
the model accurately predicts a fire; true negative (TN), when the model correctly predicts
no fire; false positive (FP), when the model mistakenly identifies a non-fire as a fire; and
false negative (FN), when the model incorrectly classifies a fire as a non-fire [38].

One of the crucial metrics for assessing a model’s performance is precision, which quan-
tifies the model’s prediction accuracy by determining the ratio of true positive instances to
the total number of instances predicted as positive by the model. It is an important measure,
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especially in situations where false positives can have significant consequences [39]. The
calculation method is shown as Equation (1) [40].

Precision =
TP

TP + FP
(1)

Recall, also known as sensitivity or true positive rate (TPR), is an essential metric
that evaluates the percentage of true positive instances correctly identified as positive by
the model, relative to the total number of true positive instances [39]. In the context of
forest fire detection, a high recall rate signifies the algorithm’s effectiveness in detecting
and precisely locating fire points within images. This metric is particularly valuable as it
ensures that potential fire incidents are not overlooked, minimizing the risk of undetected
fires in forest areas. The calculation method is shown as Equation (2) [41].

Recall =
TP

TP + FN
(2)

Average precision (AP) is also a fundamental metric used to evaluate the performance
of object-detection algorithms. It provides a comprehensive assessment of the trade-off
between precision and recall by considering the entire precision–recall (P–R) curve. The
AP is determined by calculating the area beneath the curve. By considering the complete
P–R curve, AP provides a more informative evaluation of the algorithm’s performance
compared to using a single point on the curve. It takes into account the precision–recall
trade-off at different operating points, capturing the algorithm’s ability to balance accurate
positive predictions (precision) with the ability to identify all positive instances (recall).
Higher AP values indicate superior performance, demonstrating the algorithm’s capability
to achieve both high precision and recall simultaneously [42]. The method for computation
is represented by Equation (3) [41].

AP =
∫ 1

0
P(R)dR (3)

While computing AP, the average precision values across various classes are weighted
and averaged to derive the mean average precision (mAP). Equation (4) [41] illustrates
the calculation formula, where n denotes the total number of classes and APi signifies the
average precision value for the th class.

mAP =
∑n

i=1 APi

n
(4)

mAP is a standard metric frequently employed to assess the effectiveness of object-
detection algorithms across multiple object classes. It provides a reliable measure for
different-sized and difficulty-level objects and is widely used in performance comparison
and optimization of object-detection algorithms. The primary emphasis of this study lies in
the detection of forest fires, which pertains to a single class exclusively. Therefore, under
the same Intersection Over Union (IOU) threshold, the values of mAP and AP are the
same [43]. Hence, this study adopts the AP metric and sets the IOU threshold to 50%,
denoted as AP50.

2.2. YOLOv5 Algorithm Structure

YOLOv5 is an object-detection architecture known for its high performance and effi-
ciency, demonstrating rapid, precise, and adaptable features [44]. It has broad applications
in various computer vision tasks and provides powerful tools and technical support for
real-time object detection. Its unique design and optimization make YOLOv5 perform
exceptionally well in handling large-scale data with less computational resources [45]. This
advanced architecture enables efficient processing of vast amounts of information without
compromising performance. YOLOv5’s strength lies in its ability to adapt to various target
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detection tasks. This versatility and flexibility empowers researchers and developers to
explore new possibilities and drive innovation in the field.

YOLOv5 utilizes a single-stage detection technique in which the whole image is fed
into the network, allowing it to directly determine the locations and classifications of objects
within the images. This end-to-end detection approach allows YOLOv5 to quickly and
precisely identify multiple objects, making it well-suited for real-time tasks. The complete
network architecture of YOLOv5 is depicted in the Figure 2. YOLOv5 mainly consists of
two parts: the backbone and the neck. In the backbone, the cross-stage partial network (CSP,
or C3 as shown in the figure) structure uses two 1 × 1 convolutions for the transformation
of input features [46]. The first CSP is used for feature extraction in the backbone section.
The second CSP is used for feature fusion in the neck section. In addition to the CSP module,
the backbone also has a spatial pyramid pooling fast (SPPF) module, whose function is
to extract the global information of the detection target [47]. The neck of YOLOv5 uses
the path aggregation network (PANet) structure to aggregate the features. The neck is
primarily used for generating feature pyramids in order to enhance the model’s detection
of objects at different scales, thereby enabling the model to recognize the same object at
different sizes and scales [48].

