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Abstract: Background: Climate change is a strong contributing factor in the lengthening and inten-
sification of wildfire seasons, with warmer and often drier conditions associated with increasingly
severe impacts. Land managers are faced with challenging decisions about how to manage forests,
minimize risk of extreme wildfire, and balance competing values at risk, including communities,
habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land
managers use decision analytic frameworks to complement existing decision support systems such as
the Interagency Fuel Treatment Decision Support System. Methods: We apply this approach to a fire-
prone landscape in eastern Washington State under two proposed landscape treatment alternatives.
Through stakeholder engagement, a quantitative wildfire risk assessment, and translating results into
probabilistic descriptions of wildfire occurrence (burn probability) and intensity (conditional flame
length), we construct a decision tree to explicitly evaluate tradeoffs of treatment alternative outcomes.
Key Results: We find that while there are slightly more effective localized benefits for treatments
involving thinning and prescribed burning, neither of the UWPP’s proposed alternatives are more
likely to meaningfully minimize the risk of wildfire impacts at the landscape level. Conclusions: This
case study demonstrates that a quantitatively informed decision analytic framework can improve
land managers’ ability to effectively and explicitly evaluate tradeoffs between treatment alternatives.

Keywords: climate change; fuel treatments; fire management; risk

1. Introduction

Climate change is driving rapid changes to western North American (wNA) forest
ecosystems. With warmer, drier, and lengthening wildfire seasons, large wildfires are
increasingly common and severe [1–6]. A legacy of fire exclusion in many fire-prone forests
due to settler colonialism and fire suppression [7] has caused forests to become denser
and wildland fuels to accumulate with concomitant changes in fire regimes and forest
resilience [8,9].

The return of fires to many wNA forests has been accompanied by increasingly severe
impacts to forest ecosystems [10,11] and communities [12,13]. Land managers are tasked
with challenging decisions about how to manage forests and intensifying wildfire risk.
These decisions require careful consideration of several competing objectives. For example,
as the wildland urban interface (WUI) expands with more people living within or close
to fire-prone forests, fuel reduction treatments that involve prescribed burning may be
challenging to implement due to perceived risks and potential smoke impacts. However,
wildfire risk reduction is critically needed to mitigate future wildfire impacts to WUI
communities [14].
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Several tools exist to assist decision making for wildfire management, though some
are less accessible than others to decision makers. Quantitative wildfire risk assessments
(QWRAs) offer an integrated raster-based mapping of potential risk across an entire land-
scape [15,16]. As a complement to QWRAs, decision analytic frameworks—such as decision
trees—allow risk managers to explore the available options and to confront the scientific, so-
cial, and political uncertainties that result in tradeoffs in the prioritization of those options,
by estimating probabilities for a range of possible outcomes, represented as the right-most
nodes on a decision tree [4,17–22]. Decision frameworks are thus used to assess overall
risk mitigation associated with available risk management strategies and their likely conse-
quences [4,17–22]. This paper presents a case study to offer an improved methodology for
utilizing the Interagency Fuel Treatment Decision Support System (IFTDSS) in conjunction
with a decision analytic approach that elevates the quality of risk analysis and the risk
management process and offers comprehensive insight into the tradeoffs associated with
different fuel treatment options.

2. Background

In the decades following the introduction of prescribed fire use as a means of proac-
tively minimizing risk of intense wildfire, several approaches for wildland fuels man-
agement have been introduced to the portfolio of options available to managers. These
approaches fall into two main categories: fuel reduction and fuel rearrangement. Fuel
reduction treatments include prescribed fire, thinning, or other mechanical treatments
followed by the removal of any remaining debris (either burning or removal from site).
Fuel rearrangement includes thinning or mechanical treatment (also known as mastication)
where debris is left on site [23–25]. Effective fuel reduction, including prescribed burn-
ing and combinations of thinning from below followed by prescribed burning, promotes
lower flame length fires, reduces tendency to spread, and decreases likelihood of crown
fire [25–27].

Cultivating fire-resilient landscapes requires informed, strategic planning and knowl-
edge of where individual treatments will be most effective and how they may mitigate
fire impacts across landscapes [25,28,29]. It is often the case that one treatment approach
alone is insufficient to effectively mitigate extreme fire risk. For example, in some cases,
thinning alone can effectively reduce risk of severe fire, but it is important to acknowledge
that without some means of removal of residual debris (slash), thinning can also contribute
to fire risk [25]. Similarly, in many fire-excluded forests, prescribed burning alone may
not achieve objectives of reducing forest densities because too many trees would survive
the burning treatment [27]. Thus, managers often opt to pair thinning with prescribed
fire [24,26]. Still, thinning and burning are not always appropriate for a given forest struc-
ture or landscape; for example, a montane or subalpine forest dominated by thin-barked
trees would not be a good candidate for thinning and prescribed burning [25]. Herein lies a
challenge for fire managers: where should managers administer fuel treatment and which
specific approach should be used?

2.1. Uncertainty and Existing Decision Support

Decisions surrounding fuel treatment are constrained by uncertainty and variability in
fire ignition, weather, location of occurrence, and many other factors [30–32]. Several tools
exist to serve decision makers at different points in the process of wildfire planning and
management. Among these tools are fuel and fire weather information, the Interagency
Fuel Treatment Decision Support System (IFTDSS) and the Wildland Fire Decision Support
System (WFDSS). As detailed in Table 1, each of these tools has value for wildland fire
decision making with some overlap in functionality.
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Table 1. Overview of existing key decision support tools.

Tool When to Use Useful For

IFTDSS In advance of fire. Proactive fuel planning, fire behavior modeling, analyzing risk of
fire on treated/untreated land [33].

Fuel and Fire Weather
Information (i.e., NFDRS) During initial attack.

Using weather and climatology data to estimate fire danger and
inform initial attack decisions; when there is not enough time to

execute full analysis in WFDSS [34–36].

WFDSS During active fire, after
initial attack.

Active fire management, documentation of fire status,
characteristics and firefighting strategies, strategizing resource

deployment and firefighting tactics, fire behavior modeling,
analyzing risk of fire on landscape as is [34,37–39].

IFTDSS is a webtool that provides relatively user-friendly access to fire behavior
modeling capabilities and geospatial data from several sources including LANDFIRE,
SILVIS, and various federal agencies with the option for users to add their own data [40–42].
The main purpose of IFTDSS is to facilitate effective proactive fuel treatment planning. It
allows users to examine the response of an area of interest to expected fire behavior under
a wide variety of weather conditions. Users can easily generate maps, graphs, and tables
that describe the impact that fire is expected to have on a variety of highly valued resources
and assets (HVRAs) on the landscape, such as air quality, water quality, and habitat.

