
Citation: Florath, J.; Chanussot, J.;

Keller, S. Utilizing Volunteered

Geographic Information for Real-Time

Analysis of Fire Hazards:

Investigating the Potential of Twitter

Data in Assessing the Impacted Areas.

Fire 2024, 7, 6. https://doi.org/

10.3390/fire7010006

Academic Editor: Grant Williamson

Received: 5 October 2023

Revised: 20 November 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Utilizing Volunteered Geographic Information for Real-Time
Analysis of Fire Hazards: Investigating the Potential of Twitter
Data in Assessing the Impacted Areas
Janine Florath 1,2,* , Jocelyn Chanussot 2 and Sina Keller 1

1 Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany; sina.keller@kit.edu

2 GIPSA-Lab, Université Grenoble Alpes, CNRS, Grenoble INP, 38402 Saint Martin d’Heres, France;
jocelyn.chanussot@grenoble-inp.fr

* Correspondence: janine.florath@kit.edu

Abstract: Natural hazards such as wildfires have proven to be more frequent in recent years, and to
minimize losses and activate emergency response, it is necessary to estimate their impact quickly
and consequently identify the most affected areas. Volunteered geographic information (VGI) data,
particularly from the social media platform Twitter, now X, are emerging as an accessible and near-
real-time geoinformation data source about natural hazards. Our study seeks to analyze and evaluate
the feasibility and limitations of using tweets in our proposed method for fire area assessment in
near-real time. The methodology involves weighted barycenter calculation from tweet locations and
estimating the affected area through various approaches based on data within tweet texts, including
viewing angle to the fire, road segment blocking information, and distance to fire information. Case
study scenarios are examined, revealing that the estimated areas align closely with fire hazard areas
compared to remote sensing (RS) estimated fire areas, used as pseudo-references. The approach
demonstrates reasonable accuracy with estimation areas differing by distances of 2 to 6 km between
VGI and pseudo-reference centers and barycenters differing by distances of 5 km on average from
pseudo-reference centers. Thus, geospatial analysis on VGI, mainly from Twitter, allows for a rapid
and approximate assessment of affected areas. This capability enables emergency responders to
coordinate operations and allocate resources efficiently during natural hazards.

Keywords: natural hazards; wildfires; volunteered geographic information (VGI); geospatial analysis;
near-real-time geoinformation; fire area assessment; emergency response

1. Introduction

Recently, natural hazards have emerged as a significant peril to humans [1,2]. Instan-
taneous and precise information regarding the hazard’s location and potential impact is
necessary for first responders, including rescue services, to play a critical role in mitigating
and managing the potential hazards [3]. Although remote sensing (RS) data can be utilized
to estimate the approximate extent of hazards like wildfires with reasonable accuracy [4],
the availability of such information in (near) real-time for non-commercial satellites is scarce
due to the limited overpass time of these satellites. Searching for an alternative data source,
which offers the same significant advantages as satellite RS, such as broad spatial coverage,
open data accessibility for anyone, and cost-effectiveness, data sources like aircraft or drone
remote sensing are eliminated, but volunteered geographic information (VGI) data emerge
as a promising candidate. VGI, such as Twitter, now X, can be employed as an alternative
data source to promptly identify areas at risk or affected regions in almost real time [5,6].

Tweets can be viewed as data to bridge the gap in information until RS data become
available for natural hazard analysis. However, the locations of tweets may be influenced
by factors such as population density and, thus, can only serve as an approximate indicator
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of natural hazard locations. On the other hand, VGI provides additional information
compared to RS data, such as more specific information available in the texts. Moreover,
VGI can highlight areas affected by natural hazards where humans are predominantly
impacted, which can be more valuable for rescue services than simply identifying the
location of the hazard. Therefore, it can also be a complementary source of information
compared to RS data.

This study evaluates the utility of VGI in the form of tweets for spatial analysis of fire
hazards without RS data. The objective of this study is to provide a proof of concept for the
ability of VGI data for wildfire extent assessment in high resolution, contrary to the few
existing studies that leverage VGI data for natural hazard spatial analysis, e.g., [7], which
are rarely focused on wildfires [8,9]. We aim to estimate the areas most likely requiring
attention from first responders based on the tweet data. The developed methodological
framework should be easily transferable to any wildfire hazard. The study aims to
address two significant challenges associated with the use of tweets for location estimation:
(1) estimating the hazard location from tweet locations while considering influencing factors
and (2) estimating the hazard location and/or the area where people are affected by the
hazard from the tweet text information.

The study addresses these challenges through two major approaches: (1) estimating an
approximate barycenter location of the hazard through factor weighting of tweet locations
and (2) estimating the approximate hazard-affected area by combining several methods
that scan text for helpful information. This study compares the results to hazard locations
generated from RS data.

Section 1 briefly overviews related studies that address natural hazard information
extraction from VGI. We describe the study area, the data basis, and the methodology
in Section 2. The methodology’s results (Section 3) on several case study examples are
explained. Finally, we discuss the results (Section 4) and conclude the study (Section 5).

Related Work

We structure the related work into two major parts: first, the extraction of locations
from Twitter data, which only then classifies Twitter data as VGI data, and an overview of
studies dealing with the spatial analysis of VGI data.

