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Abstract: The increase in both the frequency and magnitude of natural disasters, coupled with recent
advancements in artificial intelligence, has introduced prospects for investigating the potential of
new technologies to facilitate disaster response processes. Preliminary Damage Assessment (PDA),
a labor-intensive procedure necessitating manual examination of residential structures to ascertain
post-disaster damage severity, stands to significantly benefit from the integration of computer vision-
based classification algorithms, promising efficiency gains and heightened accuracy. Our paper
proposes a Vision Transformer (ViT)-based model for classifying damage severity, achieving an
accuracy rate of 95%. Notably, our model, trained on a repository of over 18,000 ground-level
images of homes with damage severity annotated by damage assessment professionals during the
2020–2022 California wildfires, represents a novel application of ViT technology within this domain.
Furthermore, we have open sourced this dataset—the first of its kind and scale—to be used by
the research community. Additionally, we have developed a publicly accessible web application
prototype built on this classification algorithm, which we have demonstrated to disaster management
practitioners and received feedback on. Hence, our contribution to the literature encompasses the
provision of a novel imagery dataset, an applied framework from field professionals, and a damage
severity classification model with high accuracy.

Keywords: damage assessment; wildfire damage; computer vision; damage classification

1. Introduction

The World Meteorological Organization of the United Nations has underscored a
significant surge in the incidence of disasters, reporting that “the number of disasters has
increased by a factor of five over the 50-year period, driven by climate change, more extreme
weather and improved reporting” [1]. Among these disasters, wildfires have notably
experienced disproportionate growth in both intensity and frequency, as highlighted by
reports from organizations like the United Nations Environment Programme [2]. This
trend is starkly exemplified by the unprecedented wildfire seasons witnessed in California
between 2020 and 2022. The California Department of Forestry and Fire Protection (Cal Fire)
has documented 2020 as its most extensive fire season on record, featuring individually
record-breaking wildfires such as the August Complex Fire, the first “gigafire” in California
history, scorching over one million acres [3].

In the United States, governmental agencies charged with disaster response, such as
the Federal Emergency Management Agency (FEMA), shoulder a pivotal responsibility
in conducting preliminary damage assessment (PDA). This assessment is instrumental in
unlocking federal funding for disaster survivors and local government entities. However,
the escalating frequency and severity of natural disasters, compounded by complicating
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factors like the COVID-19 pandemic between 2020 and 2022, have introduced substantial
operational burdens and process intricacies into disaster response efforts.

In 2023, the author directly participated in a PDA process in Northern California along-
side FEMA, Cal Fire, and other agencies, providing firsthand insight into the challenges
encountered. Notably, the exhaustive nature of the task demanded an individual and
physical inspection of every affected residence, even in instances where accessibility issues
arose due to road and building damage. Concurrently, public health and other concerns,
such as social distancing, exacerbated delays and led to additional logistical coordination.
The sheer volume of homes requiring assessment could overwhelm damage assessment
teams, particularly in scenarios involving multiple concurrent disasters, prolonging the
duration of PDAs and potentially compromising both the well-being of assessors and the
accuracy of their findings. For instance, on this particular PDA trip, constraints such as
the need to vacate the area before nightfall resulted in disparities in the assessment times
allocated to different properties.

Simultaneous with the uptick in natural disasters, artificial intelligence (AI) has expe-
rienced remarkable advancements in recent years, particularly in the realm of computer
vision. Stanford Computer Vision Lab defines computer vision as striving “to develop intel-
ligent algorithms that perform important visual perception tasks such as object recognition,
scene categorization, integrative scene understanding, human motion recognition, material
recognition, etc”. [4]. Noteworthy breakthroughs in deep learning have empowered com-
puter vision models like convolutional neural network (CNN)-based architectures such as
ResNet50 and VGG-16 to achieve unprecedented levels of accuracy in tasks such as image
recognition and classification [5,6]. Another model that has emerged recently is OpenAI’s
one-shot Contrastive Language-image Pre-training (CLIP) model, which could take in an
image and a list of categories to make a prediction without previously having trained
the model [7]. In 2021, Google Research published the Vision Transformer (ViT) model,
based on an architecture different from CNN, which has outperformed CNN models by
four times in efficiency and accuracy, thus making it one of the best-performing models
for computer vision tasks [8]. One advantage of these computer vision models is their
capability for Transfer Learning, where models trained on one task (e.g., classification of
objects) could be re-trained to perform another similar task (e.g., classification of specific
variations of the same object) with training data and appropriate labels [9,10].

AI technology, both computer vision-based or otherwise, has been implemented in
disaster response to aid both survivors and responders alike in many ways. Examples
include AI chatbots that connect survivors to humanitarian organizations for assistance [11]
and an open source software platform that classifies social media content to monitor the
evolution of disasters [12]. Specific to computer vision, both the research and practitioner
communities have primarily focused on utilizing aerial imagery to aid with disaster re-
sponse. Academic works have focused on topics such as using aerial imagery to develop
a Disaster Impact Index [13], to detect disasters [14], and to conduct high-level damage
assessment [15]. The International Conference on Computer Vision (ICCV) and the Confer-
ence on Neural Information Processing Systems (NeurIPS), two of the leading computer
vision academic conferences, have hosted the AI for Humanitarian Assistance and Disaster
Response (AI4HADR, https://www.hadr.ai (accessed on 2 January 2024)) workshops for
the past few years, where most of the accepted papers focus on aerial imagery. Similarly,
online communities, such as the 2000+ member LinkedIn group called “Satellite Imagery
for Deep Learning” (https://www.linkedin.com/groups/12698393/ (accessed on 2 January
2024)), have also provided forums for discussions of disaster response-related applications.

