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Abstract: Shockmounts in naval applications are used to mount technical equipment onto the
structure of naval vessels. The insulating effect against mechanical shock is important here, as
it can excite the structure in the event of underwater explosions and otherwise cause damage to
the equipment. Although knowledge of the dynamic properties of shockmounts is important to
naval architects, the dynamic force-displacement characteristics of shockmounts are often tested and
measured statically and/or in the harmonic field. Recently, an inertia-based method and a dynamic
model for measuring the dynamic force-displacement characteristics of shockmounts was described.
This paper presents a full description of a testbench for implementing this method. The testbench
incorporates a drop table for excitation. The proposed setup can be configured for measuring the
dynamic characteristics of elastomer and wire rope shockmounts, with shock loads in compression,
tension, shear and roll directions. The advanced Kelvin–Voigt model for shockmounts is applied,
showing that the dynamic force-displacement characteristics measured with this setup are qualified
to generate model parameters for further use.

Keywords: shock isolator; wire rope shockmount; elastomer shockmount; dynamic force-displacement
characteristics

1. Introduction

Shockmounts, which are used to isolate sensitive equipment on board of a ship from
mechanical shock excitation, have dissipative and elastic properties. In the event of an
underwater explosion, the shock energy transmitted by the ship’s structure is stored in
the elastically deformed shockmount and released over a time period longer than the
original shock event [1]. Energy loss due to damping in the shockmount results in reduced
excitation, acceleration, as well as deflection of the equipment.

In the context of naval vessels, understanding the dynamic properties of shockmounts
is essential for designing applications for enhancing the safety of ship and onboard equip-
ment. Suitable models of shockmounts which reflect the dynamic behavior are necessary.
In this regard, many different aspects have been investigated.

Recent research topics in this field range from shock wave propagation and damage
effects on the structure, over material properties regarding blast resistance, shock trans-
mittance and damping characteristics, to the influence of environmental conditions and
improving shockmount design [2–9].

Even in naval applications, with the highly dynamic nature of shock events, force-
displacement characteristics are considered that are usually generated by slow spring
testing machines. The relevant DIN standards for elastomer shockmounts and wire rope
shockmounts [10,11] refer to regulations from the automotive and railway areas.

Since the requirements for shock safety in naval applications are higher than in auto-
motive fields, it is remarkable that the literature reveals no further research activities on
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measuring the dynamic characteristics of shockmounts. Therefore, the authors recently
published a comprehensive method for measuring the dynamic characteristics of wire rope
and elastomer shockmounts [12], based on an approach suggested by the NATO Naval
Armaments Group NG6/SG7 from the year 2001 [13]. Especially in naval applications, this
dynamic method offers the advantage that the yielded characteristics rely on measurements
on shock-excited rather than slowly moving objects. Based on the work presented there, a
dynamic model of both wire rope and elastomer shockmounts, the advanced Kelvin–Voigt
model, was developed [14], that describes the dynamic behavior of shockmounts and suits
naval safety applications well.

In this paper, a detailed description of a testbench for dynamic measurements of
force-displacement characteristics is presented. The proposed testbench is the consequent
implementation of the method described in [12]. Furthermore, the application of the
advanced Kelvin–Voigt model to different shockmount types is reported here. The model
parameters for 18 exemplary shockmount-load configurations are presented, allowing for
further use of the model in simulation programs.

2. Materials and Methods
2.1. Investigated Shockmounts

Typical shockmount types used in boats and ships are elastomer shockmounts and
wire rope shockmounts. Both types are different in regards to geometry, material, and
damping physics. Therefore, they are well-suited to demonstrate the ability of the proposed
system to measure the characteristics of very different shockmount types.

In Figure 1, the investigated shockmount types are shown: three types of wire rope
shockmounts and three types of elastomer shockmounts. From each type, there are three
specimens. The types differ regarding their stiffness.
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Figure 1. Investigated wire rope shockmounts (a) and elastomer shockmounts (b), one of each type.

Elastomer shockmounts are named ESM XX, where XX stands for their shore hardness.
The ESM-types are: ESM 32, ESM 40, ESM 55.

Wire rope shockmounts are named WSM YYY, where YYY denotes the specified width
in mm of the unloaded shockmount. Thus, WSM 175, WSM 135, and WSM 125 are the
investigated types, sorted with respect to stiffness in ascending order. All investigated
shockmount types are listed in Table 1.

The definition of load directions for the shockmounts can be taken from Figure 2. For
rotationally symmetric elastomer shockmounts, only one direction orthogonal to compres-
sion and tension is defined. The terms compression direction, tension direction, roll direction,
and shear direction refer to the direction of the first deformation of the shockmount due to
shock impact. This also applies to the designations of testbench configurations, e.g., com-
pression configuration or compression mode.
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Table 1. Investigated shockmounts. Data taken from [15,16].