2.2. Decision Analytic Frameworks as a Complementary Decision Support Tool

A key gap in the existing tools available to wildland fuel managers is noted in Rapp
et al. (2020) [34]: even when using decision support tools such as WFDSS or IFTDSS as
intended, decision makers are still challenged to weigh tradeoffs and ultimately make
decisions based on their own expertise and judgment and any relevant external factors,
in the face of substantial uncertainty. The planning process can be challenging because
land managers are often specialized in their respective disciplines and the many explicit
tradeoffs may not be within their scope of their work.

Decision making and planning often requires environmental analyses such as Environ-
mental Impact Statements (EIS), which are generally written with distinct and sometimes
siloed sections dedicated to project impacts to fish, forests, and habitat. While the EIS
attempts to integrate these impacts, in reality it is very difficult to consolidate these risks
into a unified whole [43,44]. Decision making is further challenged by competing concerns
about retaining LSR habitats for Northern Spotted Owl (NSO; Strix occidentalis caurina) and
other wildlife species dependent on old forests and the risk of stand-replacing wildfire
events [45,46]. Habitats in fire-prone landscapes—especially in LSRs, as they have been
identified in the Northwest Forest Plan (NWFP)—are characterized by old forest structures
with multilayered canopy layers and abundant coarse wood. Overharvesting in the 20th
century led to steep reductions in old forests. The NWFP established LSRs in northwestern
California, western Oregon, and western Washington and designated these as moist forests.
The NWFP area also spans over the Cascade Crest into eastern Oregon and Washington
State into dry forests. Although language within the NWFP allowed for fire hazard mitiga-
tion within late successional reserves in dry forests, they have generally been treated as
set asides with no active management [47]. The Upper Wenatchee Pilot Project (UWPP)
contains LSRs that represent tradeoffs between continued protection of late successional
habitat and addressing threats from large, high-severity wildfires. Competing perspectives
can intensify the difficulty of making such a decision around values at risk [48].

An advantage of IFTDSS as a decision support tool is that it offers a relatively accessible
and integrated way to examine potential fire behavior, given a particular fuel model or
treatment scenario, and to conduct a QWRA on identified values at risk. A QWRA is
a method for understanding potential impacts of wildfire on a landscape that yield a
geospatial analysis of potential benefits and threats, given specified fire weather conditions
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represented as both a conditional weighted net value change (i.e., conditional on the fact
that a fire has occurred) and an expected weighted net value change for each pixel on
the landscape (see Figure 1) [15,49,50]. Decision analytic frameworks—such as decision
trees—when combined with this methodology go beyond the QWRA process to offer a
broad, systems view of tradeoffs that can complement existing tools like IFTDSS and may
offer a more intuitive lens through which to analyze IFTDSS outputs. For this reason,
decision analytic approaches are well suited for comparing the consequences of prioritizing
one value/asset over another.
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Figure 1. Inputs and outputs of wildfire simulation to assess risk. Required user-entered inputs
are represented by red, while processes are represented in blue and outputs in yellow (landscape,
weather, primary HVRA, sub-HVRA, response function, and relative importance) [40].

Decision analytic frameworks have been applied to improve and analyze challenging
environmental policy decisions and their relevant tradeoffs, ranging from climate change
adaptation measures [51] to risk management of contaminated industrial sites [52]. Various
decision analytic frameworks have been suggested and applied to forest and wildfire man-
agement, tradeoffs, and the social costs thereof [14,17–20]. Similarly, Hirsch et al. (1979) [18],
Radloff et al. (1982) [19], and Cohan et al. (1984) [30] developed early applications of deci-
sion analysis techniques and fire modeling to decisions surrounding thinning/slash and
removal and prescribed fire usage, respectively. Similarly, McGregor et al. (2017) [53]
introduced a simple decision tree framework which considers the risk of wildfire given pre-
existing fuel conditions to determine whether to suppress a fire or let it burn. These studies,
however, tend to focus on probabilistic outcomes in terms of fire intensity or burned area
across a landscape. Given the increasing challenges and uncertainties associated with wild-
fire management, there is a need for decision support that optimizes efficient and effective
fuel treatments and long-term reduction of risk and improves weighing of tradeoffs [54].
We address this need by utilizing existing decision support tools (IFTDSS and QWRAs) in
conjunction with a decision analytic framework, which can not only minimize fire intensity
across the landscape, but also estimate probabilistic impacts to HVRAs.



Fire 2024, 7, 77 5 of 26

3. Materials and Methods

Our novel approach to improving decision making using a decision analytic frame-
work contains several steps, which we discuss below and are outlined in Figure 2.
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Figure 2. Process flow for improved decision making using a decision analytic framework and
QWRA. This figure displays the step-by-step process demonstrated in this paper through the UWPP
case study.

3.1. Study Area

We selected the UWPP area in eastern Washington State because it is the focus of
planning to address high fire risk, and it is characterized by competing values at risk. This
area is densely forested and comprises 30% congressional reserved areas, another 30% of
which is designated as late successional reserves (LSR) [55]. Existing wildfire risk in this
area poses a direct threat to old and mature forests, habitat of the threatened northern
spotted owl and several threatened anadromous fish species. This is of particular concern
given the land allocations required by the Northwest Forest Plan, which designate 38% of
the planning area as LSRs and 14% of the area as riparian reserves [56]. These designations
require the following:

(1) Any restoration treatment on LSR needs to protect and enhance the late-successional
and old-growth forest ecosystems;

(2) Prohibition and regulation of activities that will inhibit the maintenance and restora-
tion of species composition and structural diversity of plant communities in riparian
reserves [56].

Wildfire also threatens nearby communities in the WUI, including Plain, Chumstick,
and Leavenworth.

Fire risk to these communities continues to increase with climate change to such an
extent that insurance companies are not only increasing rates but they have already begun
refusing coverage to homeowners [57,58]. While the region surrounding the UWPP has a
history of large fires, including three that burned nearly 17,000 acres (68.8 square kilometers)
total during the summer of 2022 when this research was being conducted [56,59], the UWPP
landscape has experienced very little stand-replacing wildfire in recent years [60]. Thus, this
high-risk landscape is especially ripe for devastating wildfire, and, as a result, is the focus
of the collaborative UWPP, led by the USFS, which seeks to restore forest health, reduce
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wildfire risk, and improve wildlife habitat and watershed function, further confirming the
selection of this area for our study.