Disaster response organizations, predominantly governmental in nature, have pri-
marily leveraged aerial imagery as the principal application of computer vision. The
Department of Defense, through its Defense Innovation Unit, has spearheaded the develop-
ment of an intergovernmental platform known as xView2. This platform automates the
execution of computer vision algorithms on satellite imagery to monitor disaster progres-
sion over time (https://www.diu.mil/ai-xview-challenge (accessed on 2 January 2024)).

https://www.hadr.ai
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In an interview conducted by the author with FEMA’s former Chief Geospatial Officer,
Christopher Vaughan, it was revealed that FEMA has also endeavored to integrate aerial
imagery into its PDA processes. However, as of the current writing, the computer vision
model reliant on aerial imagery merely assists FEMA in prioritizing the deployment of
in-person damage assessors, rather than executing the damage assessment itself. Despite
the assistance provided by the model, the PDA process remains predominantly manual.

The utilization of aerial imagery in disaster response, particularly for damage as-
sessment, is encumbered by several limitations. Ground structures of interest may be
obstructed by clouds, smoke, or other impediments, particularly in wildfire scenarios.
Furthermore, the update frequency of aerial imagery varies inconsistently, contingent upon
factors such as geographical region, which introduces unpredictability and unreliability.
Moreover, processing aerial imagery entails additional computational and storage overhead.
Critically, aerial imagery often lacks the resolution required to discern individual structures
accurately, impeding the precise quantification of disaster damages. In discussions with
FEMA’s Christopher Vaughan, an expressed aspiration was noted to explore the potential of
computer vision technologies beyond reliance on satellite imagery, particularly concerning
damage assessment.

As such, there is an opportunity to better understand how non-satellite imagery data
could be utilized in the context of disaster response, particularly for damage assessment.
Recent work has explored using ground-level imagery for damage assessment. Nia and
Mori demonstrate that a CNN-based model, trained on a small set of manually curated
data, can yield high accuracy in classifying building damages into different categories [16].
The model proposed by Nguyen et al. offers a multimodal approach in taking textual input,
along with image data, to predict the damage level in a particular area [17]. Various other
research papers have built models to demonstrate the promise of using computer vision
algorithms on ground-level imagery to classify damage severity [18,19]. At the time of this
writing, most of the papers we have come across have built their models using CNN or
other more traditional approaches to the image classification task, instead of some of the
newer models such as ViT.

As reliable and properly labeled training data has been identified as a limitation by
several of the aforementioned studies, different approaches were taken to ensure sufficient
data are available for model training. In some cases, volunteers and paid crowdsourced
workers were used to label data found on social media and search engines [19]; researchers
have also opted to label the data found on the Internet themselves [16]. Others have used
Google Street View as the image source with additional manual labeling [18]. Furthermore,
in some cases, damage classification models are built from and used for, image data
from different disaster types, despite the fact that damage from one type of disaster (e.g.,
wildfire) may look drastically different from another (e.g., flooding) [17]. Manual labeling
may also limit the scale of the data; for example, the model in 1 paper was trained on only
200 labeled images [16]. In addition to scale, the main challenge with this approach is the
potential lack of consistency in category definitions, where crowdsourced workers may not
have sufficient context in distinguishing between different types of damages, as well as the
potentially disparate manifestations of damages between disaster types.

To mitigate the aforementioned constraints, we propose a damage severity classifi-
cation model utilizing ground-level imagery, specifically targeting residential structures
affected by wildfires. We hypothesize that employing a Vision Transformer (ViT) model
would yield superior performance and operational efficiency compared to alternative ap-
proaches and manual labeling methods. Our model, trained on a dataset comprising over
18,000 professionally labeled images of homes damaged during the 2020–2022 California
wildfires, has attained an accuracy score exceeding 95%. The methodology encompassed
dataset curation, model training, rigorous testing, and subsequent deployment as an appli-
cation tailored for utilization by on-the-ground disaster management personnel.

Our study contributes significantly to the literature on computer vision-based damage
assessment in several key aspects. Firstly, our research employs a curated large-scale
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dataset, comprising over 18,000 images, with damage classification labeled by professional
assessors from prior PDAs. Notably, our dataset exclusively focuses on wildfire-related
damages, recognizing the distinctiveness of damage assessment needs across various
disaster types within the PDA context. Moreover, our dataset emphasizes residential
structures, which are pivotal for governmental organizations in determining emergency
declarations. Secondly, our classifier is built upon the latest ViT model available at the
time of this study, demonstrating superiority over traditional CNN architectures and other
computer vision models, with accuracy surpassing 95%. Lastly, our affiliation with FEMA
facilitated invaluable access to disaster response experts, enabling us to gather invaluable
feedback and insights from the intended end users of our proposed algorithms. Thus,
our research contributes to the field in three significant ways: (1) by curating and open
sourcing a comprehensive dataset of fire damage classification, (2) by leveraging the latest
state-of-the-art ViT model for classification tasks, and (3) by providing invaluable insights
and feedback from disaster response personnel, enhancing the usability and applicability
of our proposed tools.

