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Abstract: The accurate determination of the potential impact radius is crucial for the design and
risk assessment of hydrogen pipelines. The existing methodologies employ a single point source
model to estimate radiation and the potential impact radius. However, these approaches overlook
the jet fire shape resulting from high-pressure leaks, leading to discrepancies between the calculated
values and real-world incidents. This study proposes models that account for both the mass release
rate, while considering the pressure drop during hydrogen pipeline leakage, and the radiation, while
incorporating the flame shape. The analysis encompasses 60 cases that are representative of hydrogen
pipeline scenarios. A simplified model for the potential impact radius is subsequently correlated,
and its validity is confirmed through comparison with actual cases. The proposed model for the
potential impact radius of hydrogen pipelines serves as a valuable reference for the enhancement of
the precision of hydrogen pipeline design and risk assessment.

Keywords: hydrogen leakage; hydrogen jet fire; hydrogen pipeline; potential impact radius

1. Introduction

Hydrogen pipeline transmission stands out as a highly efficient and cost-effective
method for transporting hydrogen over long distances, particularly when compared to
alternatives such as tube trailers and liquid hydrogen tankers [1,2]. Safety concerns within
the international community arise due to the increased risk of leakage associated with hy-
drogen embrittlement [3]. In the event of a leak, the ignition of hydrogen poses a potential
threat, as its low ignition energy, high flame speed, wide flammable limits, and elevated
combustion heat make it susceptible to fire or explosion. Risk assessment has become a
widely employed approach for evaluating the hazards associated with hydrogen systems,
with numerous studies focusing on hydrogen stations, vehicles, pipelines, and other high-
pressure hydrogen systems [4–12]. While many prior investigations concentrated on hazard
analysis, some delved into quantitative risk assessment (QRA). It is crucial to recognize that
quantitative risk assessment for hydrogen stations or vehicles differs fundamentally from
that applied to long-distance hydrogen pipelines. In the quantitative risk assessment for
stations or vehicles, the probability of equipment-specific leakage remains constant. In con-
trast, the probability of leakage for long-distance pipelines is influenced by diverse factors,
including equipment impact, external corrosion, internal corrosion, stress corrosion crack-
ing, manufacturing defects, construction defects, geotechnical hazards, equipment failure,
incorrect operation and maintenance, and seismic hazards, among others. Consequently,
the probability of leakage is not uniform throughout the hydrogen pipeline.

Moreover, pinpointing the location of hydrogen leaks in stations or vehicles is rela-
tively straightforward, while the evaluation of an entire pipeline, spanning hundreds of
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kilometers, is less efficient. Therefore, the concept of a high consequence area (HCA) is
introduced. A high consequence area is defined as an area where a gas pipeline accident
could lead to significant consequences, causing considerable harm to people and prop-
erty [13]. Given that the primary hazard of gas pipeline leakage is thermal radiation from
a sustained jet fire [13], the potential impact radius is established to determine the high
consequence area. This radius is associated with the heat flux of a sustained jet fire that
ignites immediately after a pipeline rupture; it is based on the single point source heat
flux model, which assumes that the flame is a single point and ignores the influence of the
flame shape.

A collaborative effort by C-FER Technologies, the Gas Technology Institute, and the El
Paso Pipeline Group has proposed a model for calculating the potential impact radius of
natural gas pipelines [13]. In the quantitative risk assessment of high-pressure tanks, the
pressure is sometimes assumed to be constant during the whole process of leakage in order
to provide relatively conservative results. However, in the quantitative risk assessment
of hydrogen pipelines, the pressure inside the pipeline decreases with time. Thus, the
initial mass flow rate is calculated first; then, an equivalent mass flow rate is obtained that
takes the pressure drop into account [13]. More details of the mass flow rate are given in
Section 2. One should note that two aspects are taken into consideration with regard to
mass flow rate calculation:

(1) The pressure inside the hydrogen pipeline decays with time;
(2) The rupture leads to a double-ended gas release.