Figure 2. YOLOv5 Model Architecture.

2.3. Improving the Network Used by the YOLO5 Algorithm
Improvements to the Backbone Network

In the YOLOv5 model, the CSP structure in the backbone network is primarily de-
signed for multi-class object-detection tasks and has shown good performance on datasets
such as COCO and PASCAL VOC. However, for the specific problem of forest fire recog-
nition, which has relatively lower complexity, the CSP structure may not be optimal for
extracting relevant features. Therefore, to improve feature extraction and enhance the
detection accuracy of forest fires, it is proposed to replace all CSP structures in the YOLOv5
backbone network with two new network models: DenseM-YOLOv5 and SimAM-YOLOv5.

Densely Connected Convolutional Networks (DenseNet), published in 2017 at CVPR,
introduced a dense convolutional network that leverages short connections between layers
close to the input and those close to the output. This approach enables more accurate train-
ing and higher efficiency in convolutional networks. DenseNet effectively alleviates the
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problem of gradient vanishing, significantly reduces the number of parameters, improves
computational efficiency, and enhances feature propagation. When stacking multiple con-
volutional and pooling layers, network models can suffer from degradation and gradient
vanishing issues. In ResNet, residual connections were introduced to address this problem
and ensure better information and gradient flow. To maximize information flow between
layers, DenseNet combines all layers using direct connections. Each layer receives addi-
tional inputs from all preceding layers, allowing the feature maps from earlier layers to
be passed to all subsequent layers [49]. Unlike ResNet, feature combination in DenseNet
does not involve summation; instead, connections are used to achieve combination. For
feature reuse, DenseNet connects the current layer to all previous layers in the network
and designs each layer to be narrow, enabling each layer to learn only a small number of
features and reducing redundancy in feature learning [50].

In order to enhance the detection of targets which are small in the context of forest
fire situations, a DenseM module was specifically devised, as illustrated in Figure 3. The
DenseM module divides the input feature map into two separate branches. One branch
undergoes a CBS operation. In this context, CBS denotes an operational sequence comprised
of Convolution (Conv), Batch Normalization (BN), and the Sigmoid Linear Unit (SiLU)
activation function. The other branch first goes through CBS, then passes through DenseNet,
and undergoes another CBS operation. The results from the two branches are then merged
and subjected to another CBS operation.

Figure 3. DenseM module.

To enhance the ability of the model to capture forest fire features and improve detection
accuracy, all CSP structures in the backbone network of the YOLOv5 model were substituted
with DenseM. This modification led to the creation of the DenseM-YOLOv5 model. The
structure of the backbone network, incorporating the DenseM modules, is depicted in
Figure 4.

Figure 4. Backbone network of DenseM-YOLOv5 model.

At present, attention mechanisms generally face two primary constraints. First, they
are only capable of enhancing features across either the channel or spatial dimensions, limit-
ing their ability to learn flexible attention weights across both channel and spatial variations.
Additionally, their pooling and other components require a series of complex elements. To
address these issues based on neural science theories, the SimAM module is proposed. By
considering both spatial and channel dimensions, the SimAM module infers 3D weights
for the current neuron, enabling the network to learn more discriminative neurons. SimAM
serves as a conceptually simple yet remarkably effective attention module [51]. Compared
to common spatial and channel attention modules, SimAM has the ability to deduce 3D
weights for the feature maps within a layer without adding extra parameters. Furthermore,
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an optimized energy function is proposed to determine the importance of each neuron. In
terms of accuracy, the SimAM module surpasses commonly utilized attention modules
such as Squeeze-and-Excitation (SE), Convolutional Block Attention Module (CBAM) and
Efficient Channel Attention (ECA) on datasets such as CIFAR-10 and CIFAR-100 [51,52].

In order to emphasize important features and suppress irrelevant background interfer-
ence, thereby improving detection accuracy, the SimAM module is applied to replace all
CSP modules in the YOLOv5 backbone network, resulting in the SimAM-YOLOv5 model.
Figure 5 depicts the SimAM-YOLOv5’s backbone network.