2. Materials and Methods
2.1. Ground-Level Image Dataset Curation

The dataset utilized for training the classifier model in this study originates from
Cal Fire’s GIS Hub, a source primarily designed for GIS applications (https://hub-calfire-
forestry.hub.arcgis.com/ (accessed on 2 January 2024)). This dataset encompasses PDA
records for all major wildfire incidents in California since 2020, comprising vital information
such as addresses, building characteristics, and damage severity classifications (ranging
from “No Damage” to “Destroyed”), determined by professional assessors who visited
the individual properties. Notably, each address entry is accompanied by a ground-level
image captured by the assessors. For our model building, we acquired data pertaining
to 18 wildfire events in California, encompassing a total of 57,176 residential structures,
with 18,960 structures featuring associated ground-level imagery. Figure 1 represents an
example of what the original data looks like in the GIS Hub.
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Given the dataset’s original orientation towards GIS applications, substantial data
engineering efforts were undertaken to extract, process, and link ground-level imagery
with pertinent metadata attributes such as address and building type. Among the struc-
tures featuring ground-level imagery, 40% of the images are categorized as “No Damage”,
7% as “Affected (1–9%)”, 2% as “Minor (10–25%)”, 1% as “Major (26–50%)”, and 50%
as “Destroyed (>50%)”. With explicit permission from Cal Fire, we have uploaded the
processed data, constituting an image dataset with a corresponding metadata spread-
sheet specifying damage classifications for each image, onto research data platforms
such as Zenodo (https://zenodo.org/records/8336570, (accessed on 2 January 2024)) and
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Hugging Face (https://huggingface.cco/datasets/kevincluo/structure_wildfire_damage_
classification, (accessed on 2 January 2024)).

Figures 2–6 depict a selection of sample images representing the five distinct cate-
gories established by government agencies to standardize the assessment process. The
categorization framework delineates distinct levels of damage severity. Specifically, the
“No Damage” classification denotes residential structures within disaster-affected areas
that remain unscathed by the event. Conversely, classifications such as “Affected (1–9%)”,
“Minor (10–25%)”, and “Major (26–50%)” signify varying degrees of structural damage,
with the majority of the affected buildings retaining operational capacity and potential for
repair. These assessments are conducted by damage assessors who survey the exterior of
structures, occasionally supplemented by interior inspections, to evaluate the integrity of
supporting elements. Notably, the designation of “Destroyed (>50%)” indicates irreparable
damage, characterized by the collapse of critical structural components, rendering the
structure unsalvageable.
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2.2. Classifier Model Development

Image classification has long been a focal point of research in computer vision, dating
back to the inception of the field in the 1960s [20]. It has garnered significant attention,
epitomized by the ImageNet Large Scale Visual Recognition Challenge, which has served
as a benchmark for evaluating image classification algorithms for nearly a decade, utilizing
a vast dataset comprising over a thousand object classes and more than a million images
(https://www.image-net.org/ (accessed 2 January 2024)). This competition has catalyzed
the development of seminal computer vision models, including the renowned VGG16
and ResNet50 architectures. VGG16, a 16-layer convolutional neural network (CNN)
devised by K. Simonyan and A. Zisserman from the Visual Geometry Group (VGG) at
the University of Oxford, achieved remarkable success in the 2014 ImageNet Challenge,
excelling in both object detection and classification tasks owing to its high accuracy and
efficiency [5]. Similarly, the ResNet50 model, proposed by Kaiming He et al. from Microsoft
Research Asia, emerged triumphant in the 2015 ImageNet Challenge’s classification task [6].
However, in 2021, Google introduced and published the Vision Transformer (ViT) model,
surpassing CNN models by fourfold in both efficiency and accuracy, thereby establishing
itself as the preeminent paradigm for computer vision tasks [8].

ViT models represent a paradigm shift in image classification, offering several ad-
vantages over traditional CNN architectures. Unlike CNNs, which process images using
local convolutions, ViTs employ a transformer architecture that treats images as sequences
of patches, allowing for the capture of global dependencies and long-range interactions
between image elements. By leveraging self-attention mechanisms, ViTs excel at modeling
complex relationships across the entire image, thereby facilitating a more comprehensive
understanding of visual content. This global perspective enables ViTs to effectively capture
contextual information and semantic relationships, leading to enhanced performance in
tasks requiring holistic image comprehension. Moreover, ViTs demonstrate remarkable
scalability and adaptability, as they can handle inputs of varying sizes without requiring
architectural modifications, making them well suited for both large-scale datasets and
diverse image domains. Additionally, ViTs have shown superior performance in capturing
fine-grained details and subtle visual patterns, surpassing CNN models in accuracy and
efficiency across a range of image classification tasks. These inherent advantages position
ViTs as a compelling alternative to CNNs for image classification, promising to advance the
state-of-the-art in computer vision research and applications [8].

Leveraging the principle of Transfer Learning [9,10], these models can be adapted
for new tasks by re-training them on diverse datasets, such as for damage classification.
Given the acknowledged potency of the Vision Transformer (ViT) model as a foundational
tool for image classification tasks, we have opted to employ it as the base model for our
classifier. Subsequently, in the subsequent sections, we will compare the performance of
the ViT model against that of a CNN-based model and a CLIP-based model to underscore
the differences.

Within the landscape of Vision Transformer (ViT) models, numerous variants have
emerged to accommodate diverse system needs and requirements. Among the most com-
monly utilized for classification tasks are ViT-B-16, ViT-B-32, and ViT-L-14, each presenting
distinct trade-offs.