Type Manufacturer and Model
Max. Static Load

(kg)

Natural Frequency
(Hz) @ Max. Static

Load

Max. Displacement (mm) in Direction of
Tension (+)

Compression (−) Shear, Roll

ESM Willbrandt KG
SES 1500 SH32 90 5 . . . 6 ±55 ±55

ESM Willbrandt KG
SES 1500 SH40 125 5 . . . 6 ±55 ±55

ESM Willbrandt KG
SES 1500 SH55 260 5 . . . 6 ±55 ±55

WSM Willbrandt KG
CAVOFLEX H 63-146-135-175-8 22 . . . 120 6.2 . . . 6.7 +65/−100 ±86

WSM Willbrandt KG
CAVOFLEX H 63-146-110-135-8 30 . . . 150 6 . . . 6.5 +50/−82 ±65

WSM Willbrandt KG
CAVOFLEX H63-146-95-125-8 50 . . . 170 7.1 . . . 7.6 +45/−67 ±60

Vibration 2023, 6, FOR PEER REVIEW  3 
 

 

Table 1. Investigated shockmounts. Data taken from [15,16]. 

Type Manufacturer and Model 
Max. Static 

Load (kg) 

Natural Frequency 

(Hz) @ Max. Static 

Load  

Max. Displacement (mm) in Direc-

tion of 

Tension (+) Com-

pression (−) 
Shear, Roll 

ESM 
Willbrandt KG 

SES 1500 SH32 
90 5 … 6 ±55 ±55 

ESM 
Willbrandt KG 

SES 1500 SH40 
125 5 … 6 ±55 ±55 

ESM 
Willbrandt KG 

SES 1500 SH55 
260 5 … 6 ±55 ±55 

WSM 
Willbrandt KG 

CAVOFLEX H 63-146-135-175-8 
22 … 120 6.2 … 6.7 +65/−100 ±86 

WSM 
Willbrandt KG 

CAVOFLEX H 63-146-110-135-8 
30 … 150 6 … 6.5 +50/−82 ±65 

WSM 
Willbrandt KG 

CAVOFLEX H63-146-95-125-8 
50 … 170 7.1 … 7.6 +45/−67 ±60 

The definition of load directions for the shockmounts can be taken from Figure 2. For 

rotationally symmetric elastomer shockmounts, only one direction orthogonal to com-

pression and tension is defined. The terms compression direction, tension direction, roll direc-

tion, and shear direction refer to the direction of the first deformation of the shockmount 

due to shock impact. This also applies to the designations of testbench configurations, e.g., 

compression configuration or compression mode. 

 

Figure 2. Definition of load directions based on [15,16]. 

2.2. Description of the Testbench 

The basic principle of the testbench is shown in Figure 3. Its main components are 

described in detail after a short overview. A comprehensive description on statistical anal-

ysis of acquired data and error considerations can be found in [12]. 

te
n

si
o

n

co
m

p
re

ss
io

n shearroll shear

W SMW SM ESM

Figure 2. Definition of load directions based on [15,16].

2.2. Description of the Testbench

The basic principle of the testbench is shown in Figure 3. Its main components are
described in detail after a short overview. A comprehensive description on statistical
analysis of acquired data and error considerations can be found in [12].
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A vertical shock test machine is used to provide the basepoint acceleration of the
shockmount under test. The dynamically generated basepoint acceleration is a haversine-
shaped shock pulse. The specimen is mounted on the supporting structure, here the drop
table, via measuring adapters. The acceleration of the inert loading mass is measured
with an accelerometer, while the displacement of the shockmount is measured by a linear
potentiometer. According to Newton’s second law, the restoring force of the shockmount is
calculated from the measured acceleration.

2.2.1. Shock Test Machine

The dynamic shock generation is performed with a free-fall shock test system by the
manufacturer, Lansmont Corporation (Monterey, CA, USA), as seen in Figure 4. The specific
model is called 122 because of its square shock table with a 122 cm edge length. The system is
equipped with a high-capacity option to handle a maximum payload of 1.134 kg on the table.
It is mounted on a seismic reaction base, consisting of a heavy steel block that is connected to
the floor via airmount-inflated isolators (air springs) in each corner and four shock-absorbing
dampers on the left- and right-hand side. The resonant frequency of the seismic base is
between 2 and 3 Hz. The horizontal movement of the base is limited by alignment posts.
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Figure 4. Front view of the shock system (photo: Media Center, HSU).

The drop table is made of aluminum and weighs 635 kg. In order to mount the test
specimen, it has a 10 cm square grid hole pattern with M16 × 1.5 inserts. It is guided
by round, chrome plated, solid steel rods and can be lifted by chains with two hoist
positioning systems.

