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Abstract: Central Europe is not a typical wildfire region; however, an increasingly warm and dry
climate and model-based projections indicate that the number of forest fires are increasing. This
study provides new insights into the drivers of forest fire occurrence in the Czech Republic, during
the period 2006 to 2015, by focusing on climate, land cover, and human activity factors. The average
annual number of forest fires during the study period was 728, with a median burned area of 0.01 ha.
Forest fire incidence showed distinct spring (April) and summer (July to August) peaks, with median
burned areas of 0.04 ha and 0.005 ha, respectively. Relationships between the predictors (climate
data, forest-related data, socioeconomic data, and landscape-context data) and the number of forest
fires in individual municipality districts were analyzed using Generalized Additive Models (GAM)
on three time scales (annually, monthly, and during the summer season). The constructed GAMs
explained 48.7 and 53.8% of forest fire variability when fire occurrence was analyzed on a monthly
scale and during the summer season, respectively. On an annual scale, the models explained 71.4% of
the observed forest fire variability. The number of forest fires was related to the number of residents
and overnight tourists in the area. The effect of climate was manifested on monthly and summer
season scales only, with warmer and drier conditions associated with higher forest fire frequency. A
higher proportion of conifers and the length of the wildland–urban interface were also positively
associated with forest fire occurrence. Forest fire occurrence was influenced by a combination of
climatic, forest-related, and social activity factors. The effect of climate was most pronounced on a
monthly scale, corresponding with the presence of two distinct seasonal peaks of forest fire occurrence.
The significant effect of factors related to human activity suggests that measures to increase public
awareness about fire risk and targeted activity regulation are essential in controlling the risk of fire
occurrence in Central Europe. An increasing frequency of fire-conducive weather, forest structure
transformations due to excessive tree mortality, and changing patterns of human activity on the
landscape require permanent monitoring and assessment of possible shifts in forest fire risk.

Keywords: Central Europe; climate; fire risk; human activities; wildfires

1. Introduction

Although fire is as much a part of the ecosystem as rain, sun, and soil, wildfires
represent forest disturbances, accounting for 24% of total forest disturbance in Europe from
1950 to 2019 [1]. While annually burned area in Europe showed a moderate decrease in
recent decades, the severity of large singular events increased [2]. Moreover, large fires are
now occurring in areas such as Sweden, Germany, and the Czech Republic, which have not
previously experienced large wildfires [3,4].

The geographical pattern of forest vulnerability to fires emerges from the interplay
between forest structure and composition and climate. High biomass levels are typically
associated with higher fuel loads [5], with warmer and drier climates increasing the vulner-
ability [6]. At the scale of Europe, fire vulnerability hotspots in the period 1979 to 2018 were
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found in Sweden, Finland, European Russia, the Iberian Peninsula, and Turkey [7]. How-
ever, this distribution of fires changes due to land use changes and increased fire-conducive
weather conditions [8,9]. These factors also affect forest structure and composition, which
can alter future forest fire risk [10–13]. These developments highlight the importance of
improved forest fire monitoring, modeling, prediction, and firefighting resource allocation
systems, which are being increasingly implemented across Europe (e.g., [14–17]).

Forest vulnerability to fire [18] is dependent upon interactions between climate, fuel
availability (fuel load and moisture content of the vegetation), and ignition sources [19–24].
Ignition sources are both natural (predominantly lightning) and anthropogenic (resulting
from human activity on the landscape; [25]). In Europe, roughly 90 to 98% of forest fires are
human-caused, and only a small percentage are caused by lightning [23,26–28]. Human-
caused fires mainly result from activities related to recreation (e.g., camping, hiking, and
hunting) and industry (e.g., timber production, railway and highway transportation, and
oil and gas exploration) [29].

Forest fires in the European temperate forest zone are mainly associated with human
activities, while climatic effects are less distinct [30–35]. Despite the recognized importance
of anthropogenic effects, little attention has been paid to their quantitative assessment, with
human activity data in forests being surprisingly scarce [36–38]. This makes assessing the
human contribution to wildfire ignition and predicting the fire risk challenging [25,39].