According to the Model Cards associated with these models, ViT-L-14 demonstrates
superior performance (75.4%) compared to ViT-B-32 (63.3%) on the benchmarking task

https://www.image-net.org/
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of classifying the ImageNet Validation Set without additional training data; however, it
comes with the largest binary file size (1.71 GB). The selection of a ViT variant relies on the
pre-trained model’s performance on the target dataset.

To aid in the model variant selection and develop a better understanding of the dataset,
we computed metrics such as Cosine Similarity and Silhouette Scores. Cosine Similarity
in image analysis calculates the cosine of the angle between feature vectors, providing a
measure of similarity between images based on their respective high-dimensional feature
representations [21]. Similarly, the Silhouette Score quantifies the coherence of clusters by
measuring the separation between clusters compared to the cohesion within clusters based
on feature representations [22]. These metrics provide insights into the labeled data quality,
which, despite professional curation, may still be susceptible to human error. Due to the
limited sizes of the Affected (1234), Minor (293), and Major (124) groups, we aggregated
them into a single category labeled as “Minor” (1651).

Based on the above statistics, two key observations can be drawn: firstly, the images
within the same group exhibit limited similarity, and, secondly, there is a lack of distinc-
tiveness among the images across the three groupings. Across all three variants of the
model, the “Destroyed” group demonstrates the highest Cosine Similarity Score, exceeding
0.79, indicating substantial similarity within this group. However, the “Minor” and “No
Damage” groups exhibit nearly identical Cosine Similarity Scores to the “Overall” category,
suggesting that images within these groups share similar characteristics to those across
the entire dataset. This outcome is expected due to the dataset’s heterogeneous nature,
where images vary significantly in granularity. For instance, while Figures 7 and 8 belong
to the “Affected” group, they depict entirely different scenes, whereas Figures 8 and 9,
despite belonging to different categories, display noticeable similarities. Furthermore, the
low Silhouette Score corroborates the limited distinctiveness between the groups.
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We explored various strategies to enhance the Cosine Similarity and Silhouette Scores
of the dataset. Initially, we investigated the removal of specific fire incidents to address
potential systematic image capture issues, yet this approach yielded no improvement in
the metrics. Subsequently, an attempt was made to refine the dataset by pre-classifying
images into distinct categories, focusing solely on structures or buildings; however, due
to the diverse nature of the images, particularly the challenge in distinguishing between
different levels of damage (e.g., some “Destroyed” images depicting mere ashes), this
strategy proved ineffective. Consequently, we opted to proceed with the dataset in its
original form.

Upon examining Table 1, it is evident that ViT-B-16 exhibits the highest Silhouette Score,
with its “Overall” Cosine Similarity Score comparatively lower than those of individual
groups, in contrast to the other model versions. Hence, we selected ViT-B-16 as the
foundational model for our image classifier.

Table 1. Cosine Similarity (CosSim) and Silhouette Scores (S-Scores) by damage classification.

Model
Version

Minor
CosSim

Destroyed
CosSim

No Damage
CosSim

Overall
CosSim S-Score

ViT-B-16 0.709 0.839 0.745 0.715 0.173
ViT-B-32 0.683 0.798 0.713 0.686 0.154
ViT-L-14 0.693 0.847 0.738 0.730 0.167

2.3. Application Development

One objective of this paper is to bridge the gap between computer vision models in
the academic realm and their practical utilization in disaster response scenarios. To work
towards this, we developed a web application prototype, hosted on the Hugging Face
platform, enabling users to submit images for damage severity classification using our
trained model. This demonstration facilitates direct engagement and feedback from users,
particularly those in the disaster management domain, ensuring real-world applicability.
Operating seamlessly on both mobile and web platforms, the application entails a straight-
forward process whereby users submit an image and receive the classification results, as
depicted in Figures 10 and 11.
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3. Results
3.1. Classifier Performance Evaluation

Having selected ViT-B-16 as our model of choice, we commenced training using
80% of the entire dataset, comprising 15,222 images, while reserving 20% (3738 images)
for evaluation purposes. The training was conducted over one epoch as well as four
epochs, yielding the subsequent outcomes. The training process was completed within
approximately 45 min.

Table 2 illustrates that while training over four epochs resulted in a decrease in
Training Loss, it coincided with an increase in Evaluation Loss and a reduction in ac-
curacy. This observation suggests potential overfitting due to the dataset’s size and
complexity. Consequently, we opted to train the model for just one epoch, yielding the
subsequent results:

Table 2. Training Loss, Evaluation Loss, and accuracy between 1-epoch and 4-epoch training.

Training Epochs Training Loss Evaluation Loss Accuracy

1 0.23 0.16 0.94
4 0.17 0.26 0.93

Preliminary analysis of the Confusion Matrix, as shown in Table 3, reveals a notable
misclassification trend, particularly between images labeled as “Affected” and “No Dam-
age”. This finding aligns with earlier observations regarding the relatively low Cosine
Similarity Scores between these groups and the overall dataset. The overall accuracy
computed stands at 95.43% (3567 out of 3738 samples). Further detailed breakdowns are
presented in Tables 4 and 5.

Table 3. Confusion Matrix of the ViT-B-16 model on 1 epoch.