Figure 5. Backbone network of SimAM-YOLOv5 model.

3. Results
Comparison of Multiple Model Results

To verify the feasibility of the SimAM-YOLOv5 and DenseM-YOLOv5 algorithms,
experimental results were compared among YOLOv5, SimAM-YOLOv5, and DenseM-
YOLOv5. The experimental results are shown in Table 2. In order to assess the complexity of
the models, the number of parameters for each network was calculated. By iterating through
each layer and component of the model, the parameter information of each submodule,
including weight matrices and bias vectors, can be obtained. These are returned in the form
of a generator. These parameter tensors are then iterated over, the number of their elements
is calculated, and these quantities are aggregated to derive the total number of parameters
in the entire model. This process can be achieved by using the ’model.parameters()’ function
of PyTorch and operations on the parameter tensors. From the perspective of lightweight
models, compared to the YOLOv5 algorithm, the parameter count of the SimAM-YOLOv5
algorithm decreased by 28.57%. SimAM-YOLOv5 achieved a detection accuracy of 81.95%,
an improvement of 2.07% compared to YOLOv5, with a slight decrease in recall rate. The
average precision (AP) of the two models differed only by 0.02%. Furthermore, from Table 2,
it can be observed that compared to YOLOv5 and SimAM-YOLOv5, the DenseM-YOLOv5
algorithm showed effective improvements in precision, recall rate, and AP, despite having
a higher parameter count. Specifically, compared to YOLOv5, DenseM-YOLOv5 achieved
a precision of 82.12%, an improvement of 2.24%, and a recall rate and AP of 82.15% and
87.19%, respectively, representing increases of 1.2% and 1.52% each.

Table 2. The comparison experiment of DenseM-YOLOv5 and SimAM-YOLOv5 models.

Model P/% R/% AP/% Parameter/M

YOLOv5 79.88 80.55 85.67 7.0
SimAM-YOLOv5 81.95 80.32 85.69 5.0
DenseM-YOLOv5 82.12 81.75 87.19 8.6

The training results of the DenseM-YOLOv5 algorithm and YOLOv5, as they vary
with the number of iterations, are shown in Figure 6. It can be observed that after reaching
50 iterations, DenseM-YOLOv5 shows a higher accuracy compared to YOLOv5. However,
there is no significant improvement in terms of recall rate compared to the YOLOv5 model.
In terms of AP, after 75 iterations, DenseM-YOLOv5 consistently outperforms YOLOv5
in terms of AP value. Given that SimAM-YOLOv5 is a lightweight model requiring no
additional parameters, its performance is slightly inferior to that of DenseM-YOLOv5. Its
accuracy improves after 150 iterations, with the recall reaching a similar level to that of
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YOLOv5 after 200 iterations. Additionally, the AP value of SimAM-YOLOv5 outperforms
YOLOv5 subsequent to 150 iterations.

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a–c) Comparison of training results between YOLOv5 and DenseM-YOLOv5. (d–f) Com-
parison of training results between YOLOv5 and SimAM-YOLOv5.

The experiment conducted tests on an image dataset from a drone’s perspective using
the YOLOv5 algorithm as well as the DenseM-YOLOv5 algorithm, which has higher de-
tection accuracy and AP. Figure 7 presents a visual representation of several test results.
The test results belonging to the YOLOv5 algorithm are depicted in Figure 7a,c,e, while
Figure 7b,d,f illustrate the test results of the DenseM-YOLOv5 algorithm. From Figure 7a,b,
it can be observed that in images with a single fire point, the DenseM-YOLOv5 algo-
rithm performs slightly better in terms of detection compared to the YOLOv5 algorithm.
Figure 7c,d show that when there are two fire points in the forest fire image, YOLOv5
only detects one of them, while the DenseM-YOLOv5 algorithm is able to detect both fire
points. As shown in Figure 7e,f, when detecting multiple fire points in the target image, the
YOLOv5 algorithm is prone to missing detections, whereas the DenseM-YOLOv5 algorithm
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can detect multiple fire targets in the image. As a result, the utilization of the detection
method based on DenseM-YOLOv5 can reduce the occurrence of missed detections when
dealing with small targets in forest fire images.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Partial test results of YOLOv5 and DenseM-YOLOv5 models: (a,c,e) YOLOv5 algorithm;
and (b,d,f) DenseM-YOLOv5 algorithm