To use Twitter data as VGI data, the extraction of locations of tweets is necessary. A
variety of techniques are used for location extraction from Twitter data. The choice of these
extraction techniques mainly determines the accuracy of locations. Four main categories
for location extraction can be constituted:

• Inference from the user location [10,11]: These approaches assume that a user’s
location is strongly related to their social network location.

• Location extraction from the posted text [12–14]: These studies extract names of places
from the text of the messages. This task is well-known as named entity recognition
(NER) as a sub-category of natural language processing (NLP). Few studies [15] also
use pattern recognition with regular expressions (RegEx) for specific location name
extraction. In the final step, the extracted names of places are geocoded by geoparsing.

• Direct location extraction: Locations can be directly extracted from metadata obtained
with the text data when accessing VGI, e.g., via an application programming interface
(API). Twitter, for example, delivers a JSON file that provides the coordinates or a
place field where the tweets are created [16]. However, the user can voluntarily fill
these fields, so the information is rarely available. Studies suggest that coordinates are
given in about 0.2% to 1.5% of posted tweets, whereas place is given in about 2% of
tweets [17,18].

• Combinations of the above: Some studies use a combined methodology of the above-
mentioned possibilities for geolocation extraction [19,20].
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The use of VGI data and Twitter data, more specifically, in a natural hazard context,
can be categorized into three major topics: event detection, information retrieval for a
specific event, and spatial analysis for approximate hazard location estimation. VGI data
have been chiefly used for event detection or information retrieval in a natural hazard
context (see, for example, [21–23]). In the following, we review only studies dealing with
the spatial analysis of VGI data.

Spatial analyses for more precise natural hazard extent estimation have not been
applied frequently. However, various methodological approaches exist for the spatial
analysis of VGI data. Some studies rely on kernel density estimation for hurricane and
fire hazards [7,8]. Furthermore, Voronoi tesselation has been applied to a rainstorm haz-
ard [6]. A third approach is triangulation for a fire hazard [9]. In this approach, VGI
images are also used, enhancing the triangulation results as the shooting angles can be
included. De Albuquerque et al. [24] use a generalized additive model (GAM) to provide
evidence of the association between the relevance of VGI data with proximity to and
severity of flood events. Several studies for spatial analysis of natural hazards combine
VGI information with other information sources like satellite imagery or other VGI, like
telephone interviews [25–27]. In a non-hazard context, a few more studies exist for spa-
tial analysis from VGI data: Hot spot analysis for evaluating depression among Twitter
users [28] or obesity [29] has been applied. Kernel density estimation has been used for
crime estimation [30] or studies on power outages [31] from VGI. Finally, some studies
apply geographically weighted regression (GWR) for spatial analysis from VGI for urban
crash analysis [32] or community vulnerability [33].

However, these studies have limited accuracy in estimating the actual hazard extents
only by extracting, e.g., the affected city. Often, they provide probabilities for the occurrence
of a hazard in coarse-resolution cells, e.g., county-wise. Furthermore, they predominantly
utilize a single method, like kernel density, without integrating multiple suitable methods
that could leverage the diverse information available from VGI, which limits their robust-
ness. Although incorporating VGI images results in higher accuracies, their availability
is usually scarce compared to text. Therefore, these data and image-based methodologies
cannot be applied elsewhere. None of these studies consider geographical influences on
VGI locations before spatial analysis execution, although these factors significantly influ-
ence hazard location estimation accuracies. Only Wang et al. [8] consider the population
density in their spatial analysis. However, further available VGI information needs to be
incorporated. Additionally, only two studies focus on wildfire hazards. All other studies
have limited applicability to other wildfire hazards, as they are based on specific subsets of
the given information, and other methods would be required in other contexts.

2. Materials and Methods

In the scope of this paper, we consider a location approximation task relying on tweet
data. The model considers tweets’ date, location, and text to estimate in a time-conscious
manner the approximate location of the natural hazard and the area where most people are
probably affected (Figure 1). We use two major approaches: (1) estimating an approximate
barycenter location of the hazard through factor weighting of tweet locations and (2) by
combining several methods, estimating the approximate hazard location/human-affected
area location. These methods (compared to (1)) have in common that they scan the tweets’
texts for helpful information concerning hazard locations and location information.

This section presents the case studies (see Section 2.1) and the input data (see Section 2.2).
Then, we present all approaches (see Section 2.3).
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Figure 1. Visualization of the location estimation framework for natural hazard approximation from
Twitter data.

2.1. Case Studies

Our study relies on different case studies of fire hazards in California, the United
States, and France in the past years. These are the fires: Bobcat fire (I) near Los Angeles in
2020, Camp fire (II) near Paradise in 2018 (California), and the fires in the region of Var (III)
in 2021 and near Landiras (IV) in 2022 (France) (see Figure 2).

We choose these study areas considering their different constellations of parameters,
as explained in Table 1, to show the possibilities and limitations of our methodology. We
consider fire characteristics, like the fire’s size and spreading rate, since they influence the
amount and dynamics of available tweets. Furthermore, we consider general factors that
influence tweet occurrence, like land cover information, population density, general tweet
behavior, and whether agencies like firefighters or road security agencies use Twitter as a
medium to spread the news.
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2.1. Case Studies

Our study relies on different case studies of fire hazards in California, the United
States, and France in the past years. These are the fires: Bobcat fire (I) near Los Angeles in
2020, Camp fire (II) near Paradise in 2018 (California), and the fires in the region of Var (III)
in 2021 and near Landiras (IV) in 2022 (France) (see Figure 2).

