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Abstract: The present paper addresses the problem of generating and propagating vibrations induced
by low-impact loading on a driven pile. In this context, an experimental test site was selected and
characterized, where ground-borne vibrations induced by the application of a low dynamic loading
on the pile head were measured using accelerometers placed at the ground surface. At the same
time, a new numerical approach, based on a coupled FEM-PML (Finite Element Method-Perfectly
Matched Layer) formulation, to model the pile–ground system was presented. A very satisfactory
agreement was observed between the experimental data collected in these experiments and the
prediction performed by the numerical model. The experimental data can be also used by other
authors for the experimental validation of their or other prediction models.
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1. Introduction

Ground vibrations have become a major environmental concern in urban areas in
recent years. These may arise from different sources, disturb activities and people in the
vicinity of the source, and even damage existing equipment or structures. Construction
activities can be pointed out as an important source of vibration, in which pile driving
activities are a particular concern [1–4].

Impact pile driving (in general) is recognized as a very useful technique for the
installation of deep foundations, presenting some advantages, namely with regard to
construction time, industrialization, and the automation of construction procedures, among
others. However, during driving activities, it is necessary to be aware of the vibration levels
induced at the base of surrounding buildings in order to avoid excessive discomfort for
residents and, in extreme scenarios, damage to nearby buildings. Thus, it is extremely
important that the level of vibrations can be estimated before pile driving operations begin.

The prediction procedure is a complex process since physical phenomena involve
different media with distinct properties and mechanical behaviors: the impact hammer
device, pile, ground, and structures. In some cases, the difficulty of predicting the vibration
levels limits the applicability of the method, with adverse technical and economic effects.
In view of this complexity, the vast majority of studies on ground-borne vibrations induced
by impact pile driving are based on empirical approaches [5–11].

Despite the prevalence of empirical approaches, some numerical methodologies have
been proposed in recent years, seeking a deeper understanding of the physical behavior
of the problem and a more general prediction approach, not restricted by the specific
conditions for which the empirical rules were derived. Some of these advances in numerical
modeling of vibrations induced by pile driving should be highlighted, namely the studies
performed by Ramshaw et al. [12] and by Khoubani et al. [13] in which an axisymmetric
finite element model was adopted for the simulation of the pile–ground system. Infinite
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elements were used for the treatment of the artificial boundaries. A similar modeling
technique was presented by Homayoun Rooz and Hamidi [14], using artificial boundaries
based on a constant increase in the soil damping to guarantee that incident waves are not
able to return to the analysis domain, i.e., fulfilling Sommerfeld’s condition. With a similar
strategy that concerns the treatment of artificial boundaries, Sofiste et al. [15] proposed a
very efficient numerical model based on an explicit time-domain approach. A different
technique, based on the finite element method–boundary element method (FEM-BEM)
coupling, was proposed by Masoumi et al. [16,17] to address the same problem. Taking
into account that the strain levels of the soil next to the pile are high, Masoumi et. al. [18]
proposed a non-linear coupled FEM-BEM approach for predicting free-field vibrations due
to impact and vibratory pile driving. Grizi [19] used the finite element software Plaxis 3D
(V22.00) to compute the vibration levels induced by impact pile driving, also considering
the non-linear behavior of the soil. In a different application field, it is also possible to
reference some offshore pile driving models: [20–23]. Although the offshore environment
adds to the complexity of the problem, the available models are used to predict the coupled
system dynamics with the exact same focus: environmental vibrations.

Given the complexity of the problem, the experimental validation of the numerical
tools is a fundamental step. Despite its importance, there is a real difficulty in finding well-
documented case studies in the available bibliography that allow other authors to validate
their models. From this perspective, this work presents an experimental test site developed
for this purpose, where the developed experimental tests refer to a low-strain analysis of
the waves propagated from a driven pile. At the same time, a new numerical approach for
modeling the pile–ground system, developed in the frequency domain, is presented.

In terms of organization, the paper begins by presenting the main features of the
numerical model proposed for the simulation of the pile–ground system, assuming a linear
behavior of the soil, and the impact hammer model. After the explanation of the numerical
modeling approach, the experimental site is presented in Section 3. A detailed description
of the main characteristics of the site is presented, focusing on the experiments carried
out for the validation of the axisymmetric finite element method–perfectly matched layers
(FEM-PML) numerical model, which is present in Section 4. The paper ends with some
guidelines on how to expand the proposed model to deal with high strains induced by pile
driving operations and the main conclusions.