Affected
(Predicted)

Destroyed
(Predicted)

No Damage
(Predicted)

Affected
(Groundtruth) 193 11 126

Destroyed
(Groundtruth) 7 1860 10

No Damage
(Groundtruth) 14 3 1514

Table 4. Precision, Recall, and F1-Score by Damage Severity Category.

Severity
Category

Precision
TP/(TP + FP)

Recall
TP/(TP + FN) F1-Score Support

Affected 0.90 0.58 0.73 330
Destroyed 0.99 0.99 0.99 1877

No Damage 0.92 0.99 0.95 1531

Table 5. Precision, Recall, and F1-Score overall.

Precision
TP/(TP + FP)

Recall
TP/(TP + FN) F1-Score Support

Accuracy 0.96 3738
Macro Avg 0.94 0.86 0.89 3738
No Damage 0.96 0.96 0.95 3738

Our model demonstrates high Precision, Recall, and F1-Score values for the “De-
stroyed” and “No Damage” categories. However, it exhibits notably poorer performance
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in classifying the “Affected” group, particularly in terms of Recall and F1-Score metrics.
This discrepancy may partly be attributed to the group’s lower representation in both the
training and test datasets, with a support of 330 samples. Nevertheless, when considering
all categories collectively, the model achieves high Precision, Recall, and F1-Score metrics.

3.2. Evaluation Loss Investigation

While the overall Precision, Recall, and accuracy metrics demonstrate commendable
performance, a detailed examination of per-category misclassifications in the test set reveals
areas for further investigation. Among the 171 misclassified instances, the distribution is
as follows:

• “Affected” misclassified as “Destroyed” (11 cases, 6.43% of all misclassifications);
• “Affected” misclassified as “No Damage” (126 cases, 73.68% of all misclassifications);
• “Destroyed” misclassified as “Affected” (7 cases, 4.09% of all misclassifications);
• “Destroyed” misclassified as “No Damage” (10 cases, 5.85% of all misclassifications);
• “No Damage” misclassified as “Affected” (14 cases, 8.18% of all misclassifications);
• “No Damage” misclassified as “Destroyed” (3 cases, 1.75% of all misclassifications).

Upon reviewing all 171 misclassification cases, it became evident that the majority of
misclassifications underscore issues (“Unusable” images) within the dataset rather than
inherent algorithmic limitations. Several misclassified images exhibited fundamental issues
warranting exclusion from evaluation, such as images depicting non-residential structures
(e.g., Figure 12, classified as “No Damage” despite being labeled “Affected”) and images
where damages were not discernible upon inspection (e.g., Figure 13, classified as “No
Damage” despite being labeled “Affected”).
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Consequently, the images with underlying issues have been excluded, prompting a
recalculation of the metrics:

• “Affected” misclassified as “Destroyed”: 4 (decreased by 7 from the initial count of 11);
• “Affected” misclassified as “No Damage”: 85 (decreased by 41 from the initial count

of 126);
• “Destroyed” misclassified as “Affected”: 3 (decreased by 4 from the initial count of 7);
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• “Destroyed” misclassified as “No Damage”: 6 (decreased by 4 from the initial count
of 10);

• “No Damage” misclassified as “Affected”: 8 (decreased by 6 from the initial count
of 14);

• “No Damage” misclassified as “Destroyed”: 1 (decreased by 2 from the initial count
of 3).

Table 6 shows the breakdown of the Precision and Recall rate by Severity Category.
The overall accuracy has improved to 97.09%, marking an increase of 1.66% from the
previous value of 95.43%. The “Affected” category improved the most as the result of
this change.

Table 6. Precision and Recall by Damage Severity Category without “Unusable” images.

Severity Category Precision Recall

Affected 0.95 (+0.05) 0.68 (+0.10)
Destroyed 0.99 (+0.00) 0.99 (+0.00)

No Damage 0.94 (+0.02) 0.99 (+0.00)

Additional images with ambiguous classification merit consideration for exclusion,
as exemplified by Figures 14 and 15, both labeled as “No Damage”, where discerning the
origin of the damage, whether attributable to the wildfire event or not, poses challenges.
Their potential removal would likely lead to notable enhancements in metrics such as
overall accuracy rate and by-category recall rates.
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3.3. Accuracy Degree and Comparison with Other Models

The accuracy of our current image classification model is notable, achieving a com-
mendable rate of 95%. This metric serves as a critical benchmark for assessing the model’s
proficiency in accurately categorizing images. To provide a comprehensive evaluation of
its efficacy, we conducted a comparative analysis with other commonly employed models.
Specifically, we trained a convolutional neural network (CNN)-based model and applied
the one-shot Contrastive Language-image Pre-training (CLIP) model to the same dataset.
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3.3.1. Comparison against CNN-Based Model

For the CNN-based model, we initialized a basic CNN architecture and conducted
training over five epochs on the training data subset. Subsequently, we evaluated its perfor-
mance against the test dataset, resulting in the following outcomes, as seen in Figure 16:
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The CNN model’s overall accuracy of 0.78 (which is −0.17 against 0.95 of the
ViT model) in this classification task could stem from various factors. Firstly, CNN archi-
tecture may struggle to capture the intricate features and subtle patterns present in the
dataset, particularly since the images exhibit complex visual characteristics such as varying
lighting conditions, perspectives, or occlusions. This limitation of CNNs to effectively
model long-range dependencies and capture global context might lead to inaccuracies in
classification, resulting in lower accuracy. Table 7 provides a more detailed breakdown by
Severity Category.