The UWPP team has examined potential proactive treatment options, including thin-
ning, prescribed fire, a combination of the two, stand regeneration, and options that
prioritize NSO habitat over ecological resilience [56]. Within the UWPP area, USFS has
proposed two alternative treatment scenarios (mapped in Figure 3). Alternative 1 (left)
represents a prioritization of fuel treatment actions such as thinning and prescribed burning
to reduce fire risk, while Alternative 2 (right) reflects a prioritization of the threatened
NSO [56]. The location of treatment areas in both alternatives was centralized to be close
to communities for WUI protection and by existing road networks and priority habitat
for NSO.
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3.2. Expert Interviews and Workshops

Identification and analysis of potential impacts of wildfire HVRAs to each unique
landscape rely heavily on the input of stakeholders with localized expertise. Thus, the
majority of our data collection occurred through two approaches: a series of individual
semistructured interviews with local experts and a virtual stakeholder workshop during
which participants discussed their unique perspectives and informed an integrated as-
sessment of values at risk. We interviewed 10 individuals with expertise varying from
wildlife biology to silviculture, forestry, fire ecology, landscape ecology, and aquatic ecol-
ogy (see Appendix A). We selected participants due to the applicability and diversity in
profession and their experience working directly or indirectly with the UWPP landscape
and planning processes. Seven of our ten original interviewees also participated in our
virtual workshop.

During interviews, participants identified a set of HVRAs and sub-HVRAs relevant
to UWPP. The subsequent workshop included discussion of the assignment of relative
importance (RI) for these HVRAs. RI is a numeric weight which reflects the need for
tradeoffs and prioritization of some HVRAs over others, whether because of policy, land
management objectives, or other competing interests [50]. Participants were asked to assign
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response functions (RFs), which are numeric scores from −100 to 100 representing the
susceptibility or response of an HVRA to wildfire at different levels of intensity based on
first order fire effects, where −100 is extreme loss and 100 is extreme benefit [50].

At the subsequent workshop, we first introduced default HVRAs within IFTDSS.
We then presented participants with visual analyses of their responses and asked them
to elaborate on points of dissent, outlying responses, and individual perspectives. The
presence of specialists from multiple fields allowed the group to develop mutual clarity on
the issues and promoted a more unified set of responses than the individual interviews.
The stakeholder engagement process contributed several sources of guiding information.
First, interviews confirmed that FireFamilyPlus information used as inputs to the IFTDSS
Landscape Burn Probability Model (LBPM) are appropriate for the landscape (such as fuel
moistures, probability of spotting, wind speeds, etc.). Second, they ensured that all HVRAs
of concern are represented appropriately. Third, our workshop findings allowed us to
integrate localized expert opinion on the RI and RF of each key value (HVRA) of the UWPP
landscape. As a result of the workshop, we determine the set of HVRAs of greatest concern
on the UWPP landscape.

3.3. Decision Analytic Frameworks

To support pretreatment-related decision making, we developed a decision tree tem-
plate to represent wildfire management approaches and outcomes based on the probability
of wildfire severity under 90th and 99th percentile weather (Figure 4). In this case study,
we focused on the portion of the decision pertaining to combined mechanical thinning
and fire use (dark green). We modeled the decision that land managers currently face in
choosing between treatment alternatives under consideration in the UWPP (Figure 5). We
used the Landscape Editing function in IFTDSS to model and evaluate several treatment
scenarios. The Landscape Editing function allowed us to specify different levels of thinning
and prescribed burning to accurately represent UWPP treatment alternatives (see Table 2).
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Figure 4. Wildfire management technique decision tree. This decision tree diagram is designed to
be read from left to right. A blue square represents a “decision node” (a point where the decision
maker must choose between multiple options). A green circle represents an “uncertainty node”,
where uncertainty about future outcomes enters the equation. A red triangle represents a “terminal
node”, the point at which all impacts and consequences of a possible future outcome accrue to
the decision maker and stakeholders. Dark green squares represent uncertainties which can be
informed using values generated by IFTDSS. Branches that end without a terminal node are assumed
to continue along a similar path to analogous branches in the tree, a shorthand used here to save
space. For example, as highlighted by the dark green pathway, a decision maker may choose to
mechanically thin and to further pair thinning with prescribed burning (RX). All boxes to the right
of those two decision nodes—“Wildfire” vs. “No Wildfire”, “99th Percentile Weather” vs. “90th
Percentile Weather”, and high severity, moderate severity (“Mod.”), unburned and/or low severity
of fire—represent uncertain but possible future outcomes of the decisions made.
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Figure 5. Decision analytic representation of tradeoffs associated with mechanical thinning strategy.
This decision analytic framework represents the uncertainties and potential outcomes surrounding
the decision about treatment of a 30 m pixel within the landscape of interest. In this figure, we trace
a branch within the dark green pathway from Figure 3 and proceed with the assumption that the
decision maker has chosen to mechanically thin a landscape. At the next decision node (moving to
the right), the decision maker must choose between (1) thinning to 30% canopy cover, (2) thinning to
30% canopy cover followed by prescribed burning, (3) thinning to 50% canopy cover, and (4) thinning
to 50% canopy cover followed by prescribed burning. From there, the decision maker confronts the
uncertainty about whether or not a wildfire ignition will occur and the probabilities thereof followed
by the uncertainty of extreme fire weather conditions, which are represented probabilistically. Each
branch terminates with the realization of all outcomes and consequences associated with this specific
sequence of decisions and uncertainties.

Table 2. Landscape editing rules. For each UWPP alternative, we edited landscapes to reflect each
treatment alternative. These edits were applied according to the proposed geospatial range for
thinning treatment according to each alternative.