2. Modeling Approach
2.1. Generalities

The numerical prediction of ground vibrations due to impact pile driving requires the
modeling of a complex system. In this context, a sub-structuring approach is proposed,
comprising two main modules: (i) the pile–ground system, modeled by an FEM-PML
approach in axisymmetric conditions; (ii) a dynamic simulation of the hammer device. Both
models are coupled, meeting the compatibility and equilibrium requirements. Figure 1
shows the interaction scheme of the methodology.

2.2. Axisymmetric FEM-PML Approach: Modeling of the Pile–Ground System

The numerical prediction of free field vibrations due to an impact load on the pile
head requires the modeling of the pile and the ground. In the present case, the pile–ground
system is modeled through the finite element method and perfectly matched layers in
axisymmetric conditions. Perfectly matched layers are used to suppress undesirable spu-
rious reflections of waves in infinite media modeled with finite elements. The modeling
approach was implemented in the commercial software MATLAB (V2021b). A schematic
illustration of the model is depicted in Figure 2.

According to the principle of virtual work and following the typical steps of the finite
element method procedure, the equilibrium equation for any point of a 3D domain can be
derived as follows:
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∫
V
δεTσdV +

∫
V
δuTρ

∂ui(x, t)
∂t2 dV =

∫
S
δuTpdS (1)

where δε is the virtual strain field, σ represents the stress field, δu is the virtual displacement
field (u is the displacement field), ρ is the volumetric mass, and p represents the external
loads applied to the surface S.
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For the sake of computational efficiency, an axisymmetric model was assumed for the
centerline of the pile, allowing for obtaining a three-dimensional response to the problem
without the need for a 3D discretization. Consequently, the integral volume in Equation (1)
can be adapted for axisymmetric problems by expressing the differential volume dV as
2πrdS, where r is the radial distance from the axisymmetric axis. Likewise, the differential
surface can be converted to the linear form by expressing dS as 2πrdL. Converting from
the space domain to the frequency domain and introducing the approximation of finite
elements, each term of the virtual working condition expressed in Equation (1) can be
written as:

2π
∫

S
δεTσrdS = 2π

∫
S

BTDBunrdS (2)
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2π
∫

S
δuTρ

∂ui(x, t)
∂t2 rdS = −2πω2

∫
S

NTρNunrdS (3)

2π
∫

L
δuTprdL = 2π

∫
L

NTprdL (4)

where [B] is the strain matrix, [D] is the strain-stress matrix, [N] is the shape function
matrix, and un is the vector of nodal displacements. According to the classic finite elements
notation, it follows that

[K] = 2π
∫

S
BT DBrdS (5)

[M] = 2π
∫

S
NTρNrdS (6)

where [M] and [K] are the mass and stiffness matrices, respectively.
The stress–strain relation is established by the constitutive matrix [D]. For an isotropic

elastic linear solid, loaded under axisymmetric conditions, this matrix is given by:

[D] =
E∗

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 0.5− ν

 (7)

where E∗ is the complex Young modulus and ν is the Poisson’s ratio. Complex elastic
parameters are introduced in order to take into account the damping of the hysteretic
material. Therefore:

E∗ = E(1 + 2iξ) (8)

where E is the Young modulus, and ξ is the hysteretic damping factor (i is the imaginary
unit number).

In terms of the PML domain, a similar procedure can be followed, taking into account
that the PML elements must allow the attenuation, without reflection, of the wave field
that impinges the FEM-PML boundary [24]. This methodology results in the introduction
of a bounding layer composed of elements with artificial attenuation [25]. This region aims
to replace the infinite domain with a finite dimension layer, which is capable of absorbing
the wave field and is also non-reflective. The absorbing condition is accomplished by
stretching the coordinates of the PML elements to a complex domain, leading to an artificial
increase in the wave attenuation that propagates along the PML domain [26]. The real part
of the stretching functions is introduced in order to undertake a mesh sprawl, so that the
thickness of the obtained PML domain can be equivalent to at least one wavelength of the
propagating wave, as proposed by Lopes et al. [27]. The natural and modified coordinates
are related through the following relationships:

x̃ =
∫ x

0
λx(x)dx (9)

y ˜ =
∫ y

0
λy(y)dy (10)

where λy and λx represent the stretching functions in the y and x directions, respectively.
A more detailed exposition of this procedure can be found in Lopes et al. [27].