With the further use of the release rate decay factor λ (λ = 0.33) and the constant 2,
representing the pressure decay and double-ended gas release respectively, the equivalent
mass flow rate is 2λ times the initial mass flow rate. It is to be noted that more details of λ
are given in Section 2. By further applying the equivalent mass flow rate to the single point
source model and using 15.8 kW/m2 as the radiation threshold, Equation (1) and the value
0.099 are derived [13]. It is to be noted that the single point source model takes the jet fire as
one single point and neglects the influence of flame shape on radiation. The previous model
for the potential impact radius (Equation (1)) was validated by the data from the National
Transportation Safety Board (NTSB) of the United States and the Transportation Safety
Board (TSB) of Canada. In total, 12 practical cases were validated, and Equation (1) shows
the reasonable and conservative results. One possible explanation is that Equation (1)
assumes immediate ignition. While in real cases, the actual time for ignition is longer.
Thus, the mass flow rate in Equation (1) is more conservative than the real cases [13]. It
is to be noted that Equation (1) is limited to natural gas pipelines and is not applicable to
hydrogen pipelines. The pipeline diameter (d, m) and operating pressure (p, Pa) are utilized
in Equation (1) to determine the potential impact radius (r, m):

r = 0.099
√

pd2 (1)

Other studies have similarly correlated the potential hazard area with the pipeline
diameter and operating pressure of natural gas pipelines [14,15]. However, there is a scarcity
of research specifically addressing the potential impact radius of hydrogen pipelines. The
American Society of Mechanical Engineers (ASME) has put forth a model for the potential
impact radius of hydrogen pipelines, as articulated in Equation (2a,b) [16]:

r = 0.47
√

pd2 (2a)

r = 0.068
√

pd2 (2b)

It is to be noted that the only difference between Equation (2a) and Equation (2b) is
the units. In Equation (2a), the unit of r is ft, the unit of p is psi, and the unit of d is inches.
In Equation (2b), the unit of r is mm, the unit of p is MPa, and the unit of d is m [16].
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It is essential to recognize that the previously mentioned models for the potential
impact radius are predicated on the following assumptions [13]: (1) The direction of leakage
is assumed to be vertical; this takes into account the fact that high-pressure hydrogen
encounters obstacles such as soil, leading to the formation of a crater in the ground. This
directional assumption is made because the impingement on obstacles dissipates some of
the momentum, redirecting the jet fire in a more vertical manner. (2) A single point source
model is employed to calculate jet fire radiation. This model simplifies the jet flame as a
single point and neglects the influence of flame shape on radiation. It is to be noted that
radiation is highly influenced by the flame shape. In the single point source model, the
radiation is determined by the heat release rate and the distance from the jet fire to the point
receiving the radiation. This means that as long as the heat release rate is the same, for the
same position, the radiation from a relatively tall jet fire is the same as the radiation from a
relatively short pool fire, which deviates from practical cases. Therefore, the assumption of
the single source point is beneficial in terms of a quick calculation; however, it introduces
inaccuracy in the radiation calculation, particularly for the near field. It is important to note
that Equation (1) considers factors such as the incomplete combustion of the gas escaping
from the leakage and the emissivity factor of the fire. (3) The potential impact radius
model considers a hazardous event involving pipeline rupture, resulting in a double-ended
gas release that triggers a fire immediately upon leakage. One should note that in real
cases, it is possible that a fireball happens after pipeline leakage. And the assumption is
that immediate ignition takes the fireball into consideration by calculating the sustained
jet fire immediately ignited after the pipeline leakage [13]. However, the high-pressure
leakage of the pipeline leads to a large jet fire which cannot be understood as one single
point. And previous works demonstrated that a high-pressure hydrogen jet fire in the
vertical direction is long in length and narrow in width [17]. Moreover, the accuracy of
the single point source model diminishes as the target approaches the flame. Recognizing
this limitation, various researchers, including the American Petroleum Institute (API) and
Sandia National Laboratories (SNL), have employed a weighted multi-source model to
predict the radiation from gas jet fires [18,19]. The weighted multi-source model takes the
flame as a 2-dimensional flame which is similar to the shape of jet flames in real cases [17,19].
Compared with the single point source model, the weighted multi-source model divides
the whole flame into parts and calculates the radiation of each part separately. The sum
of all the parts is the radiation of the whole flame. Additionally, the combustion intensity
varies in the parts, and a weight factor is used to consider the different contributions of each
part to the radiation of the whole hydrogen jet fire. It is to be noted that in addition to the
heat release rate and the distance from the flame, the radiation of the weighted multi-source
model is determined by how many parts are divided and the weight factor of each part.
Some researchers used a convergence study to determine the number of parts. Others used
empirical values. The distance from a single part to the flame is influenced by the flame
shape. In summary, by dividing the flame into parts, assigning the weighted factor, and
calculating the radiation of each part individually, the weighted multi-source model allows
for the flame shape.