In addition to the influence of drop height, weight of table, and setup, the shock
pulse (g-level, waveform, and duration) can be shaped with devices mounted between the
table and the base. Here, a configuration with modular elastomer programmers (MEPs)
with cone-shaped faces for haversine [1] shocks and a high dynamic force rating are used.
Differing from Figure 4, there are three modules mounted both on the base (2′′ thick) and
below the table (1/2′′ thick).

Figure 5 shows the performance limitations of the machine for haversine pulses with
polygons in a duration-versus-acceleration-table (DVAT). The manufacturer recommends
performing only shocks inside the outlined areas. The maximum acceleration decreases
with greater duration and load on the table. The red marks show cases for which the
machine was initially used.
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2.2.2. Displacement Measuring Devices

For measuring the deformation d of the shockmount under test, linear potentiometers
of the manufacturer, WayCon Positionsmesstechnik GmbH (Taufkirchen, Germany), type
LZW2-A-250-10M, are used, as seen in Figure 6.
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The measurement principle of linear potentiometers is based on a potential divider.
The linear potentiometer contains a sliding contact running on a resistance track. This
sliding contact is fitted with a piston rod which is fixed to the measuring object. As
resistance changes proportionally to the actual traversed path by the sliding contact, the
distance can be determined by the change in output voltage.

Key features of the used type are:

• Measurement range 250 mm.
• Maximum power supply 60 V
• Displacement speed ≤ 10 m/s
• Shock resistance 50 g, 11 ms
• Up to ± 13◦ tilt

For supplying voltage to the linear potentiometers, signal generators of the data
acquisition system with 10 V DC are used. The sensitivity, s, is the ratio between supply
voltage, U, and maximum displacement, dmax:

s =
U

dmax
=

10 V
0.258 m

= 38.7V/m (1)

2.2.3. Acceleration Sensors

To measure all necessary information about the movement of the loading mass, the
shock table, and the seismic base of the shock system, the sensors must cover a wide
measuring range and frequency span.

During the drop of the table, the shockmounts underly zero gravity, represented by
a constant acceleration that is 1 g smaller than the initial condition with the table at rest.
This can only be captured with sensors achieving true DC response. Therefore, MEMS DC
accelerometers of the 3710 series (manufacturer: PCB Piezotronics, New York, NY, USA)



Vibration 2024, 7 7

were chosen. These come in a triaxial (type 3713) and a uniaxial (type 3711) design [19], as
seen in Figure 7.
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Figure 7. Shock sensors used in the testbench: (a) triaxial [20]; (b) uniaxial [21].

Both designs are specified with a frequency range (±5%) from 0 to 1500 Hz. Due
to the expected high accelerations under shock (over 100 g), the version F11200G with a
measurement range of ±200 g peak (sensitivity 6.75 mV/g) was selected [22].

The triaxial type 3713 is mounted with a stud on a prepared thread on the loading
mass. The uniaxial type 3711 is screwed to a clip for adhesive mounting, which is fixed with
hbm (Hottinger Baldwin Messtechnik) X60 cold curing glue to the supporting structure in
order to measure the basepoint acceleration.

The sensors have built-in electronics that are powered by a Model 478A05 three-
channel signal conditioner (manufacturer: PCB Piezotronics).

2.2.4. Improved Guiding System and Loading Mass

In order to prevent the shockmount-mass system from tilting and to establish attach-
ment points for the displacement measuring devices, a guiding system is necessary, as seen
in Figure 8. The system consists basically of two steel rods, which can be mounted to the
drop table, and a horizontal traverse. The traverse is made of aluminum and is connected
to the rods by four roller bearings, two at each rod. Also, there are brackets attached to
each rod, which fix the linear potentiometers to the system. The piston rods of the linear
potentiometers are screwed into threaded holes in the traverse.
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Guided by the rods, the traverse can move vertically up and down, as indicated by
the double-headed arrow in Figure 8.

The traverse is fitted with threaded holes for attaching the loading mass, the guide
adapters, and—in some cases—the wire rope shockmounts (see Section 2.2.5).

In order to meet the required displacements with all shockmount types and load
directions, the loading mass has a modular design. It consists of stackable single mass
elements with an identical hole pattern and cross-section. With varying thickness, mass
elements of 1 kg, 2 kg, and 5 kg are used. Figure 9 shows a 5 kg element.
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elements, e.g., accelerometer.

This guiding system has been improved with respect to the system used in the original
work reported in [12]. It is sturdier, more versatile, and easier to handle when changing
the specimen is necessary. The basic principle is the same; however, the original roller
bearings were replaced by plain bearing bushes. For this reason, the dynamic model and
some equations have to be adapted. Friction in the bearings can be neglected, and there is
no moment of inertia in the bearings anymore.