4. Discussion

In this study, we proposed two modified YOLOv5 models, DenseM-YOLOv5 and
SimAM-YOLOv5, to improve forest fire detection accuracy, particularly when dealing with
small targets in forest fire images. By replacing the CSP modules in the YOLOv5 backbone
network with DenseM modules, the DenseM-YOLOv5 algorithm achieves better feature
extraction for small targets in forest fire recognition. The experimental results demonstrate
that DenseM-YOLOv5 outperforms YOLOv5 in terms of precision, recall rate, and average
precision (AP), despite having a higher parameter size. This suggests that the DenseM
module effectively addresses the challenge of missed detections due to the small size of for-
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est fire targets in long-range detection scenarios. On the other hand, the SimAM-YOLOv5
algorithm, while reducing the parameter size by 28.57% compared to YOLOv5, achieved a
detection accuracy of 81.95%, an improvement of 2.07% compared to YOLOv5. Although
there was a slight decrease in recall rate, the precision and average precision (AP) were
improved. This indicates that the SimAM module, with its optimized energy function con-
sidering both spatial and channel dimensions, effectively emphasized important features
and suppressed background interference, resulting in improved detection accuracy.

Future research directions can focus on optimizing the DenseM and SimAM modules.
Further research could be conducted to optimize the design and implementation of the
DenseM and SimAM modules, potentially improving their effectiveness in feature extrac-
tion and background suppression. The combination of DenseM and SimAM modules can
be explored, which may yield superior performance in terms of accuracy and efficiency by
harnessing the advantages of each module. Furthermore, adapting the models for real-time
applications can be explored [53]. Optimizing the models for real-time detection of forest
fires could lead to more practical applications, such as early-warning systems and real-time
monitoring of forest fire progression. In addition, considering the significant computational
and storage requirements of deep learning networks, which are detrimental to the suscep-
tibility of wildfires, future work will focus on studying lightweight and efficient models,
such as MobileNets and EfficientNets. Previous studies have shown that MobileNet and Ef-
ficientNet are lightweight convolutional neural network structures [54,55]. MobileNets use
depthwise separable convolutions in place of standard convolutions, which significantly
reduces computational cost [56]. EfficientNets employ the compound scaling method,
which balances model complexity and computational efficiency, to simultaneously improve
model accuracy and efficiency [57]. Researchers have utilized these architectures for forest
fire detection, or incorporated them into other deep learning networks to achieve efficient
and lightweight forest fire detection networks. Recently, the X-MobileNet was developed,
with a key design focus on the efficient and swift detection of forest fires using UAV-sourced
imagery. This model elegantly employs the scalable MobileNetV2 architecture and stands
out due to its suitability for real-time deployment on drones, which often grapple with
limited computational resources [58]. Another lightweight deep learning model has been
developed, specifically tailored for wildfire detection using video cameras. This model
achieves an impressive balance between accuracy and efficiency, accomplished through
strategic modifications to the YOLOv5s backbone with MobileNet Version3 architectures,
optimization of feature extraction and fusion processes, and the incorporation of attention
mechanisms. It demonstrates promising performance for real-time wildfire detection on
edge devices [59]. A lightweight encoder–decoder network, which is a modification of
EfficientNet Version2, is proposed for real-time wildfire segmentation in UAV images. The
proposed model utilizes efficient blocks such as depthwise convolutions and attention
gating to reduce parameters while maintaining accuracy. The lightweight architecture
enables deployment on drones with limited computing resources [55]. These approaches
would enable more efficient and rapid identification of wildfires in images, consuming
fewer computational resources while still achieving desirable accuracy and performance.
This would be advantageous for real-time wildfire detection and the swift deployment of
such systems.

In summary, the DenseM-YOLOv5 and SimAM-YOLOv5 models represent a promis-
ing step forward in forest fire detection. By exploring the suggested future research direc-
tions, we can continue to advance the field and develop increasingly effective solutions for
forest fire monitoring and prevention.
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