Central Europe is not a typical wildfire region; forest fires account for a negligible
proportion of the total forest area disturbed annually. Wildfires are typically small, predom-
inantly ignited by human activity, and quickly extinguished in most cases, thanks to the
high human population density (detection) and developed infrastructure (suppression).
However, the frequency of forest fire increased by 70% during the periods from 1971 to
1990 and from 1991 to 2015, probably due to the increasingly hot and dry weather [40]. The
danger of forest fire is expected to further increase not only due to increasingly conducive
fire weather [41], but also due to intensifying human activity at the wildland–urban inter-
face; growing numbers of visitors in the forests; and the increased fire danger associated
with elevated forest mortality induced by drought, insects, and diseases. Large-scale forest
mortality due to bark-beetle (Coleoptera: Curculionidae: Scolytinae) infestations in Central
Europe [42] is of particular concern due to the large amounts of fuels that accumulate [43,44].
Heavy machinery operations conducting salvaging and wood transportation are another
factor potentially increasing fire risk in the region [45].

Understanding regional patterns and drivers of forest fire that emerge from the inter-
action of climatic and social factors is essential for mitigating future fire risk and identifying
fire-prone areas. We aimed to identify drivers of forest fire ignition in the Czech Republic
(Central Europe) in the period 2006 to 2015, placing equal emphasis on landscape, social,
and climatic drivers. Contrary to most previous studies, which mainly addressed the effect
of climate [41,46], we sought to reach more profound insights by considering factors such
as population density, tourism, and wildland–urban interface, which are hypothesized to
be associated with fire ignition and spread in the region. This information will allow for
a more robust fire danger assessment and forecasts by considering the coupled effects of
climate change and ongoing socio-ecological transformations.

2. Materials and Methods
2.1. Study Area and Data

The Czech Republic (Central Europe; Figure 1a) has a mild four-season climate that
is between oceanic and continental climate types. The country’s climate is characterized
by prevailing westerly winds and intense cyclonic activity. The average daily temperature
ranges from 3 ◦C in January to 17 ◦C in July, and the average annual precipitation ranges
from 600 to 800 mm in most of the country [47]. The altitude ranges from 115 to 1603 m
a.s.l., with a median of 430 m a.s.l. The predominant relief is hills and highlands. The
average population density is 133 inhabitants km−2 [48]. Additional information about the
country is presented in Appendix A.
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Figure 1. (a) Position of the Czech Republic in Europe; (b) a comparison of trends in the number of
forest fires and burned areas in Europe and the Czech Republic in the study period 2006 to 2015; and
(c) typical forest fires occurring in the Czech Republic. Source of the forest fire data for Europe: [3];
source of the forest fire data for Czechia: General Directorate of Fires Rescue Service of the Czech
Republic; photographer credit: Jan Vaněk, 2018.

In the absence of humans, mixed beech (Fagus sylvestris L.) forests would dominate
most of the Czech Republic, with oak (Quercus L.)-dominated deciduous forests in the
lowlands, and coniferous forests with spruce (Picea L.) at higher altitudes [49]. Because of
the intensive forest management practiced since the nineteenth century, the current forest
composition consists predominantly of Picea abies L. (Karst.) (52%), Pinus sylvestris L. (17%),
Fagus sylvatica L. (7%), Quercus spp. (7%), Larix decidua Mill. (4%), Betula pendula Roth
(3%), and Abies alba Mill. (1%). Other deciduous species (e.g., Carpinus betulus L., Acer
L. spp., Fraxinus L. spp., Populus L. spp., Salix L. spp., and Tilia L. spp.) occupy about
8% of the forested area [50]. Forests cover 33.9% of the country. The disturbance regime
predominantly consists of windthrows triggering bark beetle outbreaks, which are further
modulated by drought. This sequence of events has recently shifted toward the dominance
of drought-driven processes [42]. Forest fires have accounted for a negligible proportion
of total forest damage and are not considered in national forest damage reporting. Inter-
estingly, the inter-annual pattern of forest fire numbers and burned areas in the Czech
Republic was similar to that found throughout all of Europe, suggesting a large-scale
synchrony (Figure 1b).

Fores fire data were obtained from the General Directorate of Fire Rescue Service of
the Czech Republic [51], which keeps statistics on all fires in the country that required
intervention. The database covers the whole area of the Czech Republic from 2006 to
2015 (except for military areas, which represent <5% of the area). From 2006 to 2010, the
database indicated only the administrative districts where forest fires occurred. The data
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after 2010 included the exact geographical locations of almost every fire. Causes of the
fire were indicated for only ~50% of all cases. For example, the cause of fire might have
been recorded if private property was affected, if an intentional ignition with possible
criminal implications was suspected, or if the cause of fire could have been unambiguously
identified on the spot. Because the information about the causes of fire is highly incomplete,
it was not considered in our analyses.