Thus, the quantities, mR and ∆mR, from Equations (7), (15) and (28) in [1], which
represent the mass of the rollers in the bearing and its maximum uncertainty, are set to zero.
The quantity, mp, in these equations includes the loading mass as well as the mass of the
horizontal traverse and of the bearings.

2.2.5. Measuring Adapters

In order to establish measurement setups that allow for the load directions of both
shockmount types as defined in Figure 2, several measurement adapters were designed.
They were manufactured by HSU (Helmut Schmidt University) central workshop. All
seven possible configurations are shown for clarity in Section 2.2.6.

Basepoint adapters (Figure 10) are used to mount the shockmount to the drop table
and therefore transmit the shock pulse. Guide adapters (Figure 11), however, connect the
shockmount to the traverse of the guiding system. Therefore, they are on the shock-isolated
side of the system.

Wire rope shockmounts in pressure-, tension-, and roll-configurations do not need a
guide adapter since they are connected directly to the traverse of the guiding system.

The adapters are mainly drilling and milling parts and, with two exceptions, are made
of steel. The basepoint adapter for tension configuration (Figure 10b) has a steel base, while
the walls and the lid are made from high-strength aluminum. The guide adapter for wire
rope shockmounts in shear configuration (Figure 11c) is made of aluminum in order to
reduce weight.
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Figure 11. Guide adapters for mounting the shockmount to the guiding system: (a) for elastomer 
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2.2.6. Complete Setup 

In this section, for every possible configuration, a sketch and a picture of implemen-

tation are given: 

• Elastomer shockmount in pressure configuration, see Figures 12 and 13 

• Wire rope shockmount in pressure configuration, see Figures 14 and 15 

• Elastomer shockmount in tension configuration, see Figures 16 and 17 

• Wire rope shockmount in tension configuration, see Figures 18 and 19 

Figure 10. Basepoint adapters for mounting the shockmount to the drop table for both elastomer and
wire rope shockmounts: (a) for configurations in compression mode; (b) for configurations in tension
mode; (c) for configurations in shear and roll mode.
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Figure 11. Guide adapters for mounting the shockmount to the guiding system: (a) for elastomer
shockmounts in compression and tension configurations; (b) for elastomer shockmounts in shear
configuration; (c) for wire rope shockmounts in shear configuration.

2.2.6. Complete Setup

In this section, for every possible configuration, a sketch and a picture of implementa-
tion are given:

• Elastomer shockmount in pressure configuration, see Figures 12 and 13
• Wire rope shockmount in pressure configuration, see Figures 14 and 15
• Elastomer shockmount in tension configuration, see Figures 16 and 17
• Wire rope shockmount in tension configuration, see Figures 18 and 19
• Elastomer shockmounts in shear configuration, see Figures 20 and 21
• Wire rope shockmounts in roll configuration, see Figures 22 and 23
• Wire rope shockmounts in shear configuration, see Figures 24 and 25
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Figure 14. Sketch of wire rope shockmount in pressure configuration. 

 

Figure 15. Picture of wire rope shockmount in pressure configuration. 
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Figure 16. Sketch of elastomer shockmount in tension configuration. 

 

Figure 17. Picture of elastomer shockmount in tension configuration. 
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Figure 17. Picture of elastomer shockmount in tension configuration. Figure 17. Picture of elastomer shockmount in tension configuration.
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Figure 18. Sketch of wire rope shockmount in tension configuration. 

 

Figure 19. Picture of wire rope shockmount in tension configuration. 

Figure 18. Sketch of wire rope shockmount in tension configuration.
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Figure 19. Picture of wire rope shockmount in tension configuration. Figure 19. Picture of wire rope shockmount in tension configuration.



Vibration 2024, 7 14Vibration 2023, 6, FOR PEER REVIEW  15 
 

 

 

Figure 20. Sketch of elastomer shockmounts in shear configuration. 

 

Figure 21. Picture of elastomer shockmounts in shear configuration. 

Figure 20. Sketch of elastomer shockmounts in shear configuration.

Vibration 2023, 6, FOR PEER REVIEW  15 
 

 

 

Figure 20. Sketch of elastomer shockmounts in shear configuration. 

 

Figure 21. Picture of elastomer shockmounts in shear configuration. 
Figure 21. Picture of elastomer shockmounts in shear configuration.
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Figure 22. Sketch of wire rope shockmounts in roll configuration. 

 

Figure 23. Picture of wire rope shockmounts in roll configuration. 

Figure 22. Sketch of wire rope shockmounts in roll configuration.
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Figure 23. Picture of wire rope shockmounts in roll configuration. Figure 23. Picture of wire rope shockmounts in roll configuration.
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Figure 24. Sketch of wire rope shockmounts in shear configuration. 