Although the weighted multi-source model considers flame shape, it introduces
complexities in the radiation calculations, impeding its widespread industrial applicability.
Compared with single point source model (Equations (1) and (2)), which uses a linear
calculation, the weighted multi-source model introduces integration and adds complexity.
One should also note that many CFD methods incorporate the discrete ordinate method or
the discrete transfer mode and the weighted sum of gray gases model to calculate radiation;
these models are more complicated than the weighted multi-source model.

Therefore, as the potential impact radius is determined by radiation, there is a need
for a new model to assess the potential impact radius to determine the high consequence
area (HCA) for hydrogen pipelines. This study simulates the potential impact radius of
hydrogen pipelines under actual conditions and proposes a simplified model based on
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the weighted multi-source model. This new model aims to enhance the risk assessment of
hydrogen pipelines and to serve as a valuable reference for industry design.

2. Radiation Threshold for Potential Impact Radius

Based on previous work on the high consequence area, when the radiation is below
the radiation threshold of the potential impact radius [13]:

(1) The people located outdoors when failure happens would be exposed to a low and
finite chance of fatality.

(2) The property represented by a typical wooden structure would not ignite and burn,
thereby providing indefinite protection for people indoors when failure happens.

The radiation threshold for a potential impact radius is 15.8 kW/m2, accounting for
the impact on the effect of thermal load on both people and property [13]. Assuming an
individual is exposed to radiation for 30 s and would remain in position for 1–5 s to evaluate
the situation and then run with a 2.5 m/s speed towards a shelter, the estimated distance of
people traveling within this period is 60 m. It is assumed that a shelter is located within
60 m of individuals. Then, under 30 s of exposure, 15.8 kW/m2 is the significant threshold
leading to a 1% chance of fatality [13,20,21]. And when a wooden structure is exposed
to 15.8 kW/m2 radiation, spontaneous ignition is improbable, and piloted ignition will
only occur after approximately 20 min of exposure [20]. Therefore, it is posited that when
the radiation is below 15.8 kW/m2, the wooden structures would not be destroyed and
would provide indefinite protection for the individuals [13]. This 15.8 kW/m2 threshold of
radiation is applicable for hydrogen pipelines, as indicated in ASME B31.12 [16].

3. A Model for Assessing Potential Impact Radius
3.1. Equivalent Mass Release Rate

In contrast to other high-pressure hydrogen systems, the mass release rate of hydrogen
pipelines diminishes over time as the pressure difference between the leaking pipelines and
the atmosphere gradually decreases. For example, in the quantitative risk assessment of a
high-pressure vessel of hydrogen, some researchers assume no pressure drop in order to
provide conservative risk results [18]. However, in the long-distance pipeline quantitative
risk assessment, the pressure drop cannot be neglected [13]. To account for this pressure
decay, an equivalent mass release rate model is introduced. Initially, the mass release rate
resulting from hydrogen pipeline leakage is calculated using Crane Co.’s model [22], which
considers high-pressure leakage leading to sonic or choked flow, as shown in Equation (3):

( .
mRG

)
max = Cd Ah

γP1ρ

(
2

1 + γ

) γ+1
γ−1

1/2

(3a)