We choose these study areas considering their different constellations of parameters,
as explained in Table 1, to show the possibilities and limitations of our methodology. We
consider fire characteristics, like the fire’s size and spreading rate, since they influence the
amount and dynamics of available tweets. Furthermore, we consider general factors that
influence tweet occurrence, like land cover information, population density, general tweet
behavior, and whether agencies like firefighters or road security agencies use Twitter as a
medium to spread the news.

Figure 2. Visualization of the locations of selected fires Bobcat (I) and Camp fire (II) in California,
USA (top), and fires in Var (III) and near Landiras (IV), France (bottom), used as case studies for the
approaches. Data basis: 2018 GADM. Projection: WGS84.

Figure 2. Visualization of the locations of selected fires Bobcat (I) and Camp fire (II) in California,
USA (top), and fires in Var (III) and near Landiras (IV), France (bottom), used as case studies for the
approaches. Data basis: 2018 GADM. Projection: WGS84.
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Table 1. Overview of fire characteristics and characteristics influencing tweet data regarding the four case study areas.

Fire Bobcat Fire Camp Fire Var, France Landiras, France

Fire Starting Date 06/09/2020 08/11/2018 16/08/2021 12/07/2022

Fire Duration –19/10/2020 (43 days) –25/11/2018 (17 days) –26/08/2021 (10 days) –25/07/2022 (13 days)

Total Fire Area ∼ 469 km2 ∼620 km2 ∼57 km2 ∼138 km2

Fire Behavior 98 km2 within 4 days,
+/− constant spreading

620 km2 within 3 days,
spreading extremely quickly, but then
remaining within almost these same
boundaries until it is extinct

57 km2 within 22 h,
spreading very quickly
but then remaining within these
same boundaries until it is extinct

+/− constant spreading

land cover Forest/shrub land cover,
mountainous, no population

Shrub land cover, mountainous,
few populations overall,
but one town

Forest/shrub land cover,
hilly, few population

Woodland/forest land cover,
flat-hilly, few population

Population Density/
Distribution

High density, irregular
distribution around
possible fire area

Low density, irregular
distribution around and INSIDE
possible fire area

Low density, regular
distribution around possible
fire area

Low density, irregular
distribution around possible fire area

Tweet Behavior More tweets, less place
information in text

Fewer tweets, less place
information in text

Fewer tweets, more place
information in text

Fewer tweets, more place
information in text

Agencies (Fire/Road) Using Twitter Using Twitter Not using Twitter Not using Twitter

First Available Remote
Sensing Data

4 days after fire start
(10/09/2020)

3 days after fire start
(11/11/2018)

1 day after fire start
(17/08/2021)

5 days after fire start
(17/07/2022)
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2.2. Input Data

This study uses Twitter data as VGI to exploit their high usage and accessibility.
The selected Twitter data are obtained through Twitter’s download API accessed via
Python. The reliability of VGI data often remains a critical concern, as nonexperts generate
them and can be subject to various biases and limitations. Studies have explored this
reliability issue, primarily for Twitter data, revealing accurate real-time updates during
large-scale events and inaccuracies for less prominent events [5,34–36]. Sociodemographic
biases of Twitter users can skew interpretations, and efforts to understand and adjust for
these biases have been made [37,38]. Geospatial factors like population density impact
tweet distribution patterns [7,39], while detailed sociodemographic factors (as investigated
by Adnan et al. [37]) might not be crucial for hazard-related spatial analysis. To enhance
reliability, e.g., credible accounts with metadata should be considered, re-tweets avoided,
and government agency accounts should be accorded a higher level of trustworthiness.
These steps are considered in our framework.

The direct location extraction method obtains the most accurate locations from the
tweet metadata. However, as only a limited number of tweets contain the coordinates’
information, the place field is also employed to contribute to the hazard location estimation,
although with lower accuracy. Tweets with a filled place field are still helpful as they
contain textual information about affected areas.

For all the case studies, we search for tweets posted before the first available RS image,
e.g., for the Bobcat fire, tweets between 06/09/2020 to 10/09/2020 are used, whereas the RS
image is available on 10/09/2020 at 10 p.m. (see Table 1). The tweet data containing relevant
keywords and geolocation data corresponding to the timeframe of the fire occurrences
preceding the retrieval of RS imagery are extracted for each case study.

Table 2 displays the number of tweet data extracted per case study. We differentiate be-
tween tweets with coordinates information and place information for location information.

Table 2. Overview of numbers (#) of extracted tweet data.

Fire Bobcat Fire Camp Fire Var, France Landiras, France

Period before RS
data available

06/09/2020
–10/09/2020

08/11/2018–
10/11/2018

16/08/2021–
17/08/2021

12/07/2022–
16/07/2022

# of tweets with coordinates 236 52 3 0
# of tweets with place 578 157 82 30

Furthermore, Sentinel-2 RS data are utilized to extract the fire area and to compare the
results obtained from VGI. Sentinel-2 RS data offer a very high resolution of 10 m. Very
detailed fire perimeter information is obtained using an appropriate methodology [4] for
fire area extraction from these data. The accuracy of estimation approaches is validated. The
most temporally proximate available RS images to the start of the fire (as listed in Table 1) are
extracted for the case studies. Whereas other wildfire datasets (e.g., from fire agencies and
organizations) often only represent the final fire perimeter, the most temporally proximate
fire perimeter can be extracted from RS.