 

Figure 25. Picture of wire rope shockmounts in shear configuration. 

Figure 24. Sketch of wire rope shockmounts in shear configuration.
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Vibration 2024, 7 17

For all configurations, due to the guiding system, the loading mass and the interface
of the shockmount can move only vertically, together with the connected traverse. This
is illustrated by the double-headed arrow in Figure 12 for elastomer shockmounts in
pressure configuration.

The cubic elements shown in the sketches represent the accelerometers.
For pressure configurations, as seen in Figures 13 and 15, the basepoint adapter has

to be backed in order to allow full movement of the guiding traverse according to the full
displacement of the shockmount.

2.2.7. Highspeed Camera

To monitor the shock tests, a highspeed camera by the manufacturer, Phantom Ametek
(Wayne, NJ, USA), type VEO 710S, is used together with 2 LED spots, as seen in Figure 26.
Even though the camera is capable of acquiring videos with up to 690,000 frames per
second at lower resolution, here, the sample rate is chosen to be 3000 frames per second,
with a resolution of 1280 × 800 pixels. This is sufficient to capture the exact moment of
distinct states, such as maximum negative and positive displacement.
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Figure 26. Highspeed camera with LED spots.

2.2.8. Data Acquisition

For acquiring time data of the sensor signals, LAN-XI modules by the manufacturer,
Brüel & Kjær (Nærum, Denmark), are used. The measured data are analyzed with the
belonging software, PULSE LabShop, in version 25.

Distributed over three modules, nine signals are measured, as listed in Table 2.

Table 2. Measured signals.

Signal Name Sensor Type Position Purpose

a1_z Triaxial MEMS accelerometer Loading mass Measuring vertical acceleration of upper part

a2_z Uniaxial MEMS accelerometer Basepoint Measuring vertical acceleration of lower part

aBase_z Uniaxial MEMS accelerometer Seismic base Measuring vertical acceleration of base

deltaA Linear potentiometer Between rod and traverse of
guide system

Measuring displacement between basepoint
and loading mass

deltaB Linear potentiometer Between rod and traverse of
guide system

Measuring displacement between basepoint
and loading mass
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Data acquisition was carried out with an FFT Analyzer, recording time blocks and
computing spectra. Along with FFT setup parameters for a frequency span from 0 Hz
to 3.2 kHz, the analog signals were digitized with a sample frequency 2.56 times higher,
leading to a sample time of 122.07 µs. Along with a spectral resolution of 6400 lines, time
blocks are 2 s long. Recording was triggered with an instrument trigger signal (InstTrig),
generated by the shock system, beginning 0.6 s before trigger signal starts.

In Figure 27, acceleration signals are shown exemplarily for acceleration sensors on
the basepoint (a2_z) and seismic base of the shock test machine to show a typical run. The
data come from a measurement with a wire rope shockmount under compression with
a drop height of 65 cm. Beginning shortly after 0.2 s, the table drops, and the value of
the accelerometer, a2_z, also does, staying at a lower level. After 0.6 s, the accelerometer
signals measuring in the vertical direction have a short peak, followed by a decay with
high-frequency components. The peak of the seismic base sensor is oriented opposite to
the peak of the basepoint sensor, since the elastic impact of the table to the base causes
downward movement of the seismic base.
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Figure 27. Acceleration signals.

Figure 28 shows in detail the time range before the impact. Now, the shift of basepoint
acceleration, a2_z, can be read as about −10 m/s2. The value of the sensor at the start
of the time record is not zero or 1 g, due to an offset in the signal conditioner. Signal
a1_z (mounted on loading mass) has a shift in the positive direction because it is inverted.
Signal inversion is conducted so that negative acceleration and, therefore, negative force
values are obtained at the compression of the shockmount, which is the convention in



Vibration 2024, 7 19

force-displacement characteristics. Thus, the results will be presented in accordance with
the sign convention.
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Figure 28. Closeup of acceleration signals before impact.

The value of the sensor at the base rises a little due to the relaxing of its air spring
support under lower overall weight. It also can be seen that the noise of sensors a2_z and
aBase_z is lower: these signals are measured with uniaxial accelerometers, where a1_z is
a triaxial one, having higher inherent noise. Since measured data get lowpass-filtered for
further use [12], this noise is reduced to a level where all relevant features of motion can
be evaluated.

The programmers of the table and base begin to touch at t = 0.613 s, as seen in Figure 29.
The basepoint sensor has a haversine shape with a length of about 12 ms. The shock pulse
is followed immediately by a high-frequency signal, which reflects the vibration modes of
the drop table.