Treatment Scenario Apply Where. . . Canopy Cover Canopy Bulk
Density (kg/m3) Fuel Model Canopy Base

Height (m)

Thinning to 30% Canopy Cover Canopy Cover > 30% 30% 0.07 164 (TU4) 10

Thinning to 30% Canopy Cover
+ Prescribed Burn Canopy Cover > 30% 30% 0.07 101 (GR1) 10

Thinning to 50% Canopy Cover Canopy Cover > 50% 50% 0.15 164 (TU4) 10

Thinning to 50% Canopy Cover
+ Prescribed Burn Canopy Cover > 50% 50% 0.15 101 (GR1) 10

We designed a decision tree capable of representing a wide range of proactive strategies
that planners can pursue to minimize the risk of severe wildfire impacts. For our application,
the decision tree displays each treatment strategy individually, while in practice, multiple
treatments are typically combined [24,26]. Still, the tree structure is valuable in presenting
a comprehensive and realistic view of the tradeoffs and probabilistic outcomes associated
with various treatment alternatives which have implications for potentially competing
values at risk.
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To illustrate the application of this decision analytic approach, we simplified the
analysis to include only the first two treatment scenarios displayed in Figure 5: thinning to
30% canopy cover and thinning to 30% canopy cover followed by prescribed burning. We
considered both scenarios for each treatment alternative for the UWPP.

3.4. Fire Weather Data

As reflected in the fourth column of Figure 5, we conducted landscape burn probability
modeling in IFTDSS for two fire weather conditions: 90th percentile fire weather and 99th
percentile fire weather. To model these fire weather scenarios, we input weather conditions
such as wind speed and direction, fuel moisture, spotting probability using FireFamilyPlus,
a software package that uses hourly fire weather observations collected from RAWS (that is,
Remote Automated Weather Stations) to calculate fuel moistures and indices from NFDRS
(Missoula Fire Sciences Laboratory). Appendix B offers an example of data collected.

3.5. Deriving Probabilities

To derive probabilities associated with each uncertainty specified in Figure 5, we simu-
lated wildfire occurrence subject to specified weather conditions. The LBPM capabilities of
IFTDSS allows the quantification of several outputs, including conditional burn probability
and conditional flame length. First, we used Table 3 to construct conditional flame length
classes akin to those used in IFTDSS.

Table 3. Relationship of surface fire flame length to fire intensity. Source: Andrews and Rothermel
(1982) [61].

Flame Length Fireline Intensity Interpretation

Feet
<4

Btu/ft/s
<100

Fire can generally be attacked at the head or flanks by
persons using handtools.
Handline should hold the fire.

4–8 100–500

Fires are too intense for direct attack on the head by
persons using handtools.
Handline cannot be relied on to hold fire.
Equipment such as plows, dozers, pumpers, and
retardant aircraft can be effective.

8–11 500–1000

Fires may present serious control problems – torching
out, crowning, and spotting.
Control efforts at the fire head will probably be
ineffective.

>11 >1000 Crowning, spotting, and major fire runs are probable.
Control efforts at head of fire are ineffective.

We then estimated the probability of wildfire in Figure 5 using both geospatial and
statistical analyses of burn probability outputs. Specifically, we interpreted the burn
probability percentages presented in Figure 6 as the probability that a pixel in this space
would experience each burn probability or conditional flame length, conditional on all
combinations of decision alternatives and chance events that precede these outcomes. Thus,
the probability of wildfire is constructed as the weighted sum of the probabilities of low,
moderate, and high fire severity in the landscape.
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fire Weather. “Unburned” implies the share of landscape that was burnable but did not burn,
“Low” = 0–4 feet (0–1.2 m), “Moderate” = 4–8 feet (1.2–2.4 m), and “High” = 8–12+ feet (2.4–3.7+ m).

4. Results
4.1. Workshop Results and Prioritizing HVRAs

During our workshop, stakeholder participants were asked to review a set of default
HVRAs included in IFTDSS. These stakeholders generally agreed that the default HVRAs
were important for the UWPP and further identified several sub-HVRAs to be added for
explicit consideration. Notably, stakeholders recommended that the term Habitat refer
specifically to that of NSOs, fish, old growth forests, white-headed woodpeckers (Picoides
albolarvatus), nonforest, and other early successional habitat (see Appendix C for further
discussion of HVRA selection and data). The workshop yielded consensus in terms of
relative importance and response functions, though not without lengthy discussion (Table 4).
Experts were asked to identify a “most important” HVRA; however, they exhibited a
tendency to rank all HVRAs highly. When pressed to be decisive about their top priority,
experts identified People and Property as the most important value in the UWPP landscape,
followed by Habitat and Infrastructure.

Table 4. Primary HVRA RI refers to the relative importance score assigned to each HVRA by
stakeholders.

PRIMARY HVRA: RI (0–100)

Habitat 90

People and Property 100

Air Quality and Emissions 60

Recreation 50

Surface Drinking Water 70

Infrastructure 90
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4.2. Informing Uncertainty

Across all scenarios, conditional burn probability is generally low across the majority
of the UWPP study area and designated treatment areas relative to the surrounding region.
Figure 6 shows a sample analysis of UWPP Alternative 1 subject to 99th percentile fire
weather. The panels (moving from left to right) reflect burn probability (BP) without
treatment, burn probability after thinning to 30% canopy cover, and burn probability after
thinning to 30% canopy. This figure and the top panels of the corresponding histogram in
Appendix D reveal only modest differences in burn probability across treatment scenarios
within UWPP Alternative 1. Appendix E offers a similar histogram analysis by forest type.

Although burn probability is generally quite low across the study area (Figure 7 and
Appendix D), if a wildfire did occur, it would be expected to result in high flame lengths
under both the 90th and 99th percentile weather scenarios (Figure 8). Areas treated with
combined thinning and prescribed fire exhibit much lower expected conditional flame
length than those associated with either thinning alone or the no-treatment scenario. Lower
flame lengths are also concentrated in and around the treated area.

Fire 2024, 7, x FOR PEER REVIEW 11 of 28 
 

 

explicit consideration. Notably, stakeholders recommended that the term Habitat refer 
specifically to that of NSOs, fish, old growth forests, white-headed woodpeckers (Picoides 
albolarvatus), nonforest, and other early successional habitat (see Appendix C for further 
discussion of HVRA selection and data). The workshop yielded consensus in terms of 
relative importance and response functions, though not without lengthy discussion (Table 
4). Experts were asked to identify a “most important” HVRA; however, they exhibited a 
tendency to rank all HVRAs highly. When pressed to be decisive about their top priority, 
experts identified People and Property as the most important value in the UWPP landscape, 
followed by Habitat and Infrastructure. 

Table 4. Primary HVRA RI refers to the relative importance score assigned to each HVRA by stake-
holders. 