Additionally, such wildfire datasets are not available worldwide (e.g., for the investi-
gated case studies in France), but only, e.g., county-, state-, or country-wide. The use of RS
data ensures operational convenience, eliminating the need to search for agency data for
each case study individually. As RS data are not suitable for fire perimeter extraction of one
case study (Camp fire), we rely on California Department of Forestry and Fire Protection
(CalFire) agency data in this case. These data are provided in vector files, showing the ex-
tent of a fire area. Note that these RS and agency data can only serve as a pseudo-reference
since they do not depict the actual ground truth of the fire extent due to the temporal delay
in capturing, extending up to several days during which the fire has already progressed.
Therefore, they can only be used for visual analysis.
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Finally, population density and land cover data are utilized as supplementary data to
account for the influences of these factors on tweet occurrence. The datasets used in this
study are the following:

• Population dataset: The WorldPop population density dataset 2020 with a resolution
of 30 arc-seconds (approximately 1 km at the equator) was used [40].

• Land cover dataset: The worldwide available product Copernicus Global Land Cover
Layers (CGLS-LC100) Collection 3 of 2019 with a 100 m resolution was used [41].

2.3. Methods

In this section, we explain the two primary method types of approximate barycenter
calculation (Section 2.3.1) and approximate location (Section 2.3.2), and the evaluation data
generation (Section 2.3.3) in detail. Figure 3 displays the methods overview.

Extract Tweets*

Exclude Tweets With 
Unmatching Land Cover

Estimate Fire Affected Areas

Calculate Barycenter Estimate Location by 
Viewing Angle (LVA)

Estimate Area With Road 
Closure Information

Estimate Area With 
Distance Information

Apply Kernel Density Detect & Exclude 
Outliers

Point in Fire Area

LVA With Outlier 
Detection

LVA With Kernel 
Density

Buffer Approach for  
Road Closure Area

Buffer Approach for  
Distances

Overlay all Area 
Approaches & Count 

Matches

Areas of Combined 
Approach

* Tweets contain dates, geographic locations, and text information.

Figure 3. Methodology overview for approximating fire-affected areas based on Twitter data.

2.3.1. Approximation of the Barycenter

When evaluating the tweet data in a geospatial manner, we first calculate the weighted
barycenter location of the tweet points, considering the influencing factors, population
density, and land cover. Utilizing population density and land cover as weighting factors
for barycenter approximation offers significant advantages:

• Population density: More people in an area means a higher probability of someone
witnessing and reporting a wildfire.

• Land cover: Land cover diversity impacts the visibility and detectability of wildfires
and fire propagation.

The geospatial barycenter is calculated as follows:

X̄w =
∑n

i=1 xi · wi

∑n
i=1 wi

, Ȳw =
∑n

i=1 yi · wi

∑n
i=1 wi

(1)
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where xi and yi are the coordinates for each tweet location point i, and the weight w for
each tweet location point i is calculated as

wi = log(
denstweet,i

denspop,i
) + wlandcov,i (2)

where denstweet is the point density per tweet calculated by kernel density from all the
tweets, denspop is the population density according to WorldPop at the point location, and
wlandcov is a custom weight depending on the underlying land cover type at the point for
each point i. Highly combustible land cover types like shrubs or forest have a higher weight
since it is more likely for a fire to burn and continue to burn to an area with such land cover,
compared to, e.g., a water land cover area.

2.3.2. Approximation of the Areal Location

Next, we estimate approximate hazard locations or affected areas with several methods
according to the availability of the respective data in the tweet texts. These include the
viewing angle of the fire by mentioned places in the text (1), road segment blocking
information (2), and distance to the fire information (3). Figure 4 displays exemplary tweet
text snippets containing the relevant information for the employed methods.

(1)

(2)

(3)

I can see the flames over Mt. Wilson 
from my house.

The road is closed on WB37 between 
Atherton Ave and US101.

We are five miles away from the fire.

Figure 4. Exemplary tweet text snippets from which information about approximate areal locations
of natural hazards can be extracted: (1) named places, (2) road closure information, (3) distance
information. The relevant text information that is considered is marked in bold text. Texts are
simplified and adapted from original extracted tweet texts.

1. We approximate the hazard location by considering names of places that are men-
tioned in the tweets’ texts talking about the respective hazard (see Figure 4, (1)). This
method is therefore referred to as the Location by viewing angle (LVA) approach. We
extract these mentioned places with two approaches: NER or pattern recognition by
Regular Expression (RegEx) (e.g., [42–44]), which are NLP methods. For NER, we
employ the Spacy Python library [45], an open-source NLP library. We use it to detect
the entities GPE (Geopolitical Entities: Countries, cities, states) and LOC (Non-GPE
locations, mountain ranges, bodies of water). We apply RegEx in addition to NER,
as NER recognizes general location places, while we can extract more specific areas
with RegEx. For RegEx, we employ our own developed algorithm, which consists
of the two steps of name detection and geoparsing. It searches for spatial places like
Mt. Wilson or Monrovia Peak, employing word search (e.g., Peak) and Regex patterns
that search for associated nouns (e.g., Monrovia). After extracting place names, we
geo-parse, which converts text descriptions of places into geographic identifiers like
coordinates. Next, we apply a methodology to check for the viewing angle. The
people might not see mentioned places in their tweet locations, as obstructions like
mountains could prevent them. Therefore, we check the plausibility of the viewing
angle by considering the occurrence of viewing obstructions in the line of sight from
the location to the mentioned place. As a result, we obtain locations to which the
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speaker can view and which are probable that he is seeing the hazard there. With the
obtained points, we conduct two separate methods again to get more independent
results, in line with the principle that where more people think the hazard is there,
the hazard is more likely to be there. These are:

• Kernel density estimation on viewing angle points: Based on the resulting points
of 1, we conduct kernel density estimation as implemented in ArcGIS [46], which
places a kernel (smooth, continuous function) on each datapoint and sums
these kernels to create a smooth representation of the underlying probability
distribution. We extract areas with a specific density and a higher probability of
the hazard’s presence within those areas.

• Non-outlier estimation on viewing angle points: We use an Isolation Forest,
implemented in ArcGIS [46] to detect non-outlier points. It works by isolating
instances using binary splits and constructing an ensemble of decision trees.
Outliers are identified as instances that require fewer splits to be isolated. We
then calculate a convex hull spanned by non-outlier points in the following.

2. In this step, we consider blocked road information (see Figure 4, (2)). Road authorities
often post information about such an emergency or hazard cases. We search tweets
mentioning such information or posted by responsible agencies and extract their
locations. This method extracts the exact road locations via RegEx implemented for
roads. We geo-parse and obtain points of blocked road information, mainly two road
intersection information per tweet (e.g., Angeles Crest Hwy & Upper Big Tujunga Rd).
We can then extract the closed road segments between those two mentioned points.

3. Finally, we consider distance information in the texts (see Figure 4, (3)). We search
tweets mentioning distance information and buffer their location with this distance.
We obtain a circle on which the hazard seen by the speaker might lie. To account for
coarse estimates by speakers, we apply a buffer around this circle with a distance
of 30% of the initial space. This assumption is based on the idea that people gauge
distances more accurately when hazards are closer to them. Furthermore, we limit
the buffer areas by land cover plausibility, e.g., a buffered area is not considered
if overlapping a land cover area that is not plausible to contain fire, e.g., water or
bare rock.

With the above methodological approaches, we consequently obtain approximations
of areas that could be or are perceived by tweet text speakers as hazardous areas. Finally, we
cross-check all the results from these methods with land cover plausibility (areas in certain
land cover areas are more likely combustible; see above). Then, we combine the single
estimation method results to estimate the fire’s minimal and maximal possible affected area
with a confidence interval.

2.3.3. General Information about the Evaluation of the Applied Methods

RS fire data are used to evaluate the achieved results from our applied approaches.
However, note that the RS extracted fire extents are not a ground truth that our approach
is supposed to match, as these fire extents are obtained from RS images that are available
temporally closest to the fire date (compare Table 1). At the same time, our data are available
sooner, and the fire extent can change at this time. We use RS imagery-derived extents only
for a rough qualitative evaluation of our approaches.

Sentinel-2 RS data are utilized to extract the fire area and compare the VGI results. The
hazard area is extracted from the respective RS image (see Table 1) according to Florath and
Keller [4]. This approach differentiates between burned and fire areas, which we generalize
as fire areas in this study. A few post-processing steps simplify the fire area for easy visual
comparison. As RS data are not available for the Camp fire case study, we rely on California
Department of Forestry and Fire Protection (CalFire) agency data in this case. However,
CalFire datasets display only the most considerable fire extent, derived only after a fire
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event ends. Therefore, the use of RS data are generally favorable, as the generated fire
extents are temporally more proximate to the tweet data capture.

3. Results

To evaluate our methodology, we provide qualitative results in maps comparing
the calculated barycenter and the fire approximation areas with the RS fire extents. We
refer to the latter as a pseudo-reference. Since the RS data do not provide a ground truth
due to temporal misalignment, statistical measures like intersection over union (IOU) for
quantitative analysis cannot be calculated.

The results and their cartographic visualization achieved based on the applied methods
presented in Section 2.3 for each fire case are displayed in Figure 5. As mentioned above,
the results are compared and overlaid with the RS data generated fire extents. For each
map, the total number of tweets before the availability of the RS image is included in the
approaches, e.g., for the Bobcat fire, tweets between 06/09/2020 to 10/09/2020 are used,
whereas the RS image is available on 10/09/2020 at 10 p.m. Note that specific methods are
limited by the availability of text information in the tweets (e.g., road closure information).

By qualitative analysis, it can be verified that all the resulting maps agree with the
RS fire pseudo-reference on a coarse level, while differences are given on a finer level.
In the result obtained for the Bobcat fire (Figure 5, row 1), the barycenter corresponds
with a distance of approximately 3 km to the pseudo-reference’s center well with the
pseudo-reference. LVA, distance, and road closure area can be estimated and correspond
primarily with the southern area of the fire area. Consequently, the overlaps as a combina-
tion of all applied approaches indicate the estimated fire area in the southern half of the
pseudo-reference. The center of the VGI estimated area and the RS estimated area vary by
approximately 6 km.