Again, the values measured at the base oppose, as it is pushed downwards by the
impact of the table.

The acceleration signal, a1_z, measured on the loading mass is a highly damped,
nonlinear oscillation without a distinct time period, as seen in Figure 30. The data of linear
potentiometers for measuring displacement of the shockmounts follow the acceleration at
the loading mass, but it is smoother with less high-frequency components, as can be seen
in Figure 31.
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Both curves in Figure 31, acceleration of loading mass and displacement of the shock-
mount, are the basis for calculating the dynamic force-displacement characteristics, as
described in detail in [12].

2.2.9. Reproducibility

The shock conditions are highly reproducible, as can be seen in Figure 32.
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The shapes of all 10 runs shown in the figure are nearly identical. The time shift of the
basepoint excitation reveals the varying trigger times. Since the coherent data acquisition
of loading mass acceleration and displacement is started by the same trigger, the inaccuracy
of the trigger signal has no effect on the accuracy of the measurements.

The absolute deviation between the largest and the smallest overall maximal values
is under 1.5%. The maxima have a tendency of rising with the run number, as seen in
Figure 33.
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Figure 33. Overall maximal acceleration with 10 runs and fixed parameters.

2.3. Advanced Kelvin–Voigt Model and Parameter Identification

One of the use-cases for the described setup is to generate force-displacement data of
the shockmounts, from which parameters for a simulation model can be derived.

The advanced Kelvin–Voigt model, as introduced in [14], has good agreement for
elastomer shockmounts and—if the parameters are properly determined—within the first
two cycles of decay for wire rope shockmounts. Because this is the regime of interest
in terms of shock response, this model is suitable to describe the dynamic behavior of
shockmounts sufficiently.

The advanced Kelvin–Voigt model is a basic model describing the shockmount as
a nonlinear spring with stiffness parameters, ki, in parallel to a viscous damper with a
constant damping coefficient, b. The relation between restoring force, F, and displacement,
d, is given by:

F
(

d,
.
d
)
= b

.
d +

5

∑
i=0

ki di. (2)

For simulation purposes, the equation of motion for the displacement, d, of the shock-
mount is:

..
d +

b
M

.
d +

1
M

5

∑
i=0

ki di = −
(

g +
..
z2
)
, (3)

where M is the inert loading mass that deforms the shockmount.
..
z2 is the basepoint

acceleration and can be taken from the measurement.
The damping and stiffness parameters, n, ki, of the model are identified with regard

to the properties of a single-mass oscillator (of mass M).
Figure 34 shows exemplary experimental force-displacement-hysteresis behavior for

the first cycle of oscillation in a measurement for a wire rope shockmount (drop height
h = 0.65 m). The force curve, F down (blue), proceeds from the maximum tension to the
maximum compression data point and Fup (red), vice versa. The force curve, Fmean, in
Figure 33 is the mean value result of F down and Fup. It represents the conservative,
nonlinear force-displacement characteristics of the shockmount. The enclosed area is a
measure of the amount of energy dissipation caused by damping [12].
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Figure 34. Exemplary force-displacement diagram of a wire rope shockmount.

2.3.1. Non-Linear Spring Force

The measured force-displacement characteristics curve can be interpolated by the 5th
order polynomial in (2) with a coefficient of determination, R2 = 0.9945. The stiffness
coefficients are listed in Table 3. The corresponding force curve (without damping) is the
violet line in Figure 34.

Table 3. Stiffness coefficients of the nonlinear spring force.

Parameter k0 (N) k1 (N/m) k2 (N/m2) k3 (N/m3) k4 (N/m4) k5 (N/m5)

Value 2.113 5.595 × 103 −1.912 × 104 −4.801 × 105 2.293 × 107 3.075 × 108

2.3.2. Damping Coefficient

For viscous damping, the damping coefficient, b, can be substituted by the dimension-
less equivalent damping ratio, ζ, with:

b
M

= 2ζ ω0. (4)

With the undamped circular eigenfrequency ω0 =
√

keq/M, this equation can be
modified to:

b = 2 ζ
√

keq M. (5)

The stiffness coefficient, keq, and the viscous damping ratio, ζ, are derived from
experimental results.

For calculating the damping ratio out of force-displacement hysteresis, Equation (6)
can be used [12]:

ζ =
2
π

∆W
∆d ∆F

(6)

There, ∆d and ∆F are the span of the measured displacement and the measured force
values. ∆W is the amount of energy dissipation caused by damping. It is represented by
the enclosed area of the hysteresis loop (Figure 34). This energy is computed numerically
in MATLAB by stepwise trapezoid area procedure.
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From Figure 31, it is obvious that damping in wire rope shockmounts is not, in fact,
constant. Therefore, the damping coefficient, b, is valid only in the range of the first cycle,
from which the damping ratio is obtained. This is the reason why the advanced Kelvin–
Voigt model yields good results only in the first few cycles for wire rope shockmounts.