PRIMARY HVRA: RI (0–100) 

Habitat 90 

People and Property 100 

Air Quality and Emissions 60 

Recreation 50 

Surface Drinking Water 70 

Infrastructure 90 

4.2. Informing Uncertainty 
Across all scenarios, conditional burn probability is generally low across the majority 

of the UWPP study area and designated treatment areas relative to the surrounding re-
gion. Figure 6 shows a sample analysis of UWPP Alternative 1 subject to 99th percentile 
fire weather. The panels (moving from left to right) reflect burn probability (BP) without 
treatment, burn probability after thinning to 30% canopy cover, and burn probability after 
thinning to 30% canopy. This figure and the top panels of the corresponding histogram in 
Appendix D reveal only modest differences in burn probability across treatment scenarios 
within UWPP Alternative 1. Appendix E offers a similar histogram analysis by forest type. 

Although burn probability is generally quite low across the study area (Figure 7 and 
Appendix D), if a wildfire did occur, it would be expected to result in high flame lengths 
under both the 90th and 99th percentile weather scenarios (Figure 8). Areas treated with 
combined thinning and prescribed fire exhibit much lower expected conditional flame 
length than those associated with either thinning alone or the no-treatment scenario. 
Lower flame lengths are also concentrated in and around the treated area. 

 

Figure 7. Comparison of conditional burn probabilities by treatment approach. Conditional burn
probabilities for UWPP Alternative 1 subject to 99th percentile fire weather are depicted for three
treatment scenarios: no treatment, thinning to 30% canopy cover, and thinning to 30% canopy cover
followed by prescribed burning. The treatment area is overlaid as a black outline.

As reflected in Figure 6, thinning alone yielded similar expected burn probabilities
across each alternative (i.e., the majority of the treated area experiences low burn probabil-
ity). Across both alternatives, we found that the probability of moderate flame lengths is
highest when conditioned by the “Thinning 30%” treatment scenario, whereas the proba-
bility of low flame lengths is highest for combined thinning and prescribed burn.

Based on these results, Figure 9 represents a landscape that has been thinned to 30%
canopy cover and burned. Assuming 99th percentile weather, there is a 92.4% chance
that wildfire will occur in a given pixel and about a 90.1% chance that it will be a low-
severity fire. At the terminal node at the far right of the decision tree, we observe a 0.06%
probability that there is a high-severity fire with all the subsequent impacts accruing,
conditional on a wildfire occurring in 99th percentile weather after thinning to 30% canopy
cover combined with prescribed burn. Appendix F presents probability calculations for
additional intermediate probabilities not evaluated in this figure.
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Figure 9. Decision analytic representation of mechanical thinning informed by IFTDSS. This figure
presents a treatment decision informed by output from Interagency Fuel Treatment Decision Sup-
port System (IFTDSS) scenarios. For the purposes of this illustrative decision tree, we simplified
burn probability into five possibilities: four wildfire outcomes including with a burn probability
of either “Low” (20–40%), “Moderate” (40–60%), “High” (60–80%), or “Highest” (80–100%), and a
“No/Unlikely Wildfire” outcome with a burn probability of 0–20%. The probabilities highlighted
in purple at each terminal node represent the probability of each possible future outcome occurring
conditional on all prior decision and chance nodes to its left.

The QWRA analysis of UWPP landscape suggests that future wildfires are much
more likely to result in overall harm than benefit, and, thus, neither proposed treatment
alternative is expected to achieve treatment objectives. We offer quantitative confirmation
of the concerns expressed by our stakeholders by demonstrating that many of the values at
risk that they explicitly identified as being of greatest concern (such as the white-headed
woodpecker, NSO, old growth forests, and the WUI) are indeed associated with the highest



Fire 2024, 7, 77 13 of 26

levels of vulnerability to the threat of wildfire based on the geospatial configuration of
these values on the landscape (see Figure 10).
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Figure 10. Cumulative conditional weighted net value change (NVC) by sub-HVRA. This figure
represents expected impacts (threats or benefits) to each HVRA in Upper Wenatchee Pilot Project
Alternative 1 after experiencing thinning to 30% canopy cover coupled with prescribed burning
(provided by IFTDSS QWRA report). In Appendix G, these results and a corresponding set of results
for Alternative 2 are compared.

5. Discussion
5.1. Multiple Competing Values at Risk

Under warmer and drier summer conditions, the UWPP landscape and its many
resources and assets are threatened by the intensifying risk of extreme wildfire. In this
setting, there are multiple values at risk competing for policy attention and risk manage-
ment prioritization. Complex tradeoffs between these values are expressed by our expert
stakeholders. The QWRA within IFTDSS confirmed the importance of these competing
values across the landscape. Stakeholders remarked that the process of assigning weights
and numeric rankings to vital but disparate concepts and values such as ecosystems and
recreation was challenging and that they were concerned about oversimplification when
expressing relative ranks, given the many competing values and tradeoffs. Future work
building upon this methodology will likely also be subject to the challenges of assessing,
prioritizing, and placing numeric weights on the values at risk (HVRAs). However, we
argue that these challenging and uncomfortable conversations and rankings are critical be-
cause prioritization is the foundation upon which tradeoffs in policy- and decision-making
processes depend.

Further research in this area may benefit from conducting multiple QWRAs to simulate
prioritization of different HVRAs, especially where there are different perspectives among
experts about what values are of greatest concern. For example, a faction of our stakeholders
expressed interest in exploring and comparing the tradeoffs both from a perspective which
considers People and Property to be of the highest importance (as was modeled in our case



Fire 2024, 7, 77 14 of 26

study) and separately from a perspective where Habitat is most important (which was a
very close second).

5.2. Influence of Treatments on Landscape Burn Probability and Conditional Flame Lengths

In this study, we used IFTDSS scenarios to evaluate a range of treatment options and
how they influence both overall landscape burn probability and conditional flame lengths.
Within UWPP Alternative 1, which prioritized greater fuel treatment areas and less NSO
habitat than Alternative 2, our analysis found no appreciable difference in burn probability
between thinning alone and thinning combined with prescribed burning. Because treat-
ments are primarily confined to the interior of the study area with minimal treatment in
the northern and southern portions of the study area, we expected burn probability across
the study area to be similar across scenarios. We do not find substantial differences in
burn probability between UWPP Alternatives 1 and 2. In fact, in most instances, landscape
burn probability varies only by a fraction of a percent across Alternative 1 and 2; thus, for
these measures, the impact of prioritization on fuel treatment versus habitat is found to be
relatively modest.