In the result obtained for the Camp fire (Figure 5, row 2), the barycenter also corre-
sponds with a distance of approximately 3 km to the pseudo-reference’s center well with
the agency datas’ fire area. LVA, distance, and road closure area can be estimated. LVA with
outlier detection and distance area results correspond primarily to the pseudo-reference
area but are located in the western part of the pseudo-reference fire area. LVA with kernel
density detects three significant point cluster densities: a small one in the north, one in
the south, and one on the axis from Chico and Paradise. Consequently, the overlaps as a
combination of all applied approaches indicate the estimated area in the western part of
the pseudo-reference area and are heterogeneous. The center of the VGI estimated area and
the pseudo-reference area vary by approximately 4 km.

In the result obtained for the Var fire (Figure 5, row 3), the barycenter lies beyond
the RS fire pseudo-reference. However, given the very distinct shape of the fire area, the
barycenter corresponds with a distance of approximately 4 km to the pseudo-reference’s
center, still well with the pseudo-reference. LVA and distance area can be estimated and
correspond mainly with the central location of the fire area. Consequently, the overlap of
the approaches combined shows the estimated area in the central part of the RS fire area,
missing out on the upper and lower part of the very distinct fire area shape. The center of
the VGI estimated area and the RS estimated area vary by less than 2 km.

In the result obtained for the Landiras fire (Figure 5, row 4), the barycenter also
lies beyond the RS fire area, with a distance of approximately 10 km from the pseudo-
reference’s center. However, the barycenter still approximates the course-affected area.
LVA and distance area can be estimated and correspond primarily with the northern and
eastern regions of the fire area, respectively. Consequently, the overlap of the approaches
combined shows the estimated area in the northern half of the RS fire area. The center of
the VGI estimated area and the RS estimated area vary by approximately 3 to 4 km.
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Figure 5. Visualization of the results for the selected fires: the Bobcat fire near Los Angeles (row 1),
the Camp fire near Paradise (row 2), California, United States, and the wildfires in the Var region
(row 3) and near Landiras (row 4), France. The following abbreviation is used: LVA—location by
viewing angle. Data basis: © 2018 GADM. Projection: WSG84.

4. Discussion

In this section, we discuss the presented study and the achieved results. First, we
analyze the results of the different case studies overall in Section 4.1. Then, we readdress
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the possibilities VGI data provide for spatial analysis of natural hazards in Section 4.2.
Subsequently, we investigate the limitations that restrict the use of VGI data for natural
hazard location estimation in Section 4.3.

4.1. General Analysis

The case study’s findings indicate that tweets’ weighted barycenter center calculation
aligns well with the fire area pseudo-reference as determined from RS imagery. It is
essential to note that the barycenter is not meant to display the center of a fire area per
se but should give a quick, first approximation of where the fire might be positioned.
Therefore, the barycenter is still an excellent first measure to localize the approximate fire
position. The presented approaches also demonstrate that the estimated minimal and
maximal affected area corresponds closely to the area detected from RS. Overall, no single
one of the applied methods achieves the best results for all investigated fires. All the
methods give coarse estimates of the possible fire area, and the best overall visualization
of the fire area situation can be achieved by the combination of the fire area estimation
approaches (LVA outlier detection, LVA kernel density, distance information, and road
closure information if available) and the barycenter calculation in addition. Although the
methodology does not work better or worse in any case study, the results are very different
and influenced by various factors.

For the Bobcat fire, the barycenter lies well within the pseudo-reference area, due
to a distribution of VGI data mainly influenced by population density, whose effects
we removed by weighting. The estimated area lies to the south of the RS area. This
could be for several reasons, like the significantly higher population density in the city
of Los Angeles, where people are more affected by the hazard. Additionally, due to
the mountainous regions of the Angeles National Forest in the northern area, data are
comparatively unevenly distributed. Finally, the fire developed from the south to the north,
spreading in the days until RS imagery was obtained a few days later.

For the Camp fire, the barycenter also lies well within the pseudo-reference area,
due to a distribution of VGI data mainly influenced by population density, whose effects
we removed by weighting. Large areas of the extent overlap with the pseudo-reference.
According to all approaches, fire areas of the highest likelihood are located near the most
populated places, Chico and Oroville in the south and the devastated town of Paradise
right in the center of the fire. Due to the location of the fire in the Sierra Nevada foothills,
less information is available about the eastern area of the fire, which is located in the higher
mountainous region with no significant settlements. However, the primary area of the fire
corresponding with the pseudo-reference area was estimated using our approaches. As the
pseudo-reference represents the final extent of the fire at the end of the fire duration, it is
spatially more extensive than our estimated extent three days after the start of the fire.

For the Var fire, the barycenter lies slightly shifted from the pseudo-reference area,
which can be explained by the characteristic, very narrow shape of the fire area. The
narrowness of the area makes it challenging to pinpoint the actual center accurately. The
correspondence of the VGI extent with the RS extent is mostly limited to the middle of the
RS area. Although the number of VGI datapoints is acceptable in this case study (com-
pare Table 2), several factors contribute to the quality of VGI data for estimating the fire
area. First, the rapid spread of this fire covered the entire area in just one and a half days.
Observations were hindered, as it ignited in the late afternoon and continued to propagate
through the night. Additionally, the fire area was relatively small (compare Table 1), and
citizens in more distant areas showed little interest, contributing to suboptimal estimation
geometries. Due to the fire’s location traversing the hilly region of the Massif des Mau-
res, visibility towards the fire was constrained to specific places, leading to a non-ideal
distribution of VGI points.