For the equivalent stiffness coefficient, keq, a linear approach is chosen with the purpose
of calculating the constant damping coefficient in Equation (5). It is obtained by:

keq =
∆F
∆d

. (7)

With Equations (6) and (7), all necessary quantities are known to calculate the damping
coefficient. The parameters are listed in Table 4.

Table 4. Parameters of mass, equivalent stiffness, and damping.

Parameter ζeq (1) keq (N/m) M (kg) b (Ns/m)

Value 5.007 × 10−2 1.284 × 104 3.449 21.05

2.4. Simulation
2.4.1. State Vectors

The dynamic model (3) is implemented in MATLAB to solve ordinary differential
equation problems (ODEs) in the time domain. Since a nonlinear term is included with
the 5th order polynomial spring force, an analytical solution for the ODE is difficult to
find. Alternatively, a numerical procedure for solving initial value problems can be utilized
here [23]. In general, ODEs of second order (or more) have to be interlaced in several state
vectors of the first order.

Exemplarily, the state vector

x =

[
d
.
d

]
(8)

contains the displacement, d, and velocity,
.
d, while its time derivative

.
x =

[ .
d
..
d

]
=


.
d

− b
M

.
d − 1

M

5
∑

i=0
ki di −

(
g +

..
z2
)
 (9)

is consequently structured in the velocity,
.

d, and acceleration,
..
d, corresponding to (3). By

proposing an initial state vector x(0) =
[
d(0),

.
d(0)

]
, the solver system is able to compute

the derived state vector,
.
x, as a slope to determine the following state vectors stepwise.

Therefore, this state representation is well adapted to the dynamic problem.

2.4.2. Basepoint Excitation

The impact on the dynamic model is given by base point excitation, which is a dataset
of the acceleration measurements,

..
z2, of the drop table. The main excitation happens in the

time span of 0.612 s ≤ t ≤ 0.625 s s, while the acceleration peak occurs at t = 0.6188 s with
a magnitude of

..
z2 = 884.9 m/s2, as seen in Figure 35.

Immediately after this haversine excitation, the brake system of the shock testbench is
activated, and the acceleration rapidly tends towards

..
z2 ≈ 0m/s2.

It is important to mention that the amount and step size of and between the data points
should match with the number and increment of the state vectors of the numerical solution.
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2.4.3. Numerical ODE45 Solver in MATLAB

In the following section, the main proceedings of programming the simulation in
MATLAB are explained by means of Figure 36.
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First, the initial value problem requires a start state vector, x_start. In this case, it can be
assumed that the displacement as well as the velocity of the SM at t = 0 s (shortly before the
shock impact) are neglectably small. Nevertheless, for consistent handling, measurement
data can be read in here. Second, the time vector, t_span, for the numerical solution is
chosen to coincide with the length of the time vector related to the dataset,

[
t2pp,

..
z2
]
, of

the base point acceleration measurements. Third, the ODE45-solver for the simulation
is formulated. It is based on the numerical Runge–Kutta method of 4th order with an
estimated error of 5th order. Beginning from x_start, the stepsize within every iteration
shall be taken from the increment of t_span.

Finally, the time-derived state vector of (9) shall be declared in a function, called odefun
here, which communicates with the ODE45-solver. It is fed by a list of parameters, i.e., the
damping coefficient b, the stiffness coefficients p = [k5, k4, k3, k2, k1, k0] (Tables 3 and 4),
and the dataset

[
t2pp,

..
z2
]
. Within every iteration, the actual state vector of (8) is requested

to compute the instantaneous spring force from the nonlinear function, F_k. Furthermore,
the actual base point acceleration, a2 (scalar format), shall be taken from the dataset. This is
realized by the interp1 function, taking the interpolated value of z2pp at every time point, t,
within t2pp.

All of the above-mentioned quantities are utilized to compute the time-derivative of
the state vector of (9) for every iteration step in the ODE45 algorithm. The solution consists
of multiple data pairs in the form of the state vector, x1 = [d,

.
d].

3. Results and Discussion
3.1. Testbench

A series of about 2000 measurements with all combinations of shockmount types and
loading orientations and drop heights was conducted. The obtained datasets are useful to
generate dynamic force-displacement characteristics, as reported in [12].

They are also sufficient to gain parameters for the advanced Kelvin–Voigt model, as shown
in the following subsections. The measurements and the parameters obtained from them
confirm the robustness of the advanced Kelvin–Voigt model within the described limitations.