In contrast, conditional flame length predictions vary markedly between treatment
scenarios. Given a greater than 90% chance that combined thinning and prescribed burning
result in low flame lengths (0–4 feet or 0–1.2 m, Figure 6), managers and firefighters have
a range of effective response options available to them (Table 3). By contrast, in the case
of thinning alone, there is a near 70% chance of moderate (4–8 feet or 1.2–2.4 m) flame
lengths in both Alternatives 1 and 2, i.e., regardless of whether fuel treatment or habitat is
prioritized. For both alternatives, thinning combined with prescribed burning is shown as
likely to be more effective in reducing fire intensity (conditional flame length) than thinning
alone. This finding is consistent with well-established findings in the literature [24,25].
Even though pixel-based outcomes differ markedly by treatment, the overall difference in
conditional flame length between Alternatives 1 and 2 is minimal.

In the fire weather scenarios modeled, predicted winds were from the west/southwest
direction. Under a more distributed fuel treatment scenario, we might have expected a
more noticeable reduction in burn probability as a result of treatment across the landscape,
particularly on the other side (east) of prevailing winds [62,63]. However, given that
conditional burn probability was already very low across the majority of the landscape
prior to treatment (i.e., in the status quo), there was little room for further reduction in
BP. The QWRA underscored that large wildfire growth will occur within a relatively rare
event but with major potential impacts to the planning area. Record-setting heat events,
episodic drought, and summer windstorms are all becoming more common under climate
change [2], and landscapes such as the UWPP that have mostly avoided fire in the relatively
recent past are increasingly at risk.

Treatment scenarios were based on two alternatives that are actively being considered
by the USFS for the UWPP. Landscape evaluations using conditional burn probability
and conditional flame length both demonstrated that, as planned, neither alternative is
likely to mitigate the probability and impacts of wildfires overall. However, based on pixel
outcomes as depicted in Figures 7 and 8, lower conditional flame lengths were observed in
scenarios with both thinning and combined thinning and prescribed burning treatment
units, with a much higher probability of reduced severity in the latter. Because the majority
of the study area is excluded from treatment even in Alternative 1 (which includes a greater
share of treated land than Alternative 2 and favors more land reserved for NSO habitat),
neither alternative reduced the expected burn probability for untreated areas.

5.3. Decision Analytic Frameworks

Decision analytic frameworks, such as decision trees, are recognized as a valuable
tool to inform probabilistic outcomes from land management decisions with uncertain
outcomes [4]. This study evaluated an improved methodology for utilizing existing wildfire
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decision support systems such as IFTDSS to improve risk analysis and evaluate tradeoffs
among competing values at risk.

Our novel application of a decision analytic approach offers an example of how fuel
treatment scenarios in IFTDSS can be evaluated to help weigh the tradeoffs of impacts
between management alternatives. Land managers are increasingly challenged to operate
in the face of uncertainty, and decision trees can help mitigate this difficulty by clearly
reflecting the relative likelihood of outcomes under different strategies and alternatives.
The conditional probabilities derived using our methodology offer decision makers a new
tool to holistically consider the impact of planning alternatives on a landscape, values
at risk at the landscape scale, and the likelihood of successfully achieving their desired
outcomes in selecting a course of treatment. In this study, we presented a simple illustrative
decision tree example as a proof of concept, a building block in advance of more complex
and integrated landscape-scale evaluations of values at risk. Further development of
probabilistic descriptions of uncertainty will be needed before generating a full decision
analytic framework capable of representing and evaluating outcomes under multiple
treatment scenarios.

6. Conclusions

Management decisions for problems as wicked as intensifying risk of wildfire in the
21st century require thorough consideration of competing objectives. This paper utilizes
the UWPP case study to propose an enhanced methodology for leveraging existing wildfire
decision support systems such as IFTDSS to improve risk analysis through the use of
decision analytic frameworks to evaluate tradeoffs more holistically among competing
values at risk.

Our results reinforce that IFTDSS offers a helpful platform for understanding inte-
grated risk. Discussions with expert stakeholders, guided by a QWRA, effectively inform
the probabilistic outcomes of each treatment alternative proposed for the UWPP and high-
light the multiple competing values at risk under current conditions. These results, when
incorporated into our decision analytic approach, suggest that the two alternatives within
the UWPP offer localized treatment effectiveness, and that treatments that involve com-
bined thinning and prescribed burning are expected to be most effective. However, neither
alternative is expected to meaningfully influence predicted fire behavior at the landscape
level. In order to achieve substantial reductions in potential wildfire behavior and impacts,
particularly in extreme fire weather conditions, a greater proportion of the study area
landscape would need to undergo treatment.

More broadly, these results establish that decision analytic approaches—such as deci-
sion trees—can functionally inform key probabilistic outcomes for a range of values at risk,
which can be used to inform planning decisions. Due to their demonstrated ability to make
probabilistic outcomes explicit for challenging land management decisions with uncertain
outcomes, such decision analytic approaches hold substantial promise for improving future
landscape evaluations.
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Appendix A. Interview Questions

(1) What is/are your areas of expertise?

• Silviculture & Forestry
• Fire Science/Ecology
• Aquatics
• Wildlife Ecology
• Landscape Ecology
• Other

(2) Consider the following highly valued resources and assets (HVRAs). Rank the HVRAs
according to their importance in terms of the risk wildfire poses to them based on
your own understanding and perspective, where 1 is most important.

• Habitat
• People & property
• Air quality & emissions
• Recreation
• Surface drinking water
• Infrastructure (i.e., powerlines, communication towers, etc.)

(3) Are there any other HVRAs that you feel are not included here that should be?
(4) How would considering this affect your ranking, if at all?
(5) Are there any HVRAs that feel like they are equally important? If so, why?
(6) Let’s break each of these highly valued resources and assets (or “primary HVRAs”)

into sub categories (or “sub-HVRAs”) and assign relative importance. Relative im-
portance is a numerical score assigned to an HVRA between 0–10 where 10 is most
important that allows us to account for tradeoffs associated with competing objectives.

(7) Response functions are a measure of susceptibility or resilience of each sub-HVRA
to wildfires of varying intensities. Response function can be positive (benefitting
from fire) or negative (harmed by fire) between −100 and 100 where −100 is total
destruction and 100 is resilience and flourishing, in terms of first order fire effects
(direct or indirect immediate consequences of fire, such as tree mortality, soil heating
biomass consumption, etc.). We define intensity by flame length ranging from 0 to
12+ feet (0 to 3.7+ meters).