Because of problems with the clear identification of some forest fires, all records
(roughly 10,000) were manually checked for misclassification; based on the descriptive
information provided for each fire, the fire was included in or excluded from the final
database [52,53]. Forest fires that occurred between January and March, and in November
and December, were not considered in the study (around 100 forest fires in total), because
these forest fires were mostly associated with events such as accidental fuel leaks or
fireworks. In addition, due to minimal forested area, forest fires from the administrative
district of the capital city (Prague, with more than 1,500,000 inhabitants) were removed
from the analysis. In total, the dataset contained data on 7279 forest fires, with an average
of 728 forest fires per year over the 10-year reporting period (2006 to 2015). Most of the
burned areas were up to 0.16 ha (80% of the fires from 2006 to 2015 were less than 0.16 ha).
Fires larger than 5 ha represented ~1% of all fires in the dataset.

Using burned areas as a characteristic of the fire regime in the Czech Republic has
limitations as most fires are small (5 to 95% of the fires from 2006 to 2015 were between
0.0001 and 1.00 ha; Figure 1c), and their size is strongly affected by the time it takes for
firefighters to respond (the duration of free fire development) [52]. Therefore, we focused
on identifying the drivers of forest fire ignition, which were expected to be more closely
associated with predictors such as climate and human activity. We used the number of
forest fires in individual municipality districts (n = 76) ([54], see Appendix A) of the Czech
Republic rather than accurate spatial coordinates of the forest fires. Data for 2006 through
2010 lacked coordinates; only forest fire occurrence within districts was available. Socio-
economic data (population size, tourism, etc.) were available only on a municipal district
scale. Because the size of forested area highly varied between districts, the number of fires
per forest hectare (FF ha−1) was used as a response variable in the statistical models.

2.2. Predictor Variables

We considered several predictors that are known to act as forest fire risk drivers in
temperate forests, including climate data, forest-related data, socio-economic data, and
landscape context data (Appendix B, [15–17,19–23,25,30–34,55–59]).

Monthly air temperature, monthly rainfall, average annual air temperature, annual
total rainfall, and their differences from long-term means (from 1961 to 1990) together with
the number of days with snow cover per year represented the climatic predictors (Czech
Hydrometeorological Institute, Prague, Czech Republic, http://portal.chmi.cz/ (accessed
on 1 January 2020).

Forest-related predictors were total forest area, percentage of forest area, percentage
of conifers, and percentage of pine (Pinus L. spp.) within each district [50]. Pine was
considered the most flammable tree species in the study area [60]; it usually grows under
dry conditions, produces resinous and easily combustible debris, and older stands have a
relatively thin canopy that allows debris to dry and easily ignitable grasses to appear [61].
The values for these variables were constant throughout the study period.

The interface between forest and urban areas and between forest and agricultural areas
was used as a proxy of human activity on the landscape, which was found to be related to
fire incidence in previous studies (e.g., [35,62]. The district-related values of these variables
were calculated using the seamless Corine LandCover data containing major land cover
categories for Europe [63]. The analysis was conducted using GIS by analyzing the spatial
adjacency of different classes. These variables were standardized by the area of the forest
in a district (m.ha−1). These values also stayed constant throughout the study period.

http://portal.chmi.cz/
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The two variables related to human population density were the number of residents
per forest area (inhabitants ha−1), represented by the mean number of inhabitants in
the district in the period 2006 to 2015, and the number of overnight tourists per forest
area, represented by the mean annual number of overnight guests in recreational facilities
(overnight guests ha−1yr−1; Czech Statistical Office (Prague, Czech Republic), https://
www.czso.cz/ (accessed on 15 July 2016).

Although factors related to human activity on the landscape are related to fire ignition
risk, and factors related to climate and forest structure are more related to fire spread, we
collectively referred to all predictors as “fire ignition drivers.” This term corresponds with
the fact that fire occurrence (number of forest fires), rather than the size of burned areas,
was analyzed.