Table 7. Precision by severity categry, compared against ViT model.

Severity Category Precision Against ViT

Affected 0.28 −0.62 (against 0.90)
Destroyed 0.87 −0.12 (against 0.99)

No Damage 0.84 −0.08 (against 0.92)

On the other hand, the ViT model in this case worked better perhaps due to its
ability to efficiently capture global relationships between image patches using self-attention
mechanisms. Unlike CNNs, which rely on convolutional layers to extract hierarchical
features from local image regions, ViTs treat images as sequences of patches and model
interactions between them, thereby facilitating the learning of long-range dependencies and
context-aware representations. This capability of ViTs to effectively capture global context
may enable more accurate classification, especially in scenarios where images contain
diverse visual characteristics or intricate patterns that CNNs may struggle to discern, such
as with our fire damage dataset. Consequently, the inherent architecture of ViT models,
optimized for learning from image sequences, might offer superior performance compared
to CNNs in image classification tasks characterized by complex and diverse datasets,
potentially leading to higher accuracy rates.
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3.3.2. Comparison against CLIP Model

In comparison with the CLIP model, we conducted an evaluation of the test set images
using three classification options: “a photo of a damaged home”, “a photo of a destroyed
home”, and “a photo of a home with no damage”. The model yielded the following results,
shown in Table 8:

Table 8. Confusion Matrix of the CLIP model.

Affected
(Predicted)

Destroyed
(Predicted)

No Damage
(Predicted)

Affected
(Groundtruth) 13 4 313

Destroyed
(Groundtruth) 52 1329 496

No Damage
(Groundtruth) 29 13 1489

As seen in Table 9, the CLIP model produced an overall accuracy of 0.76, indicating
a −0.19 deviation from the accuracy attained by our ViT model (0.95). While exhibiting
inferior performance compared to ViT overall, the CLIP model demonstrated particularly
poor performance in the “Affected” category. This discrepancy may partly stem from the
potentially ambiguous phrasing of the classification options, notably “a photo of a damaged
home”. Nonetheless, the CLIP model exhibited notably high precision and recall rates for
the “Destroyed” and “No Damage” categories, despite being devoid of prior training data.

Table 9. Precision and Recall by Damage Severity Category of CLIP model.

Severity
Category

Precision
TP/(TP + FP) Precision against ViT Recall

TP/(TP + FN) Recall against ViT

Affected 0.14 −0.76 (against 0.90) 0.04 −0.54 (against 0.58)
Destroyed 0.99 −0.00 (against 0.99) 0.93 −0.06 (against 0.99)

No Damage 0.65 −0.27 (against 0.92) 0.97 −0.02 (against 0.99)

The low overall accuracy of 0.76 attained by the CLIP model in our damage classifi-
cation task can be attributed to various factors. Primarily, CLIP’s design as a generalized
model tailored to comprehend image context across a wide linguistic spectrum contrasts
with our task’s requirement for precise image categorization based on predefined labels of
damage categories. This mismatch between the model’s broader capabilities and the task’s
specific demands likely contributed to its suboptimal performance.

Furthermore, CLIP’s reliance on one-shot contrastive learning may have hindered
its effectiveness compared to the specialized architecture of ViT models for image clas-
sification tasks such as damage severity assessments. ViT models, explicitly engineered
for image analysis, harness self-attention mechanisms to capture intricate visual patterns
and dependencies within images, potentially resulting in more accurate classifications
compared to CLIP. Additionally, the CLIP model’s performance may have been affected by
inadequate representation of the diverse range of images encountered during inference,
whereas ViT models have demonstrated proficiency across various image datasets owing
to their capability to learn hierarchical representations of visual features. As such, ViT has
been shown to perform better than CLIP for our specific application.

3.3.3. Comparison against Manual Process

Utilizing a ViT-based image classification model for tasks such as determining damage
severity offers several advantages over manual assessment. Firstly, ViT models possess the
ability to analyze large volumes of image data rapidly and consistently, thereby significantly
reducing the time and effort required for manual inspection. This expedited process
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enables timely decision making and intervention in disaster response scenarios, ultimately
facilitating more efficient resource allocation and mitigation efforts. The images themselves
could be obtained by untrained staff, drones, or other means to alleviate the assessors of
the operational burden.

Moreover, ViT models can operate autonomously, eliminating the inherent subjectivity
and potential biases associated with manual assessment. By relying on predefined classifi-
cation criteria and learned patterns from training data, ViT models offer an objective and
standardized approach to damage severity determination, ensuring greater accuracy and re-
liability in the assessment process. Additionally, ViT models can handle large-scale datasets
with varying degrees of complexity, allowing for comprehensive analysis of damage across
diverse geographical regions and disaster scenarios.

Furthermore, employing ViT-based models enables the integration of advanced com-
puter vision techniques, such as image augmentation and feature extraction, to enhance
the model’s predictive capabilities and adaptability to different environmental conditions.
This flexibility and scalability make ViT models well suited for dynamic and evolving
disaster response scenarios, where rapid and accurate assessment of damage severity is
paramount for effective decision making and resource allocation. Overall, the adoption of
ViT-based image classification models offers a compelling alternative to manual assessment,
providing greater efficiency, objectivity, and scalability in determining damage severity in
disaster response efforts.