For the Landiras fire, the barycenter lies outside of the pseudo-reference area and is
comparatively far from the areal estimation. This occurs due to the distribution of VGI
datapoints that occur very far from the actual fire area, e.g., in the city of Bordeaux, which
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is located approximately 30 km from the fire location. Despite the weighting of datapoints,
the barycenter is shifted towards this high-density population and tweet occurrence hub.
The estimated area from VGI corresponds to the northern area of the RS data area. The
fire spread from the north to the south in this case study, which corresponds well with the
findings. Despite a deficient amount of VGI data in this case study, the area estimation is
good, as this area is generally flat, and the fire was seen from even distant places without
obstruction, leading to a suitable estimation geometry. Like the Bobcat fire area, the
estimated area is also closer to populated places where people might be more affected.
Additionally, for Var and Landiras, the fire and road agencies responsible do not use Twitter
as an information distribution tool. Consequently, the estimation of road closure areas, as
outlined in the developed methodology, is unavailable in these cases.

In conclusion, the most impactful error source for estimating wildfire extents from VGI
is, of course, the distribution of VGI. Even with few data (e.g., Landiras fire), the fire area can
be well estimated if the viewing geometry is suitable. Factors that influence the distribution
of VGI are mostly related to the visibility towards the fire (e.g., mountain obstruction, night,
places very distant to fire, small fires) and are the main limiting factors to obtaining suitable
information from VGI data. Moreover, utilizing distinct methodologies, specifically the
barycenter and area estimation approaches, prove highly valuable. The influence of various
factors affecting these analyses results in independent outcomes that mutually complement
each other. For instance, in the case of the Landiras fire, the barycenter is less precise due to
VGI data characteristics distant from the fire location, which is attributable to good visibility.
Conversely, these characteristics contribute to highly accurate results in estimating the
fire area.

Using the proposed combination of different methods yields the best results for fire
area estimation from VGI data. The methodology performs satisfyingly on all investigated
fire case studies. Overall, the centers of the estimated areas are located where the population
is more affected by the wildfire, like the areas closer to cities (Pasadena, Chico, Paradise,
Landiras). Furthermore, estimating the specific shapes of the fire areas is impossible and
not the focus of our study. The estimated fire areas overlap partly with the RS imagery
area estimation.

4.2. Advantages of Using VGI Data in a Hazardous Event

VGI data and, as such, Twitter data can be considered as alternative data to identify
potential hazard areas. One significant advantage compared to RS data is the availability
in near-real time. The time component is very critical in natural hazard analysis. It is a
significant advantage of VGI data over data derived with RS that becomes available only
later, depending on satellite overpass times. Tweets can be instantly crawled from the first
indications of the occurrence of a hazard and can be obtained continuously during the
complete period of the hazard’s duration. In addition, using continuously occurring data,
the hazard locations can be obtained more and more accurately. Continuous observation
of the data and changes within can also be used to indicate change in hazard location or
people’s perception of hazard danger. Overall, the approximate natural hazard location
can be estimated from VGI data. These estimations can be valuable for rescue services
to prepare immediately or plan accordingly, especially during times when no other data
source is available for first estimations.

Furthermore, VGI provides more information than RS data, such as more specific
text information. Whereas RS data only provide information about the natural hazard
extent, VGI data can hold additional information, e.g., about the hazard (intensity, sen-
timents) in the text. VGI can highlight areas affected by natural hazards where humans
are predominantly impacted. This information can be more valuable for rescue services
than simply identifying the location of the hazard. Additionally, VGI presents an effective
method for involving the affected community and distributing information among it in
general. Encouraging data contribution by citizens, especially during a natural hazard
situation, could also further improve the data availability and the amount of data. More
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details about fire intensity, smoke production, spread rate, and other characteristics could
be gained from such. Therefore, VGI can be a complementary or additional source of
information compared to, e.g., RS data. However, in the absence of any other data for
hazard assessment, VGI data become particularly valuable.

As shown, the developed methodology, including the overlapping of different ap-
proaches, can work well despite the possible impact of influencing factors on VGI occur-
rence, like demographics, by balancing the final approach on several information types.

4.3. Limitations

When critically investigating possible restrictions, it becomes apparent that estima-
tions from VGI data can only serve as an approximate indicator of natural hazard locations.
The major limitation is the absence of data in non-populated regions, e.g., on mountain
tops or in densely forested areas. No tweets are posted in these areas, and, consequently,
no datapoints for the spatial analysis are available. This effect contributes to a bias to-
ward estimating the natural hazard locations closer to populated places, especially for the
barycenter location calculation. In general, the region where a hazard is located plays an
important role; as more or fewer tweets are posted, people tend to keep their accurate
locations private, or emergency services post publicly or not on social media platforms in
different regions. Therefore, the approach can be beneficial only in certain areas.