2.3. Analyses

Relationships between the predictors and the number of forest fires were analyzed
using Generalized Additive Models [64]. This model predicts values of the dependent
variable based on a linear combination of predictor variables that are approximated by
the so-called smoother functions. The degree of smoothness of the function (the number
of nodes, k) is determined separately for each predictor variable by cross-validation to
avoid overfitting (over-adaptation of the function to data and loss of ability to generalize).
The main results of the analysis are the deviance explained by the model; the statistical
significance of the individual predictor; and the shape of the smooth function along with
the effective degrees of freedom, which reflect the degree of non-linearity of a curve. The
mgcv library [65] of the statistical program R 4.0.0 [66] was used for the analysis.

Given the high number of candidate predictor variables (Appendix B), their mutual
substitutability (concurvity) was evaluated, and redundant variables were discarded. Sub-
sequently, several models involving different predictor variables were iteratively tested,
and only the variables that had a statistically significant association with the number of
forest fires were used in the final model. The influence of first-order interactions among
the variables were also tested. The quality of the created model was assessed based on
the percent of deviance explained, distribution of residuals, their autocorrelation, and the
correlation of predicted and measured data.

The analysis addressed three time scales by using different subsets of forest fire data: a
monthly scale that contained monthly sums of forest fire data; a summer scale that included
forest fires from June, July, and August; and an annual scale that included yearly forest fire
sums. A separate statistical model was constructed for each time scale.

3. Results
3.1. Temporal Forest Fire Patterns

On a monthly basis, forest fire numbers showed distinct spring and summer peaks
occurring in April and in July to August, respectively (Figure 2). Although differences
between the years were substantial, these seasonal patterns stayed the same throughout
the study (Appendix C). The summer peak was most pronounced in 2015, which was
particularly warm and dry, and had an especially dry June to August (Appendix C; Figure 3).
The bi-modal pattern was not present in 2008, which did not show any deviations from the
average climate conditions in the study period. In 2012 and 2007, which ranked second and
third in the number of forest fires, respectively, a high number of forest fires occurred in
the spring season (Appendix C). The spring of 2007 was the driest and hottest in the study
period (Figure 3).

The size of burned areas showed a similar pattern, although the summer peak was
less distinct (Figure 2b). Specifically, the median burned area was 0.04 ha during the spring
peak, while it was ~0.005 ha in the summer peak. The smallest burned areas (and forest
fire numbers) were recorded in 2008. The most distinct spring peaks of burned areas
occurred in 2007, 2009, 2012, and 2014, while the dominant summer peak occurred in 2015
(Appendix C).

https://www.czso.cz/
https://www.czso.cz/
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Figure 2. (a) Inter-annual and (b) monthly pattern of forest fire numbers and burned areas during our
study to assess drivers of forest fire occurrence in the Czech Republic during 2006 to 2015. Medians
(boxplots, left axis) and totals (red dotted line, right axis) are shown for the yearly values. Outliers
beyond 1.5 of the inter-quartile range were removed for clarity.

3.2. Fire Ignition Drivers

The regression models indicated the significant effect of several predictors; however,
these effects differed depending on the time scale (annual, monthly, during summer season).
Our chosen predictors explained 48.7 and 53.9% of the variability in forest fire numbers on
a monthly scale and summer season scale, respectively, and 71.4% of the variability on an
annual scale (Table 1).

On annual, summer season, and monthly scales, the percentage of conifers and the
wildland–urban interface were positively related to the occurrence of forest fires; the rela-
tionship with the wildland–urban interface was particularly strong (Table 1; Figures 4–6).
On an annual scale, the number of forest fires was not significantly related to any of the
climate variables. On the other hand, factors such as human population density and the
number of overnight tourists per forest hectare were significantly associated with the
number of forest fires. Although forest fires were positively related to population density
(except for the most densely populated areas), forest fires were negatively related to the
number of overnight tourists (Table 1; Figure 4c).

The number of forest fires was significantly related to climatic variables on a monthly
scale (Table 1). The occurrence of forest fires increased as the monthly air tempera-
ture increased above 20 ◦C (Figure 5c) and decreased as total monthly rainfall increased
(Figure 5d).
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(d) September to October. Black circles indicate the average position of the 2006 to 2015 period. Dark
gray rectangles represent the standard deviation of the two variables. Ellipses indicate years outside
standard deviation ranges for one (yellow) and both (red) climatic variables.