3.4. Interpretability

Despite leading to more accurate and reliable results, ViT models do lack interpretabil-
ity and this poses a significant challenge, as stakeholders, such as the disaster response
personnel, may require insights into the model’s decision-making process to trust and
effectively utilize its outputs. To address the problem of interpretability associated with ViT
models, several approaches can be employed. One strategy involves leveraging post hoc
interpretation techniques to gain insights into the model’s internal workings. Techniques
such as saliency mapping, which highlights the most influential regions of an image on
the model’s predictions, can provide valuable information about the features driving the
classification decisions. Similarly, gradient-based methods can reveal how changes in input
pixels affect the model’s output probabilities, offering insights into the decision boundaries
learned by the model.

Furthermore, model-agnostic interpretation methods can be utilized to enhance the
interpretability of ViT models. Techniques like LIME (local interpretable model-agnostic
explanations) and SHAP (Shapley Additive Explanations) approximate the behavior of the
black-box model using interpretable surrogate models, enabling stakeholders to understand
the factors contributing to individual predictions. Additionally, incorporating domain
knowledge and expert insights into the model training process can improve interpretability
by aligning the model’s outputs with established principles and guidelines in the field.

By integrating these interpretability-enhancing techniques into the development and
deployment of ViT-based image classification models, stakeholders can gain actionable
insights into the model’s decision-making process, fostering trust and facilitating in-
formed decision making in critical applications such as disaster response and damage
severity assessment.

3.5. Application Demonstration and Feedback

In response to feedback from disaster response professionals, several enhancements
are currently in progress for our ViT-based application for post-disaster damage severity
classification. These enhancements aim to improve user experience and utility based on the
insights gathered from stakeholders:

• One significant enhancement entails enabling users to submit multiple images for
a single structure, allowing for a more comprehensive assessment of damage sever-
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ity by aggregating classification results across multiple submissions and weighting
them accordingly.

• Additionally, efforts are underway to enhance the application’s functionality by en-
abling users to submit images for multiple structures simultaneously, streamlining the
process and facilitating bulk analysis of damage severity.

• Another important feature in development is the capability to export classification
results as a CSV file, facilitating further analysis and integration with external systems
or tools for comprehensive post-disaster assessment.

• Furthermore, plans include incorporating Geographic Information System (GIS) func-
tionality into the application, enabling users to export classification results as a GIS
layer for seamless integration with GIS mapping platforms. This integration will
enhance spatial analysis capabilities and facilitate visualization of damage severity
data in a geographic context.

• Moreover, the application will be designed to interface with another application
dedicated to human reviewers, allowing for Quality Assurance checks on the model’s
classifications and enabling iterative model improvement based on human feedback.

To ensure the application meets the evolving needs of disaster management profes-
sionals, additional focus groups with end users in the field of disaster management will
be scheduled. These focus groups will provide valuable insights and guidance for further
refinement and updates to the application, ensuring its effectiveness and relevance in
real-world disaster response scenarios. Updates and iterations based on user feedback will
be provided to continuously enhance the application’s functionality and usability.

4. Discussion
4.1. Dataset Improvement

There are many ways to enhance the open source dataset we have provided for
the research community. Primarily, significant improvements can be achieved through
additional data cleaning procedures aimed at eliminating mislabeled or irrelevant images
from the dataset, such as those noted above. For instance, a thorough review could identify
and remove images featuring close-up views of machinery, which offer limited relevance to
the structural damage classification tasks. Similarly, the dataset may contain aerial images
that were erroneously included, which should be promptly identified and excluded to
bolster the overall quality and relevance of the dataset.

This study could also offer insights to guide future data collection efforts aimed at
continually enhancing the dataset. Collaboration with agencies such as Cal Fire presents
an opportunity to implement standardized guidelines for image capture during PDAs.
Such guidelines would not only optimize the efficacy of models trained on the dataset but
also streamline operational workflows within government agencies. Recommendations
may include capturing comprehensive images of entire structures alongside close-up shots
focusing on specific areas critical for damage classification determination.

Numerous additional data points could significantly enhance the dataset’s richness
and analytical potential. Leveraging our affiliation with FEMA, we have access to valu-
able financial data detailing the compensation awarded to property owners for home
damage. Integrating this financial information, along with property value data, holds
promise for fostering a more holistic comprehension of damage within the disaster con-
text. Furthermore, ongoing projects in the field continually generate and evaluate satellite
imagery of disaster-affected structures, presenting a compelling opportunity to explore
potential linkages or synergies between our dataset and existing repositories with similar
aerial perspectives.

Our dataset presents a valuable resource that could be seamlessly integrated into
ongoing initiatives focused on consolidating and expanding disaster image datasets. For
instance, the Incident1M Dataset, curated by the Qatar Computing Research Institute
(QCRI) and MIT researchers, comprises nearly one million disaster images alongside
additional contextual information [23]. By incorporating our dataset into such projects,
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researchers can benefit from a more comprehensive and diverse pool of data, thereby
enriching their analyses and advancing the field’s understanding of disaster response and
mitigation strategies.

4.2. Model and Application Improvement

There are many potential avenues for improving the performance of the model for
the task of classifying damage severity. Firstly, refining the model architecture through
techniques such as adjusting the depth and width of the transformer layers or exploring
alternative attention mechanisms could potentially improve its ability to capture intricate
visual patterns and dependencies within images. Additionally, optimizing hyperparam-
eters such as learning rate, batch size, and regularization techniques could lead to better
convergence and performance of the model.