Since the solution within the PML domain satisfies the same differential equation as in
the FEM domain, it is only necessary to change the coordinates in Equations (11) and (12).
Considering the strain matrix in the stretched domain [B∗], the stiffness [K∗] and the mass
[M∗] matrices can be defined for the PML region:

[K∗(ω)] = 2π
∫

y

∫
x

B∗T DB∗rλxλydxdy (11)
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[M∗(ω)] = 2π
∫

y

∫
x

NTρNrλxλydxdy (12)

Details on the configuration of the stretching functions can be found in Lopes et al. [27].
After assembling the matrices of the PML region with the remaining domain, the

solution can be obtained by solving the system of equations presented in Equation (13).{
([K] + [K∗(ω)])−ω2([M] + [M∗(ω)])

}
{u(ω)} = {p(ω)} (13)

Since the problem is formulated in the frequency domain, it is possible to compute
transfer functions between the response and a unitary loading condition for distinct fre-
quencies. This kind of procedure is appealing, as the response can then be scaled as a
function of the loading condition.

2.3. Impact Hammer Model and Hammer–Pile Interaction

In order to analyze the dynamic response of the ground during pile driving, the time
history of the force generated by the impact of the hammer is essential. Thus, to estimate the
pile head force, the impact hammer device and its interaction with the remaining domain
must be simulated. The system depicted in Figure 3 corresponds to a free-falling weight
(ram) that impacts the anvil on the pile head, represented as a pile cap (or helmet) and
a hammer cushion. These masses are linked by a spring and a dashpot that reproduces
the stiffness and the non-linearity and energy loss of the cushion [28]. This model was
previously proposed by Deeks and Randolph [29] and is mathematically described by the
following equations:

mr
..
ur + cc

( .
ur −

.
ua
)
+ kc(ur − ua) = 0

ma
..
ua + cc

( .
ua −

.
ur
)
+ kc(ua − ur) + kpua = 0

(14)

.
ur(0) = v0 (15)

where ma is the anvil mass, mr is the ram mass, and cc and kc are the damping coefficient
and stiffness of the cushion, respectively; kp is the dynamic stiffness of the pile, and v0 is
the impact velocity of the ram.
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When considering the pile–soil dynamic interaction, the dynamic stiffness of the pile
can be comparable to the ratio between the force applied at a point on the pile head and
its vertical displacement. This force can be represented as a Dirac delta function, which
corresponds to a large force distributed over a small time interval. This dynamic stiffness,
responsible for the dynamic coupling between the driving device and the pile–ground
system, can be computed taking into account the results obtained with the numerical model
presented in the previous section. In fact, this is given by the ratio between the unitary
load, P(w), applied to the pile head and the dynamic displacement, uz(w), determined at
the same location. Mathematically, this is translated to:

kp(w) =
P(w)

uz(w)
=

1
uz(w)

(16)

By converting Equations (14) and (15) to the frequency domain and considering a
pseudo-force whose value is equal to the modulus of the momentum transferred from
the ram to the pile, the displacement values of the ram and the anvil can be computed by
solving the following system of equations:

(−w2
[

mr 0
0 ma

]
+ iw

[
cc −cc
−cc cc

]
+

[
kc −kc
−kc kc + kp

]
)×

[
ur
ua

]
=

[
mrv0

0

]
(17)

When the ram hits the surface of the anvil, the resistance of the soil slows down the
movement of the pile and causes the ram to rebound. Since the anvil surface force is
computed by assuming a linear elastic model, tractions are generated at the moment of the
ram’s rebound. Obviously, this effect is caused by the weakness of the models, which, due
to their elastic nature, cannot represent the contact loss between bodies. In order to prevent
these tractions and, consequently, the occurrence of negative forces, the force of the anvil
surface in the time domain is truncated, as illustrated in Figure 4 for a generic case.
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The truncated anvil surface force is then converted back to the frequency domain, and
Equation (17) is recalculated, taking into account this force instead of the momentum mrv0.
Therefore, new displacements for the ram (ur) and the anvil (ua) are calculated. Afterwards,
it is possible to compute the pile head force Fp in the frequency domain through the
following equation:

Fp(w) = ua(w) ∗ kp(w) (18)

After computing the load applied to the pile head, the dynamic response of the
system is obtained in the frequency domain by multiplying the transfer function, which is
computed through the axisymmetric FEM-PML approach by the loading function Fp. The
results in the time domain are then obtained by an inverse Fourier transform operation.
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3. Characterization of the Construction Site

For the experimental validation of the numerical approach exposed, an experimental
test site was selected and implemented near the center of Porto, Portugal. This test site
comprised a 10-story concrete building founded on piles, under construction at the time of
the experimental campaigns, as can be seen in the general view presented in Figure 5.

According to the geological–geotechnical report that supports the building design, a
total of seven boreholes were made, with SPT tests spaced at a depth of 1.50 m. Moreover,
soil samples were collected to perform some laboratory tests for the classification and
identification of the soil. Essentially, the site geologically consists of granite residual soil,
with increasing stiffness and strength with increasing depth, as can be seen in Figure 3. The
groundwater table was found at approximately 8 m deep (from the base of the excavation).
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Despite the relevance of the results provided by the geological–geotechnical report, the
information is more qualitative than quantitative for problems involving the propagation
of seismic waves. Thus, non-intrusive geophysical tests were performed during the initial
phase of construction: Seismic Refraction Testes and Spectral Analysis of Surface Waves
(SASW) tests. These geophysical tests include an experimental component as well as a
numerical procedure. The experimental part consists of applying an impulse force to
the ground surface and recording the transient signal using accelerometers placed along
a straight line (1 m interval) beginning in the location of the impulse, as schematically
represented in Figure 6. The exact location of the sensors can be found in Figure 6 (it
is the same experimental setup used for the low-strain test). This alignment comprises,
approximately, the geological–geotechnical profile presented in Figure 5b).
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From the seismic refraction tests, the velocity of the P-waves is directly obtained from
the time domain analysis of the results recorded for each position, and the velocity of
the S-waves is obtained by an inversion procedure, taking into account the experimental
P-SV dispersion relationship shown in Figure 3. Additional details on the mathematical
formulation can be found in Degrande et al. [30].
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The obtained S and P-waves profiles are presented in Figure 7. The laboratory char-
acterization of the soil indicates a mass density close to 1900 kg/m3. As expected, a large
increase in the P-wave velocity occurred at the depth of the groundwater table.
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Figure 7. Dynamic properties of the soil along the depth: (a) S-wave velocity profile; (b) P-wave
velocity profile.

Concerning the foundations of the building, a total of 160 quadrangular piles were
designed with two distinct sections: 350 × 350 mm and 400 × 400 mm (see Figure 3). These
piles were made of precast concrete (Young modulus of around 30 GPa and mass density
of 2500 kg/m3). A hysteretic damping factor equal to 0.01 was considered for the pile and
the value of 0.20 was assumed for the Poisson’s ratio. The piles had a total length varying
from 8 to 15 m.

4. Experimental Validation of the Axisymmetric FEM-PML Approach in
Low-Strain Conditions
4.1. Experimental Setup

Pursuing the aim of the experimental validation of the numerical approach exposed
in Section 2, a low-strain test was performed. This test consisted of applying an impulse
force on the pile head (see example in Figure 8) previously installed in the ground (section
of 350 mm × 350 mm, total length and penetration depth of 12 m) using an instrumented
hammer (ICP® Impact Hammer Model 086D50), and the transient signal was recorded
using unidirectional accelerometers with reference PCB603C01, with a measurement range
of ±0.5 g and sensitivity of 10 V/g, placed in a straight line starting from the location of the
pile. A total of 50 measurement points with intervals of 1 m were used. The collected signals
(the ground response data and the applied load) were conditioned by an electronic system
composed of a laptop connected to an acquisition system, with reference NI CDAQ-9172.
A sampling rate of 2048 Hz was considered.
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Due to the limited instruments available, the measurement was conducted five differ-
ent times with 10 sensors per measurement. The results were then compatibilized during
post-processing. A general view of the location of the sensors at the test site can be seen
in Figure 9 (the location of the accelerometers is represented by the red dots: the interval
between two consecutive points is equal to 1 m). Additionally, the piles already installed at
the time of the test are represented by the color blue.
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Figure 9. Experimental setup used for low-strain test.