Table 1. Results of regression models describing the relationships between the number of forest fires
per forest area (the dependent variable) and various predictors characterizing climate, land cover,
and human activity factors in the Czech Republic between 2006 and 2015, at the three time scales
investigated in this study (monthly, summer season, and annual). The values indicated for predictor
variables are estimated degrees of freedom. ** indicates p < 0.01, *** indicates p < 0.001, and n.s.
indicates not significant (p > 0.05).

Time Scale
Predictor Variable Monthly Summer Season Annual

Wildland–urban interface 3.39 *** 4.22 *** 3.55 ***
Overnight tourists n.s. 3.03 *** 1.0 ***
Population density n.s. n.s. 2.558 **

Conifer cover 1.84 *** 3.60 *** 2.94 ***
Precipitation 1.272 *** n.s. n.s.
Temperature 3.7 *** 3.202 *** n.s.

Temperature × Precipitation 11.28 *** n.s. n.s.
Deviation explained (%) 48.7 53.9 71.4
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Figure 4. Responses of the number of forest fires per forest area (n ha−1) that occurred in the Czech
Republic during 2006 to 2015 to predictor variables with statistically significant effects. Results of
analysis conducted on an annual scale are presented. Smoother functions fitted by Generalized
Additive Models (line), 95% confidence interval (blue shaded area), and residuals (points) centered at
a zero mean value are indicated. Forest fire responses to the (a) percentage of conifers, (b) length of
the wildland–urban interface, (c) number of overnights, and (d) number of residents are displayed.
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Figure 5. Responses of the number of forest fires per forest area (n ha−1) that occurred in the Czech
Republic during 2006 to 2015 to predictor variables with statistically significant effects. Results of
analysis conducted on a monthly scale are presented. Smoother functions fitted by Generalized
Additive Models (line), 95% confidence interval (blue shaded area), and residuals (points) centered at
a zero mean value are indicated. Forest fire responses to the (a) percentage of conifers, (b) length of
the wildland–urban interface, (c) air temperature, and (d) precipitation are displayed.



Fire 2024, 7, 109 9 of 19

Fire 2024, 7, x FOR PEER REVIEW 9 of 19 
 

 

a zero mean value are indicated. Forest fire responses to the (a) percentage of conifers, (b) length of 
the wildland–urban interface, (c) air temperature, and (d) precipitation are displayed. 

 
Figure 6. Responses of the number of forest fires per forest area (n ha–1) that occurred in the Czech 
Republic during 2006 to 2015 to predictor variables with statistically significant effects. Results of 
analysis conducted on a summer scale are presented. Smoother functions fitted by Generalized Ad-
ditive Models (line), 95% confidence interval (blue shaded area), and residuals (points) centered at 
a zero mean value are indicated. Forest fire responses to the (a) percentage of conifers, (b) length of 
the wildland–urban interface, (c) number of overnights, and (d) air temperature are displayed. 

Table 1. Results of regression models describing the relationships between the number of forest fires 
per forest area (the dependent variable) and various predictors characterizing climate, land cover, 
and human activity factors in the Czech Republic between 2006 and 2015, at the three time scales 
investigated in this study (monthly, summer season, and annual). The values indicated for predictor 
variables are estimated degrees of freedom. ** indicates p < 0.01, *** indicates p < 0.001, and n.s. 
indicates not significant (p > 0.05). 

Predictor Variable 
Time Scale 

Monthly  Summer Season Annual 
Wildland–urban interface  3.39 *** 4.22 *** 3.55 *** 

Overnight tourists  n.s. 3.03 *** 1.0 *** 
Population density  n.s. n.s. 2.558 ** 

Conifer cover 1.84 *** 3.60 *** 2.94 *** 
Precipitation  1.272 *** n.s. n.s. 
Temperature 3.7 *** 3.202 *** n.s. 