Appendix B. 90th and 99th Percentile Weather Conditions

Fire weather conditions (90th and 99th percentile scenarios) were defined using RAWS
Station 452128 (Viewpoint), which is the station closest to the study area. Weather conditions
were determined using data from 2012–2022 for fire season months (June–September). See
further specifications below.
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Figure A1. Fire weather condition output from RAWS 452128 (Viewpoint) 2012–2022. Specifications
that could not be informed by RAWS data were determined based on recommendations from
the publicly available IFTDSS documentation or IFTDSS Help Desk (Tables A1 and A2). These
specifications include wind subcategory (generate gridded winds), crown fire method, foliar moisture
content, fuel moisture conditioning, ignitions, and spotting probability.

For both Tables A1 and A2 (below), selections for which there is not a source cited
were determined based on IFTDSS Help Desk recommendations, default selections, and
intuition of the researchers. All simulations used the same ignitions. For the first simulation,
we selected “Use Random Ignitions”, and all simulations thereafter used those points of
ignition (“Use Ignitions from a Completed Run”).

Table A1. 90th percentile fire weather conditions—IFTDSS specifications.

CATEGORY SUBCATEGORY SELECTION 1 SELECTION 2 SOURCE

Wind
Generate
Gridded Winds

Wind Speed 8 mph RAWS Station
452128

Wind Direction 225◦ RAWS Station
452128

Crown Fire
Inputs

Crown Fire
Method Scott/Reinhardt

Foliar Moisture
Content 100%
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Table A1. Cont.

CATEGORY SUBCATEGORY SELECTION 1 SELECTION 2 SOURCE

Initial Fuel
Moisture

1 h FM 4 RAWS Station
452128

10 h FM 7 RAWS Station
452128

100 h FM 8 RAWS Station
452128

Herb FM 60

Fuel
Characteristics
Classification
System [64]

Woody FM 90

Fuel
Characteristics
Classification
System [64]

Fuel Moisture
Conditioning

Condition
(Select
Classified
Weather Stream)

Extreme

Ignitions
Use ignitions
from completed
run

Simulation
Time (Burn

Period Length)
12 h

Spotting
Probability 20 percent

Table A2. 99th percentile fire weather conditions—IFTDSS specifications.

CATEGORY SUB-CATEGORY SELECTION 1 SELECTION 2 SOURCE

Wind Generate
Gridded Winds

Wind Speed 25 mph RAWS Station
452128

Wind Direction 248◦ RAWS Station
452128

Crown Fire
Inputs

Crown Fire
Method Scott/Reinhardt

Foliar Moisture
Content 100%

Initial Fuel
Moisture

1 h FM 2 RAWS Station
452128

10 h FM 3 RAWS Station
452128

100 h FM 4 RAWS Station
452128

Herb FM 30

Fuel
Characteristics
Classification
System [64]

Woody FM 60

Fuel
Characteristics
Classification
System [64]
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Table A2. Cont.

CATEGORY SUB-CATEGORY SELECTION 1 SELECTION 2 SOURCE

Fuel Moisture
Conditioning

Condition
(Select

Classified
Weather Stream)

Extreme

Ignitions
Use ignitions

from completed
run

Simulation
Time (Burn
Period Length)

12 h

Spotting
Probability 20 percent

Appendix C. Highly Valued Resources and Assets

Appendix C.1. Habitat

We specify several sub-HVRAs when defining Habitat: Northern spotted owl (NSO),
fish, old growth forest, white-headed woodpecker, nonforest, and other early successional
habitat. NSO habitat is represented as mapped in USFS planning documents. Fish habitat
is represented using riparian zones. Old growth forests are defined as mature conifer
forests (150+ years old), as mapped in 2004 by the Conservation Biology Institute [65].
White-headed woodpecker habitat is represented using the USGS range extent based on
2001 ground condition [66]. Nonforest habitat and early successional habitat are defined
based on LANDFIRE 2020 existing vegetation types [67].

Appendix C.2. People and Property

People and Property (or “Communities”, as described in IFTDSS) are defined in terms
of population density using IFTDSS’ default reference layer data [68]. This HVRA is meant
to estimate wildfire risk and impacts to the WUI. Communities are represented based
on residentially developed populated area (RDPA) [69]. RDPA was developed using the
LandScan USATM population data [70]. RDPA is summarized into three population density
classes: low (>0–28 people per square mile, medium (>28–250 people per square mile), and
high density (>250 people per square mile) [71].

Appendix C.3. Air Quality and Emissions

Air Quality and Emissions represents the potential for fine particulate matter (PM2.5)
from wildfire emissions. These data were constructed by USFS using the First Order Fire
Effects model (FOFEM) to predict point source emission potential. Inputs for FOFEM
come from LANDFIRE and Forest Inventory Analysis. Emission potential does not include
smoke dispersion or impact to populations. The USFS classifies three emission potential
classes by dividing the distribution of the data into thirds: low, moderate, and high PM2.5
emission potential [71].

Appendix C.4. Recreation

Recreation is represented by specifying the following sub-HVRAs: scenic areas, road-
less areas, designated wilderness, and trails. Scenic areas are represented using national
scenic byways, as designated by the USFS Geospatial Service and Technology Center, which
is a default reference layer of IFTDSS [68]. Roadless areas are also represented using IFTDSS’
default reference layers [68], originally shared by the National Parks Service. Designated
wilderness is represented using IFTDSS’ default reference layers, which combine the best
available data from the federal agency responsible for administration of a given wilderness
area. Where larger-scale data could not be obtained, the National Wilderness Preservation
System map was used as the data source [72]. Federal, state, local, and “other” trails
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are represented using the Washington State Recreation and Conservation Office’s Trails
Database Project [73]. This dataset is preferred over trail data offered by IFTDSS, which did
not appear to offer a comprehensive or current map of trails in the UWPP region.

Appendix C.5. Surface Drinking Water

Surface Drinking Water is defined by municipal drinking water data derived from the
USDA Forest Service Forests to Faucets project [74]. The Surface Drinking Water Importance
(IMP) index takes into account water supply, spatial flow through the landscape, and
downstream drinking water demand [74]. The IMP index, which ranges from 0 to 100, is
mapped to the hydrologic unit 12 (HUC 12 scale). Our study area includes moderately
high (IMP 51–60), high (IMP 61–70), and very high importance (IMP 71–80) areas.