From the recorded results, a transfer function between the free-field response (particle
velocity) (channel n) and the applied impulse (channel m) can be computed in the frequency–
space domain. To minimize noise errors, a high number of impacts (N = 75) was considered,
and the average transfer function between the receiver and the source, Ĥmn(ω, r), was
computed using:

Ĥmn(ω, r) =
Ŝnm

Ŝmm
(19)

where

Ŝnm(ω) =
1
N

N

∑
i=1

x̂i
m(ω) x̂i∗

n (ω) (20)

and ω is the circular frequency, r is the distance between the receiver and the source, x̂i
m

is the signal in the frequency domain recorded in channel m for impact i, and x̂i∗
n is the

complex conjugate of x̂i
n.

4.2. Numerical Considerations

In terms of numerical analysis, an FE-PML mesh with 48,116 triangular elements
with six nodes (total number of nodes—96,969) was used to discretize the pile–ground
medium (cross-section of 50 m × 25 m). This corresponds to an optimized mesh, which is
the dimension of the discretized cross-section conditioned by the maximum distance of
the experimental results to simulate. In terms of the finite elements’ size, it is considered
that the maximum dimension of the finite elements must be compatible with the small-
est wavelength to be simulated, and the rule normally followed points to a maximum
dimension of the elements in the order of 1/6 of the smallest wavelength. According to the
geotechnical characterization, the elastodynamic properties of the ground are expressed in
Table 1, where the variable h stands for the thickness of the layers.
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Table 1. Elastodynamic properties of the pile–ground system (E—Young’s modulus; ν—Poisson’s
ratio; ρ—mass density; ξ—hysteretic damping factor).

Element h (m) E (MPa) ν (-) ρ (kg/m3) ξ (%)

Soil

2 154 0.25

1900

5

6 251 0.25
2.55 620 0.49

inf 2200 0.49

Pile L = 12 m 30,000 0.20 2500 1

Considering the axisymmetric conditions, the problem was solved as 2D, where the
axis of the pile centerline matched the axisymmetric axis. The PML layers (1 m thick) were
bounding the FEM region, as shown in Figure 10. This model was then used to compute
the numerical transfer function between the response on the surface of the ground and the
dynamic load imposed on the pile head.
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Figure 10. FE–PML mesh adapted to model the pile–ground system.

Additionally, for a better visualization of the data in the time domain, the experimental
and numerical transfer functions were multiplied by the frequency spectrum of a Ricker
pulse [31]:

Fsynt(t) =

[
2
(

π(t− ts)

TR

)2
]

e−(
π(t−ts)

TR
)

2

(21)

where the time shift and the characteristic period assume ts = 0.05 and TR = 0.03, respec-
tively. The time history and the frequency content of the considered Ricker pulse are shown
in Figure 11.

4.3. Comparison between Experimental and Numerical Results

The results obtained in the experimental field and in the numerical model were
then compared. Given the uncertainties regarding the material damping of the soil, the
numerical simulation comprises two values for this parameter: ξ1 = 0.01 and ξ2 = 0.05.
According to the parametric studies performed, the real value of soil damping is included
in this range. A damping ratio equal to 5% for the first layer and a value of 2.5% for
the remaining layers seems to be a reasonable estimate. The experimental results were
compared with the envelope provided by the numerical simulations. Figure 12 presents
the comparison in terms of peak particle velocity (PPV) as a function of the distance from
the pile center.
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Figure 11. Ricker pulse: (a) time history; (b) frequency content.
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Figure 12. Peak particle velocity versus distance from the pile due to Ricker pulse: experimental
(blue line) vs numerical results (red line—ξ = 0.05 ( f irst layer); 0.025 (remaining layers); upper
bound—ξ1 = 0.01; lower bound—ξ2 = 0.05).