P2

P1
≤

(
2

1 + γ

) γ
γ−1

(3b)

where
( .
mRG

)
max(kg/s) is the initial mass rate; Cd is the frictional coefficient and has no

unit; Ah (m2), which is calculated as πd2/4, is the area of the leakage hole of the hydrogen
pipeline cross-section; d is the diameter of the rupture, namely the pipeline diameter in
the present work (m) [13]; γ is the adiabatic constant; P1(P0 + Pa) (Pa) is the absolute
pressure inside the pipeline; P2(P0 + ρwgH0, Pa) is the absolute atmosphere pressure;
P0(Pa) is the effective gauge operating pressure; Pa (Pa) is the ambient pressure; ρ (kg/m3),
which is calculated as (P0+Pa)Mw

RT1
, is the ideal gas density; Mw (kg/mol) is the molar mass

of hydrogen; R (Jmol−1K−1) is the ideal gas constant; and T1 (K) is the temperature of
hydrogen. By further considering the pressure drop and the double-ended leakage of



Fire 2024, 7, 38 5 of 11

hydrogen pipelines, as well as the integration of the release rate decay factor λ = 0.33 [13,23],
the equivalent mass release rate

( .
mRG

)
equ is obtained, as shown in Equation (4):( .

mRG
)

equ = 2λ
( .
mRG

)
max (4)

One should note that the decay factor is likely to represent a steady state of pipeline
rupture when λ is in the range of 0.2~0.5, and some researchers report the decay factor
of 0.25. More recently, the decay factor of 0.33 was used to provide more conservative
results to ensure that the sustained jet fire radiation, as well as the potential influence of a
fireball, was not underestimated. The value of 0.33 has been widely used in natural gas
pipeline quantitative risk assessment [13].

3.2. Flame Radiation Model

The weighted multi-source model involves dividing the entire flame into N points
and assigning a weight wi to each point. The heat release rate P (kW) is calculated using
Equation (5). The radiation of each point is understood as an independent part, and
the radiation of part i is calculated individually, as shown in Equation (6). As shown in
Equation (7), wi is used because the intensity of each part is different. The total radiation of
the entire flame is the sum of each point, as illustrated in Equations (5)–(9) [24,25]:

P = χ
( .
mRG

)
equ∆Hc (5)

qi = P
wicosβi

4πD2
i

τi (6)

wi =

{
iw1, i ≤ 0.75N

∣∣∣∣n − n − 1
N − n − 1

, i > 0.75N
}

(7)

q =
N

∑
i=1

qi = P
N

∑
i=1

wicosβi

4πD2
i

τi (8)

τi = 1.006 − 0.01171
(
log10XH2O

)
− 0.02368

(
log10XH2O

)2 − 0.03188
(
log10XCO2

)
+0.001164

(
log10XCO2

)2 (9)

where χ is the radiation fraction, ∆Hc is the combustion heat (kJ/kg), τi is the transmissivity,
and βi and Di are the angle and distance between the point and the observer. Therefore,
the flame geometry, including flame length and flame tilt, is accounted for as the flame
geometry influences βi and Di. XH2O and XCO2 are the proportional amounts of water
vapor and CO2 in the path. One should note that the transmissivity is constant through
the whole flame in the present work. Equation (1) considers the incomplete combustion
of natural gas, whose main component is methane. The minimum ignition energy and
the flammable limits of methane are 0.28 mJ and 5% to 15%, while the minimum ignition
energy and flammable limits of hydrogen are 0.017 mJ and 4.25% to 75%. Compared with
methane, the minimum ignition energy of hydrogen is low and the flammable limits of
hydrogen are wide; therefore, the combustion efficiency of the hydrogen jet fire is 1.