Additionally, employing advanced techniques for data preprocessing, such as image
normalization, augmentation, and denoising, could help mitigate noise and variability
in the dataset, thereby improving the robustness of the classifier. Moreover, exploring
ensemble methods that combine multiple ViT models or integrate predictions from other
modalities, such as textual or geographical data, may further enhance classification perfor-
mance and reliability.

Despite the large dataset we used to train the model, there remains ample room
for enhancing the dataset to introduce further intricacy and nuance into the model. For
example, augmenting the training dataset with additional diverse and representative
samples, particularly from different regions that are prone to wildfires, could enhance the
model’s ability to generalize across various scenarios.

Even in the absence of the data refinements proposed in preceding sections, additional
metadata fields hold promise for augmenting the existing model architecture. These
may include pertinent details such as the geographical addresses of the structures under
assessment, the materials utilized in different structural components, and supplementary
fields for free-text inspection notes. Given the recent strides in large language models,
exploring avenues to integrate textual inputs into the model framework represents a
compelling opportunity for enhancing performance and enriching the analytical capabilities
of the classifier.

Even in the absence of additional input sources, the classifier presents avenues for
refinement and enhancement. For instance, the development of distinct penalty schemes
for misclassifications could mitigate operational challenges, particularly in scenarios where
misidentifying a “Destroyed” home as “No Damage” holds greater significance than the
reverse. Additionally, establishing an acceptability threshold could automate workflow
processes, redirecting structures to human reviewers only when the model lacks a predeter-
mined confidence level in its damage classification. This strategic allocation of resources
could optimize staffing within disaster management organizations. Furthermore, there
exists potential to explore optimal data storage practices to ensure the effective organization
and accessibility of all pertinent data points.

An additional avenue for investigation involves the sequential integration of diverse
computer vision algorithms to streamline workflow processes. For instance, an initial model
could discern whether an image meets specified criteria, such as identifying residential
structures, before a subsequent classifier model determines the severity of damage in-
flicted upon the structure. Existing research has already embraced an integrated approach,
incorporating both ground-level and satellite imagery data for enhanced analysis [24].
Furthermore, exploring methodologies to isolate home structures prior to damage severity
classification warrants consideration, potentially optimizing the efficiency and accuracy of
the classification process.

Given the dynamic nature of artificial intelligence and computer vision, numerous
novel models and variants are continually emerging, presenting diverse avenues for explo-
ration in image classification tasks beyond the ViT model. An extensive survey assessing the
performance of various image classification datasets on our dataset could offer invaluable
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insights, leveraging the evolving landscape of AI and computer vision to enhance classifica-
tion accuracy and efficiency. This opportunity underscores the importance of continuously
evaluating and integrating cutting-edge methodologies to advance the capabilities and
applicability of image classification techniques.

As the research project advances, we envision the full deployment and utilization
of the application by disaster response personnel, including those within agencies such
as FEMA, as well as direct engagement with disaster survivors. The implementation
of such a tool holds the potential to significantly streamline the process of conducting
PDAs, thereby expediting assistance to survivors. Furthermore, this initiative aligns with
existing research proposals advocating for the enhanced integration of citizens into disaster
response workflows, underscoring the potential for technological innovations to foster
greater community participation and resilience [25].

Lastly, continuous evaluation and validation of the model’s performance in real-time
disasters, coupled with more feedback from domain experts and end users in the disaster
management field, are essential for iterative refinement and improvement of the classifier.
This iterative approach allows for the identification of model weaknesses and biases,
leading to targeted interventions and enhancements to ensure the classifier’s efficacy in
real-world applications.

5. Conclusions

The development of a computer vision-based application for post-disaster damage
assessment represents a crucial endeavor with multifaceted significance. By employing
advanced machine learning techniques, the objectivity and consistency of damage evalua-
tions can be substantially enhanced compared to manual assessments conducted by human
observers. This technological approach enables the analysis of diverse visual features and
patterns within images, thereby facilitating standardized and reliable assessments across
different regions and disaster scenarios. Such a standardized approach fosters greater
transparency and accountability in disaster response efforts, empowering stakeholders
to make well-informed decisions based on evidence-based assessments. Moreover, the
implementation of a fully productionized system based on computer vision technologies
has the potential to revolutionize post-disaster response operations. By swiftly prioritizing
resources and deploying aid to the most severely affected areas, responders can minimize
response times and potentially save lives.

This paper contributes to the literature on artificial intelligence and computer vision,
particularly within the domain of humanitarian assistance and disaster response, in several
ways. Firstly, it presents a novel dataset, the largest of its kind, comprising ground-
level wildfire-based structure damage imagery labeled by professional damage assessors.
Secondly, the development of a ViT-based classification model trained on this dataset
demonstrates superior accuracy compared to other approaches, showcasing advancements
in classification performance within this domain. Thirdly, the deployment and utilization
of a web application built upon the model by real-world disaster response professionals
offer a novel applied perspective, underscoring the practical relevance and potential impact
of the research.

While acknowledging that further enhancements are possible for the dataset, model,
and application, this project serves as a step toward integrating cutting-edge computer
vision technology into the realm of disaster management. By addressing critical gaps in the
existing literature and leveraging advanced methodologies to address real-world challenges,
this study lays the groundwork for future research endeavors aimed at harnessing the
power of artificial intelligence for humanitarian aid and disaster relief efforts.
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