Temperature × Precipitation 11.28 *** n.s. n.s. 
Deviation explained (%) 48.7 53.9 71.4 

4. Discussion 
4.1. Patterns and Drivers of Forest Fires 

The intra-annual distribution of forest fires showed distinct spring and summer 
peaks that were present during most of the study period (see Appendix B). However, 
while these peaks were obvious in terms of forest fire numbers, the median size of the 
burned area showed only an indistinct spring peak (Figure 2). The intra-annual variability 
in the burned area size was not large, which likely corresponded with the short interval 
of time that it takes firefighters to respond to fire. Still, larger fires (mostly up to 0.5 ha) 
mainly occurred in spring (Figure 2). Although we cannot provide any data-driven expla-
nation for this pattern, it is noteworthy that there were different mechanisms behind the 
two fire seasons. There were indications that the spring peak was related to the increased 

Figure 6. Responses of the number of forest fires per forest area (n ha−1) that occurred in the Czech
Republic during 2006 to 2015 to predictor variables with statistically significant effects. Results of
analysis conducted on a summer scale are presented. Smoother functions fitted by Generalized
Additive Models (line), 95% confidence interval (blue shaded area), and residuals (points) centered at
a zero mean value are indicated. Forest fire responses to the (a) percentage of conifers, (b) length of
the wildland–urban interface, (c) number of overnights, and (d) air temperature are displayed.

On the summer season time scale (i.e., considering data from summer seasons only,
July and August), the predictor variables explained approximately 50% of the variability in
the number of forest fires (Table 1). Although the percentage of conifers was a significant
predictor variable, the relationship was difficult to explain in that the number of forest fires
tended to decrease as the percentage increased from 15 to 40%, but then increased as the
percentage increased from 50 to 88% (Figure 6b). The number of forest fires increased as
the length of the wildland–urban interface increased (Figure 6a). The number of forest
fires increased relative to the number of overnight tourists between 0 and 25 overnight
tourists per hectare of the forest per year (the majority of the data), but decreased for
higher overnight tourist values (Figure 6c). The number of forest fires was positively
associated with temperature, showing a sharper increase when temperatures were above
18 ◦C (Figure 6d).

4. Discussion
4.1. Patterns and Drivers of Forest Fires

The intra-annual distribution of forest fires showed distinct spring and summer peaks
that were present during most of the study period (see Appendix B). However, while
these peaks were obvious in terms of forest fire numbers, the median size of the burned
area showed only an indistinct spring peak (Figure 2). The intra-annual variability in the
burned area size was not large, which likely corresponded with the short interval of time
that it takes firefighters to respond to fire. Still, larger fires (mostly up to 0.5 ha) mainly
occurred in spring (Figure 2). Although we cannot provide any data-driven explanation
for this pattern, it is noteworthy that there were different mechanisms behind the two fire
seasons. There were indications that the spring peak was related to the increased intensity
of forestry operations after winter seasons, such as slash pile burning. In addition, large
amounts of flammable dry grass typically occur after mild winters and during dry early
springs, further increasing fire risk. The summer peak likely resulted from the combination
of hot and dry weather and increased tourism and recreation activities. Interestingly, such
a bi-modal pattern of wildfire occurrence was also identified in Portugal, with a March
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peak associated with forestry and agriculture activities; however, this peak provided only a
small contribution to the annually burned areas [67].

The observed seasonal pattern corresponds with the significant effect of climatic vari-
ables on a monthly and a summer season scale, while climatic effects were insignificant
on the annual scale. We suspect that the yearly resolution of climate data is too coarse
to capture weather patterns associated with increased fire incidence. The authors of [68]
found a similar time-scale dependency—the probability of forest fire occurrence increased
with daily but not with monthly average temperatures. In our current study, however,
monthly climate variation had a significant effect. The number of forest fires was positively
associated with air temperature on a monthly and on a summer season scale, although
the increase in forest fires was nonlinear on the summer season scale. Specifically, forest
fire numbers were unrelated to temperature until the mean monthly temperature reached
18 ◦C; then, the forest fire numbers increased (Table 2; Figures 5c and 6d). Such monthly
temperatures were common for June, July, and August, between 2011 and 2020; however,
average monthly temperatures in those three months seldom reached 18 ◦C before 2000.
Such a threshold-type response is disturbing because the critical temperature limit may be
exceeded more frequently in the future, including currently colder locations in higher ele-
vations. This implies that the current summer season fire peak may be expected to increase,
and that the fire season may be extended in the future. Such threshold-type responses were
also identified by other authors. For example, in Poland and Serbia, 60% of the forest fires
occurred when the daily temperature was above 24 ◦C and 25 ◦C, respectively; air humidity
was <40%; and precipitation was lacking [69,70]. The identified negative correlation of
forest fires with precipitation agrees with numerous previous research studies (e.g., [71–74]).
Precipitation increases fuel moisture content and reduces the probability of ignition [75,76].