Various researchers employ different values for N. The American Petroleum Institute
(API) uses N = 10 for hydrocarbon jet fires, while Miller et al. use N = 30 for hydrogen and
syngas jet fires [19,26]. On the other hand, Sandia National Laboratories (SNL) follow the
approach of Lowesmith et al., utilizing N = 50 [18,24]. It is to be noted that the values of N
are given directly in previous works [19,24]. In this study, N = 50 is employed to ensure a
more accurate and detailed result. It is to be noted that Figure 1 shows the validation of
Equation (8). Figure 1 compares the radiation calculation results of the weighted multi-
source model with the experimental data from previous works [27,28]. The x-axis is the
non-dimensional length, which is defined as the ratio of x and the visible flame length. x is
defined as the horizontal distance to the leakage point. And the y-axis is the radiation heat
flux (kW/m2). The hollow triangles in Figure 1 indicate the experimental results of Schefer,
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with the leakage diameter of 3.175 mm. The initial temperature is assumed to be 294 K, and
the initial pressure is 15.3 MPa [28]. The solid dots in Figure 1 indicate the experimental
results of Schefer regarding different times after leakage, with the leakage diameter of 7.94
mm and the initial pressure of 15.5 MPa. The gas temperature at the jet exit is predicted to
be 258 K to 284 K. The radiation changes with time as the pressure changes with time [27].
In previous work, the visible, infrared (IR), and ultraviolet (UV) digital images of the
flame were used to obtain the flame shape. The average flame length over five successive
frames was then taken to discuss the flame properties and to provide quantitative data,
and the visible flame lengths from the averaged visible digital images were used for the
radiation calculation [28]. The curved lines indicate the results calculated by the weighted
multi-source model. In total, 59 experimental data points from previous works are used to
validate Equation (10). Nineteen data points are derived from the experimental condition
when the leakage diameter is 3.175 mm and the initial pressure is 15.3 MPa [27]; these are
the black hollow triangles is Figure 1. Additionally, 40 data points are derived from the
experimental condition when the leakage diameter is 7.94 mm and the initial pressure is
15.5 MPa [27]; these are the green, blue, purple, pink, and yellow solid points in Figure 1.
This comparison demonstrates that the weighted multi-source model effectively captures
the characteristics of high-pressure hydrogen leakage.
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3.3. Potential Impact Radius for Hydrogen Pipelines

The potential impact radius (r) for hydrogen pipelines represents the horizontal dis-
tance from the leakage point to the location where the radiation reaches 15.8 kW/m2. The
radiation is calculated with the aforementioned model in Section 3.2, with the pipeline
diameter varying from 300 mm to 610 mm and operation pressure from 2 MPa to 6.3 MPa.
And the temperature inside the hydrogen pipeline is 294 K. A total of 60 cases were com-
puted with Equations (1)–(9), as depicted in Figure 2. It is to be noted that these conditions
encompass real-world hydrogen pipelines. All the conditions are shown in Table 1. The
calculated values of the potential impact radius increase with the increase in pipeline di-
ameter and operating pressure, affirming the applicability of Equation (8) for the potential
impact radius calculation.
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Table 1. Calculated conditions.

Operation Pressure (MPa) Pipeline Diameter (mm)

6.3, 6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2 610, 600, 500, 450, 400, 325, 300

However, Equation (8) is relatively intricate compared to Equation (2), making it less
suitable for swift industrial calculations. Consequently, a new correlation is proposed, as
illustrated in Figure 3. It is noteworthy that the characteristic factor d

√
p is employed,

which is consistent with Equations (1) and (2). It is to be noted that in Equation (10), the
unit of d is mm, the unit of p is MPa, and the unit of r is m.

r = 0.11d
√

p + 5.09 × 10−5(d
√

p)2 − 2 × 10−8(d
√

p)3 (10)
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As shown in Figure 3, the new proposed correlation Equation (10) agrees well with
the data, with an R square of 0.995. One should note that the applicability of the proposed
model is limited to the calculation of the potential impact radius for the hydrogen pipelines.
The properties, including the combustion heat and density of methane, are needed to revise
Equation (10), if applying Equation (10) to natural gas pipelines.