The parametric studies emphasize the relevant influence of the material damping
of the soil on the dynamic response of the ground, with a relatively constant but wide
shaded zone between the limit curves. Despite the uncertainty related to this factor, the
line associated with the experimental measurements corresponds to an intermediate case
in relation to the predicted numerical envelope. In fact, there is a remarkable agreement
between the results across the entire distance. It should be noted that this validation
comprises distances up to 50 m from the pile.

Moving on to a more detailed analysis, Figure 13 presents the comparison of the
experimental and numerical results in terms of time records and the spectrum of vertical
vibration velocities for five different observation points: 10, 20, 30, 40, and 50 m.

In general, there is a satisfactory agreement between the experimental and numerical
results. However, as expected, the correspondence between them was greater for the
observation points closer to the source. When the observation point was far from the
source of impact, some discrepancies occurred. For this occurrence, the volume of soil
involved in the response can be identified as an additional factor of uncertainty in the
numerical prediction process. In such great distances, effects such as soil inhomogeneity,
especially in residual soils, are likely to occur and are not easy to include in a numerical
analysis, which justifies the differences between the numerical and experimental results.
Notwithstanding, the present numerical model is capable of simulating the main features
of the addressed problem.
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Figure 13. Experimental velocities of vertical vibration measured at different distances from the pile
compared to the numerical prediction for a material damping ratio equal to 0.025: (a) 10 m; (b) 20 m;
(c) 30 m; (d) 40 m; (e) 50 m (left: time history; right: frequency content).
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5. Is Linear Modeling Reasonable for Predicting Vibrations Induced by Pile Driving?

As previously stated, a low dynamic loading was considered, and the analysis pre-
sented assumed an elastic and linear soil behavior. However, pile driving operations
induce levels of soil strain greater than the compatible elastic limit, as can be seen in
Figure 14 [32]. Therefore, the linear approach, assuming low-strain elastic properties of the
soil, is usually only acceptable for strains below 10−4 (depending on the type of soil and
the confining stress).
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Figure 14. Hypothetical soil behavior zones near a driven pile.

Thus, this approach is a simplification of the real behavior of soils, which is highly
dependent on the level of induced strain. A typical relationship between secant shear
stiffness (G) and damping with shear strain (γ) is presented in Figure 15 [33]. As is well
known, the secant shear modulus decreases with induced shear strain, and the opposite
occurs with damping.
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Aiming at fulfilling the soil dynamic response in the field of representative levels of
strain, an equivalent linear analysis can then be integrated into the modeling approach.
Therefore, the effects of the non-linear behavior of the soil can be incorporated. This
technique addresses an iterative method that compensates for the inelastic behavior by
adjusting the parameters of the elastic material for the significant strain levels. The accu-
rate modeling of stiffness degradation with strain is a key feature of the success of this
iterative technique.
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6. Conclusions

This work presents and explores a properly characterized experimental test site where
a low-strain dynamic test was performed. Free-field vibrations due to hammer impact on
a driven pile were investigated. These experiments were essential for the validation of a
proposed dynamic numerical model for the simulation of the pile–ground system. In this
model, formulated under axisymmetric conditions, the finite element method is coupled to
perfectly matched layers to avoid spurious reflections in the truncation boundaries of the
domain. The experimental results were compared with those predicted by the numerical
model. The main conclusions are summarized below:

(i) Given the uncertainties regarding the material damping of the soil, a parametric
study was performed, allowing to discuss the relevant influence of this parameter
on the dynamic response of the ground and finding an optimized value that fits the
experimental results;

(ii) The comparison between the experimental and numerical results shows a very satis-
factory agreement. This general comment is valid not only in terms of the maximum
levels of vibration but also in the frequency range of the response;

(iii) Given the results obtained, the proposed numerical model can be used in the pre-
diction of ground-borne vibrations for situations where low-strain deformations
are expected.

As a final note, the previous studies were conducted assuming a linear behavior of
the soil. To predict the vibrations of the ground resulting from impact pile driving, further
analysis should comprise the non-linearity effects in the ground simulation. This condition
can be easily incorporated into the proposed numerical methodology through an iterative
method that compensates for the inelastic behavior by adjusting the elastic properties
according to the strain levels observed. The application of the equivalent linear approach
in this context will be presented in a subsequent paper by the authors.
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