Table 2. Summary of characteristic trends with regard to the relationship between number of forest
fires and predictor variables characterizing climate, land cover, and human activity factors in the
Czech Republic between 2006 and 2015, at the three time scales investigated in this study (monthly,
summer season, and annual). Values at which the trend changes are given in parentheses.

Characteristic Trend per Time Scale
Predictor Variable

Monthly Summer Season Annual
Wildland–urban interface

(m ha−1) Increasing, then constant (500) Increasing Increasing

Overnight tourists (n ha−1) No trend Unimodal response (25,000) Decreasing
Population density (n ha−1) No trend No trend Unimodal response (30,000)

Conifer cover (%) Increasing Constant, then increasing (60) Constant, then increasing (60)
Precipitation (mm) Decreasing No trend No trend
Temperature (◦C) Constant, then increasing (18) Constant, then increasing (18) No trend

The number of forest fires was positively related to the percentage of conifers on a
monthly scale; on the annual and summer season scales, there was a positive correlation
between conifer percentage and forest fire incidents only if the forest covered over 60% of
the area (Table 2). This response was expected as forest fires have been found to be more
closely associated with coniferous forests than with broadleaved forests in Mediterranean,
temperate, and boreal regions [77–79]. We assumed that the proportion of pines would
positively affect forest fire frequency because pines are the most flammable native species
growing in the Czech Republic [60], producing resinous and easily combustible debris [61].
However, this association was not confirmed. The reasons why the presence of pine was
not a significant factor affecting fire occurrence could include the fact that forests in the
Czech Republic have a relatively low pine proportion (17%), or that the analysis, which
was aimed at administrative districts, was performed on too coarse of a scale.

In Europe, 97% of forest fires were directly or indirectly caused by humans [23,80]
which was also indicated by our analyses. On a summer season scale, the number of forest
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fires was unimodally associated with the number of overnight tourists per forest hectare
per year (Table 2; Figure 6c). The relationship between the number of forest fires and the
density of the local human populations was also unimodal on an annual scale; forest fire
numbers initially increased as population density increased, but then decreased as human
inhabitants exceeded 30 000 ha−1 (Table 2; Figure 4d). The likely explanation for such a
response is that not all tourists visit the forests. In the cities (annual-scale analysis) and
water-recreation areas (summer season scale analysis), where overnight-tourist numbers
are highest, tourists may be visiting historical and cultural monuments, attractions, and
recreational areas rather than forests. Both population density and the number of overnight
tourists have been related to the number of forest fires in other studies [57,72,74,80–83]. In
Latvia, the geographical distribution of forest fires showed two distinct clusters near its
two largest cities, which also indicates the predominance of human-caused ignitions [34].

Wildland–urban interface dynamics have been receiving increased recognition globally
because of the accelerating expansion of urban areas as well as the increasing wildland–
urban interface length [84]. Increased fire hazard is related to increased human activity
in wildlands [46,62,85]. The wildland–urban interface was found to be behind several
noticeable effects, such as winter fire progression and a moderate increase in fire incidence
linked to human-caused fires (e.g., [35]). In our study, the extent of the wildland–urban
interface was identified as positively related to the number of forest fires; at the same time,
it had a significant effect on all investigated times scales (monthly, summer season, and
annual). Forest fire response to interface length was relatively sharp and increased linearly,
suggesting this factor’s importance. In Central Europe, this factor is expected to affect
forest fire ignition risk by facilitating forest accessibility to people in the short term for
collection of mushrooms and other products, and in the longer term for sport and recreation
activities [86,87].

4.2. Methodological Considerations

Limited data availability and quality, including short and inconsistent time series, is a
common problem of forest disturbance mapping and assessment in Europe [1]. Remote-
sensing-based mapping helps overcome some of these shortcomings [88]; however, map-
ping small-scale disturbances, such as forest fires in Central Europe, and identifying
disturbance causes remains challenging [89]. Such data constraints are disturbing because
recent trends and model projections indicate that future forest fire impacts may be consid-
erable [40,90], and consistent datasets could be essential for identifying regime shifts and
fire-prone areas. For example, here, the fire occurrence data that we used were created as a
by-product of firefighting interventions, not by a professional forestry agency. Therefore,
metadata about a fire’s possible cause and local forest stand and site description, including
fuel parameters, were lacking. Limited forest fire monitoring, mapping, and data collection
is typical that part of Central Europe in which forest fires are not yet a major factor in
forest disturbance.