Appendix C.6. Infrastructure

Infrastructure is defined as the following sub-HVRAs: power lines, communication
towers, other communication sites, USFS buildings, electric substations, transmission
lines, low/moderate-investment buildings and developed recreation sites, high-investment
buildings and developed recreation sites, and campgrounds owned by BLM and USFS [68].
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“Lowest” = 0–20% of the analysis maximum, “Low” = 20–40%, “Middle” = 40–60%, “High” = 60–
80%, and “Highest” = 80–100%. This figure represents conditional flame length distribution for both 
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Figure A5. Burn probability distribution. This figure presents the percent of the treated area belong-
ing to each burn probability class for both treatment alternatives subject to 99th percentile fire 
weather, disaggregated by forest type. Burn probability class is defined as follows: “Unburned” 
implies the share of landscape that was burnable but did not burn, “Lowest” = 0–20% of the analysis 

Figure A2. This figure depicts the percent of the treated area belonging to each burn probability class
for both treatment alternatives subject to 99th percentile fire weather. Burn probability class is defined
as follows: “Unburned” implies the share of landscape that was burnable but did not burn, “Lowest”
= 0–20% of the analysis maximum, “Low” = 20–40%, “Middle” = 40–60%, “High” = 60–80%, and
“Highest” = 80–100%. This figure represents conditional flame length distribution for both treatment
alternatives subject to 99th percentile fire weather.
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Appendix E. Burn Probability and Conditional Flame Length Distributions by
Forest Type
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Figure A5. Burn probability distribution. This figure presents the percent of the treated area belong-
ing to each burn probability class for both treatment alternatives subject to 99th percentile fire 
weather, disaggregated by forest type. Burn probability class is defined as follows: “Unburned” 
implies the share of landscape that was burnable but did not burn, “Lowest” = 0–20% of the analysis 

Figure A3. Burn probability distribution. This figure presents the percent of the treated area belonging
to each burn probability class for both treatment alternatives subject to 99th percentile fire weather,
disaggregated by forest type. Burn probability class is defined as follows: “Unburned” implies
the share of landscape that was burnable but did not burn, “Lowest” = 0–20% of the analysis
maximum, “Low” = 20–40%, “Middle” = 40–60%, “High” = 60–80%, and “Highest” = 80–100%. This
figure represents conditional flame length distribution for both treatment alternatives subject to 99th
percentile fire weather.
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Table A3. Burn probabilities—99th percentile fire weather. 

Alternative Scenario Class Probability 

Alternative 1 Thinning 30% Unburned 7.62% 

Alternative 1 Thinning 30% + RX Unburned 7.62% 

Alternative 1 Thinning 30% Lowest 63.31% 

Alternative 1 Thinning 30% + RX Lowest 69.25% 

Alternative 1 Thinning 30% Low 23.83% 

Alternative 1 Thinning 30% + RX Low 19.52% 

Alternative 1 Thinning 30% Middle 5.24% 

Alternative 1 Thinning 30% + RX Middle 3.62% 

Figure A4. Conditional flame length distribution. This figure depicts the percent of the treated
area belonging to each conditional flame length class for both treatment alternatives subject to 99th
percentile fire weather, disaggregated by forest type. Fire severity class based on conditional flame
length is defined as follows: “Unburned” implies the share of landscape that was burnable but
did not burn, “Low” = 0–4 feet (0–1.2 m), “Moderate” = 4–8 feet (1.2–2.4 m), and “High” = 8–12+
feet (2.4–3.7+ meters). Conditional flame length distribution for both treatment alternatives are
represented subject to 99th percentile fire weather.
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Appendix F. Probability Estimates for Burn Probability and Conditional Flame Length

Table A3. Burn probabilities—99th percentile fire weather.

Alternative Scenario Class Probability

Alternative 1 Thinning 30% Unburned 7.62%

Alternative 1 Thinning 30% + RX Unburned 7.62%

Alternative 1 Thinning 30% Lowest 63.31%

Alternative 1 Thinning 30% + RX Lowest 69.25%

Alternative 1 Thinning 30% Low 23.83%

Alternative 1 Thinning 30% + RX Low 19.52%

Alternative 1 Thinning 30% Middle 5.24%

Alternative 1 Thinning 30% + RX Middle 3.62%

Alternative 1 Thinning 30% High 0%

Alternative 1 Thinning 30% + RX High 0%

Alternative 1 Thinning 30% Highest 0%

Alternative 1 Thinning 30% + RX Highest 0%

Alternative 2 Thinning 30% Unburned 8.14%

Alternative 2 Thinning 30% + RX Unburned 8.13%

Alternative 2 Thinning 30% Lowest 59.59%

Alternative 2 Thinning 30% + RX Lowest 65.57%

Alternative 2 Thinning 30% Low 26.16%

Alternative 2 Thinning 30% + RX Low 21.94%

Alternative 2 Thinning 30% Middle 6.11%

Alternative 2 Thinning 30% + RX Middle 4.35%

Alternative 2 Thinning 30% High 0%

Alternative 2 Thinning 30% + RX High 0%

Alternative 2 Thinning 30% Highest 0%

Alternative 2 Thinning 30% + RX Highest 0%

Table A4. Conditional flame length probabilities—99th percentile fire weather.

Alternative Scenario Class Probability

Alternative 1 Thinning 30% Unburned 7.62%

Alternative 1 Thinning 30% + RX Unburned 7.62%

Alternative 1 Thinning 30% Low 20.18%

Alternative 1 Thinning 30% + RX Low 90.10%

Alternative 1 Thinning 30% Moderate 69.58%

Alternative 1 Thinning 30% + RX Moderate 1.61%

Alternative 1 Thinning 30% High 2.62%

Alternative 1 Thinning 30% + RX High 0.67%

Alternative 2 Thinning 30% Unburned 8.13%

Alternative 2 Thinning 30% + RX Unburned 8.14%

Alternative 2 Thinning 30% Low 19.06%

Alternative 2 Thinning 30% + RX Low 89.32%

Alternative 2 Thinning 30% Moderate 69.68%

Alternative 2 Thinning 30% + RX Moderate 1.79%

Alternative 2 Thinning 30% High 3.12%

Alternative 2 Thinning 30% + RX High 0.76%
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Appendix G. Comparison of Conditional Net Value Change for HVRAs
across Alternatives

Figure A5. Cumulative conditional weighted net value change (NVC) by sub-HVRA for UWPP
Alternative 1, after thinning to 30% followed by prescribed burning, subject to 99th percentile fire
weather conditions.

Figure A6. Cumulative conditional weighted net value change (NVC) by sub-HVRA for UWPP
Alternative 2, after thinning to 30% followed by prescribed burning, subject to 99th percentile fire
weather conditions.
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