Furthermore, we rely on data with different accuracy levels: Emergency services or
road agencies’ information about blocked road positions is very accurate (with coordinates).
On the other hand, relying on people’s estimations of where they see the hazard or how
far away they estimate it can be inaccurate and biased. We implement our viewing angle
approach to account for faulty text information by validating possible lines of sight. Fur-
thermore, the barycenter location calculations rely on the correction of several factors like
population density, but, further, more specific anthropogenic factors could be influencing
the occurrence of tweets. For example, people in a fire-prone area could be tweeting less
about fires nearby, as they are more familiar with such and do not consider it as an exciting
event to talk about. For the barycenter calculation, more weighting factors could be intro-
duced, representing various factors’ influence on the occurrence of VGI datapoints. These
could be, e.g., the closeness to roads, a region’s slope or the digital development index
(DDI) [47], which is an index that measures the physical access and adoption of broadband
infrastructure and the socioeconomic characteristics that limit their use. In addition, the
occurrence of tweets is random and, therefore, not necessarily representative. Overall,
human sensors are less accurate than technical ones, and VGI can generally be used only as
a proxy and as a complementary data source.

4.4. Considerations for Practical Application

Several factors would need to be addressed to employ a tool for applying the devel-
oped methodology for wildfire management. First, the data quality and volume of VGI
should be considered, as we did in this study (compare Section 2.2). Advanced data valida-
tion techniques, as proposed in a few studies [36,48], could be additionally implemented.
In a tool, thresholds for, e.g., a suitable number of datapoints from which estimated areas
should be integrated could be set. Of course, the use of Twitter and social media data
generally varies across different regions, as we demonstrated for California and France
(see Table 1). In California, more tweets are generally available. However, fewer tweets
contain location information, and the opposite is true in France. Also, in France, road
agencies do not use Twitter. Despite these variations, our methodology is suitable for all
investigated case study scenarios. Although conclusive evidence is yet to be established,
our methodology appears robust to variations in wildfire scenarios. When implementing a
tool that can be used in any wildfire case, the issue of multilingualism needs to be addressed.
Using English and French text information, we demonstrated that our approach works
well on case study hazards in California and France.
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A few adaptions to the NER and RegEx are necessary to do so. The Spacy library for
NER supports many languages and is continually developed. When obtaining GPE and
LOC information in other languages, trained pipelines for the respective language must be
downloaded. The patterns for the RegEx need to be adapted to detect road names or place
names in different languages. Furthermore, a tool should account for temporal patterns to
account for the possibility of variability in tweet frequency and topic relevance over time.
It could be built to consider, e.g., daily variations in social media activity talking about the
specific hazard. For example, the methodology could be systematically implemented by
aggregating tweets daily, subsequently combining data for two consecutive days, followed
by iterative combinations for three or more consecutive days. Furthermore, we rely on
location information only from users who consent to the public display of their location
and anonymized data where usernames are not revealed, as legal issues might need to
be considered for a tool. Further investigations of how this proof of concept could be
integrated into a wildfire management system are necessary.

5. Conclusions

In this study, we propose and present an approach for natural hazard estimation from
VGI, namely Twitter data. We extract tweet text and location for dates corresponding
to the time of natural hazard events before usually considered data sources like RS data
are available. We analyze four case studies in California, the U.S., and France with our
methodological approach. The methodology consists of two primary approaches: (1) esti-
mating the hazard location from tweet locations while considering influencing factors, and
(2) estimating the hazard location and/or the area where people are affected by the hazard
from tweet text information. The results indicate that the approach can approximate the
hazard location and indicate where people are majorly affected by the hazard.

Despite the tweets’ limitation in location accuracy and the influence of many other
factors, the estimated fire areas correspond by 2 to 6 km, and the barycenter calculations
correspond by 5 km on average with the pseudo-reference results that were extracted for
the temporally closest time. Due to the variety of approaches employed for barycenter and
area estimation, these two methodologies complement each other effectively, frequently
attaining higher accuracies in a complementary manner when one approach exhibits
deficiencies. Tweets can, therefore, be considered to bridge the gap in information until
RS data becomes available or if no other data are available for natural hazard analysis.
Containing additional information, like people’s perception of the hazard, VGI can also be
a complementary source of information compared to RS data. However, results are limited
mainly by the availability of VGI data and especially its absence in specific regions.

In contrast to existing studies for spatial analysis of natural hazards from VGI, our
developed methodology can be easily transferred to other wildfire case studies as demon-
strated, due to the use of a variety of available information from VGI data and the use of
supplementary data to account for demographic biases. Additionally, we achieve wildfire
extent estimations on much higher accuracy levels with similarity to temporally close
extents from other data sources within several kilometers compared to estimation using
only kernel density [8].

Furthermore, similar adapted methodologies could be tested for different natural
hazards, like floods, in the future. One is more likely to obtain tweet data within a more
populated area in a flood scenario since floods might occur in city centers. In contrast,
fire hazards occur more often in the less populated countryside or forested areas, outside
city centers, and most often outside populated places. Therefore, the distribution of tweet
datapoints for flood hazards could be more favorable. Instead of tweets, other text data
sources like rescue service notifications could be used. Such information yields even more
accurate information concerning the incident locations and categorization, e.g., severity.
Furthermore, NLP for information retrieval can be used on the tweets’ texts to extract
further information, e.g., on the severity of the hazard, in addition to our methodology, and
map such information.
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