We focused on the drivers of forest fire occurrence (i.e., the ignitions) rather than on
the size of burned areas. This may limit the comparability of this study with studies from
fire-prone regions that often focus on burned areas (e.g., [3]). However, we maintain that
the number of forest fires is a relevant descriptor of the fire regime in Central Europe that
is characterized by many small fires, which are extinguished before they expand in the
vast majority of cases. We found that only 5% of fires exceeded one hectare, with one fire
that affected a 497-hectare area in 2014. Moreover, the inter- and intra-annual patterns of
forest fire numbers were more distinct than the patterns of burned areas, thereby providing
better interpretation options (Figure 2; Appendix C). Studies [40,46] found a strong climatic
signal in forest fire occurrence in Central Europe, which also supports the use of forest fire
numbers as an adequate and responsive indicator of the regional fire regime.

The present study examined data from the period 2006–2015, which precedes the recent
series of climatically extreme years that significantly altered European forest disturbance
patterns. Although more recent data were not accessible during this study, extending
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the investigated time series could yield valuable insights into the shifts in fire dynamics
resulting from progressive climate aridification. Consequently, the current study can serve
as a reference for subsequent research endeavors.

4.3. Practical Implications

The insights obtained in this study have several practical implications. First, we
highlighted the limitations of current fire monitoring and reporting procedures. Missing
information about the causes of fire ignition and local site and forest structure and com-
position data significantly limit interpretation options. Detecting these changes can be
important because the recent wave of drought- and bark-beetle-related forest mortality
have considerably transformed forest landscapes [42], changing species composition, fuel
distribution, and patterns of human presence on the landscape. These changes can alter
forest fire responses identified in this current study; therefore, updating the statistical
models presented here with new data on a regular basis will be essential for understanding
transient fire conditions in Central Europe. The above-mentioned processes are further
affected by an increasingly warmer and drier climate, which is likely to affect the occurrence
of fires in the regions. We need to create better and more detailed fire datasets, by engaging
forest experts and fire departments, to better understand ongoing changes and improve
fire risk assessment models.

Second, the identified factors driving fire occurrence can be used for delimiting fire
risk zones at the scale of administrative districts of the Czech Republic. While this scale cor-
responds with the socio-economic and demographic data structure, which can be straight-
forwardly integrated in the statistical models, it is obviously too coarse for operational
management and resource allocation planning. Still, identifying fire-prone districts based
on their location in drier and warmer conditions with a large proportion of coniferous
forest, extensive wildland–urban interface, and high population density and tourism can
guide targeted risk management activities. These may include targeted investments into
firefighting and monitoring infrastructure, improving national and regional policies, and
increasing public awareness about fire risk (e.g., [91,92]).

5. Conclusions

Forest fire occurrence in Central Europe is driven by a specific combination of cli-
matic and non-climatic factors, predominantly the proportion of coniferous species and
human activity on the landscape. The latter factor includes different aspects of human
activity, which can be approximated by variables such as the number of overnight tourists,
population density, and wildland–urban interface. The identified forest fire drivers and
constructed statistical model can support fire danger delineation of the country and inform
the targeted implementation of measures such as firefighting infrastructure development,
an increase in public awareness, and regulation of human activities in fire-prone areas
during fire seasons. We emphasize the importance of improving the current fire monitoring
and data management system, which will allow for a more comprehensive understanding
of fire drivers and encourage foresters, firefighters, and local authorities to adopt more
efficient forest management and fire-control measures such as the building of water reser-
voirs and the education of the general public. This is particularly important in the wake of
the anticipated increase in fire-conducive weather and alterations of forest structure and
human activity patterns, which can shift regional fire regimes.
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Figure A1. Landscape, social, and climatic conditions of the Czech Republic, (a) digital elevation
model; (b) major landcover categories; (c) annual mean temperature in the period 1961 to 1990;
(d) mean annual precipitation totals in the period 1961 to 1990; and (e) population density.
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Figure A2. Candidate predictor variables used to determine drivers of forest fire frequency in the
Czech Republic, where we investigated the relationship between number of forest fires and variables
characterizing climate, land cover, and human activity conditions between 2006 and 2015. Only the
subset of variables with significant effects (indicated by an asterisk, *) was used to construct the
statistical models. SD = standard deviation.
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