4. Results and Discussion

Figures 4 and 5 compare the potential impact radius based on the single point source
model proposed by ASME (Equation (2)) with the proposed model (Equation (10)). The
x-axis is the diameter of the pipeline rupture. The y-axis is the potential impact radius
calculated by the previous model (Equation (2)) or the proposed model (Equation (10)).
Notably, no other work has been reported on the potential impact radius of hydrogen
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pipelines other than Equation (2). It is evident that regardless of the model used, for a given
pipeline diameter, the potential impact radius increases with the rise in operating pressure.
Similarly, for a given operating pressure, the potential impact radius increases with the
augmentation of the pipeline diameter. Notably, the potential impact radius calculated by
Equation (2) appears consistently smaller than that obtained from Equation (10). It is worth
mentioning that the potential radius calculated by the single point source model has been
reported to be significantly smaller than the potential impact radius in real-case pipeline
leakages [29]. Given the absence of reported incidents of long-distance hydrogen pipeline
leakage, the proposed model for the potential impact radius is validated using data from a
natural gas pipeline incident published online. In this case, an Enbridge Corporation natural
gas pipeline, with a diameter of 762 mm and a maximum operating pressure of 6.45 MPa,
experienced a leak. The potential impact radius calculated using the point source model
was 192.9 m. It is to be noted that the data were collected and measured by the National
Transportation Safety Board, and the information on the incident was reported in Natural
Gas Transmission Pipeline Rupture and Fire (Pipeline Investigation Report: NTSB/PIR-
22/02) online [29]. However, the reported fatality occurred 195 m south of the leakage,
and the furthest distance from a damaged structure to the leakage point was 335 m—both
significantly larger than the calculated 192.9 m with Equation (1) [29]. Figure 6 compares
the reported data with the potential impact radius calculated using Equations (8)–(10). In
Figure 6, the y-axis is the reported or calculated potential impact radius. From left to right,
the four bars in Figure 6 represent the calculated results of Equation (2), the calculated
results of the proposed model Equation (10), the furthest distance causing a 1% fatality
reported, and the furthest distance causing house damage reported. It is important to
note that the properties of methane were employed in the proposed model to calculate the
potential impact radius for the natural gas pipeline. Figure 6 illustrates that the results
from the proposed model are closer to the accurate values compared to the previous model
based on the point source model. As the definition of the potential impact radius is the
distance where: (1) the fatality is 1% and (2) the structure could provide infinite protection,
335 m (orange bar in Figure 6, indicating the position where the structure could provide
infinite protection) is used as the potential impact radius for the previous incident. And the
accuracy of the potential impact radius is improved by 38%. This validation indicates that
the proposed model aligns well with actual incidents, offering a simplified approach for
calculating the potential impact radius for hydrogen pipelines. The results agree well with
real-case scenarios and contribute to the improved risk assessment of hazard zones and
pipeline design.
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Figure 4. Comparison of ASME [16] (Equation (2)) and new proposed model (Equation (10)) for
hydrogen pipeline leakage with the same pipeline diameter.
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By proposing models for the equivalent mass flow rate and utilizing a weighted
multi-source model for radiation, a simplified model for quick industrial calculation is
obtained to access the potential impact radius for hydrogen pipelines. The improvement
and novelty of the present model are due to the consideration of the shape of the hydrogen
jet fire, as well as the increase in the accuracy of the radiation calculation and the improved
potential impact radius calculation. And one should note that Equation (10) is applicable for
hydrogen pipelines. With more models and incident data reported for hydrogen pipelines,
the further validation of Equation (10) would make an interesting future work.

5. Conclusions

The potential impact radius (r) serves as a crucial parameter in the risk assessment
of hydrogen pipelines, delineating the horizontal distance from the leakage to the point
where the radiation reaches 15.8 kW/m2. Previous methodologies relied on the single
point source model to calculate radiation, overlooking the impact of the flame shape. This
study, encompassing 60 cases, introduces a novel model for the potential impact radius and
considers the geometric characteristics of the jet flame induced by high-pressure leakage.
The key findings include:
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(1) A model for assessing the potential impact radius is proposed, including an equivalent
mass release rate that considers the pressure drop of the hydrogen pipeline leakage
and a radiation model based on a weighted multi-source model;

(2) A simplified correlation (Equation (10)) is proposed to calculate the potential impact
radius and to provide a reference for industrial use. The proposed model consistently
yields more accurate results than the single point source model. The validation against
an actual pipeline leakage demonstrates good agreement with real-world scenarios.

This work presents a model for assessing the potential impact radius of hydrogen
pipelines based on jet fire radiation, supporting safety design and risk assessment in
hydrogen pipeline applications. With more hydrogen pipeline information reported, more
validation of the present work will be necessary in future works.
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