Despite the very good overall usability of the testbench, several aspects should
be mentioned:

1. The horizontal traverse of the guiding system, including the housings of the plain
bearing bushes, contribute to the loading mass that loads the shockmount. For very
soft shockmounts, such as the WSM 175 in shear or roll configurations, almost no
additional loading mass is required to displace the shockmount dynamically. In these
cases, the mass of the traverse should be as small as possible. Nevertheless, the
stiffness of the traverse must be high enough to prevent the bearing housings from
oscillating around the middle of the traverse.

2. Even if the linear potentiometers in the proposed setup are attached to the guiding
traverse, the displacement could be measured, for example, by non-contact evaluation
of highspeed camera images. However, the guiding system is required to prevent
shockmount-mass combination from tilting. This is especially true for configurations
with wire rope shockmounts, which usually show an asymmetric construction, or for
configurations with a high center of gravity when using multiple stacked mass modules.

3. The linear potentiometers for measuring the displacement have a specified shock
capability of only 50 g at 11 ms. In the conducted measurement series, basepoint
excitations up to 165 g at 10 ms were applied. As long as the potentiometers were
loaded axial to the piston rod, they showed good usability without any failure.

4. The intention for using triaxial accelerometers for measuring acceleration of the
loading mass was to observe if there is motion of the loading mass in the two directions
orthogonally to excitation. Evaluation of measurements showed that there is no
significant motion in these directions.
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Finally, during the performance of the measurement series, it turned out that the
described testbench is very well suited for measuring the force-displacement characteristics
for wire rope shockmounts as well as for elastomer shockmounts. If shockmount models
other than those used here are to be measured, the measuring adapters must be fitted to
the specific shockmount type.

3.2. Exemplary Simulation

In this section, the results from the simulation for the exemplary wire rope shockmount,
as described in Section 2.4, are presented and compared to those of the measurements. In
Figure 37, the time diagram of the relative displacement is introduced.
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Figure 37. Simulation and measurement results of the relative displacement time diagram.

The simulation results are in good agreement with the measurement results for the first
two cycles. Beyond this, as expected, the simulation results reveal a longer decay process
with nine cycles of oscillation due to the assumption of a velocity-dependent quasi-viscous
damping ratio. In the measurement results, the dry friction damping influence of the
wire rope shockmount is more effective, so the decay process takes only three cycles of
oscillation, while a static displacement of 9 mm remains due to adherence forces within
the shockmount.

In Figure 38, the time diagram of the relative acceleration is presented. At t = 0.6188 s,
the shock mount system reacts to the basepoint excitation of the shock table with
..
d =

..
z1 −

..
z2 = −884.9 m/s2.

Again, measurement and simulation results are in good agreement for the first two
cycles of oscillation. Beyond this, the decay process of the simulation results takes longer
than that of the measurement results.

Figure 39 shows the first loop of the force-displacement-diagram. The good agreement
concerning the hysteretic behavior of simulation and measurement results is visible, since
the load and unload curves form the typical area of energy dissipation caused by damping.
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Figure 39. Simulation and measurement results concerning the first loop of hysteretic behavior of the
restoring force.

At d < −0.08 m and d > 0.02 m, the hysteretic areas of the simulation results have a
slimmer shape than those of the measurement results. This is due to the viscous, velocity-
dependent damping force of the model, which is relatively small near the turning points
from load to unload, or vice versa, where the velocity changes its direction.

Figure 40 illustrates the complete hysteretic behavior of the restoring force (simulation
and measurement) with the long-term constriction due to the decaying oscillation.
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Figure 40. Simulation (a) and measurement (b) results concerning the complete hysteretic behavior
of the restoring force.

Obviously, the simulation result has more hysteresis loops than the measurement
result, which again means that the decay process takes longer in the simulation.

Finally, Figure 41 shows the nonlinear spring force diagram where the mean values of
the measured load and unload curves are in good agreement with the computed spring
force from the simulation results.
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Figure 41. Simulation and measurement results concerning the nonlinear spring force diagram.

3.3. Parameter Sets for the Advanced Kelvin–Voigt Model

Several combinations of shockmount type, specimen, loading orientation, and drop
height are selected. This selection is exemplary and reflects the wide bandwidth of possible
combinations, as well as the robustness previously shown. Table 5 gives an overview and
presents the associated parameter sets for the advanced Kelvin–Voigt model.
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Table 5. 18 exemplary configurations, and their damping and stiffness parameters. H, M, and L stand
for high, middle, and low drop height.

Compr. Tension Shear Roll Damp. Stiffness from
Parameter Identification

SM H M L H M L H M L H M L ζ(%) k0(N) k1
( N

m
)

k2

(
N

m2

)
k3

(
N

m3

)
k4

(
N

m4

)
k5

(
N

m5

)
ESM32#1 X 2.6 −2.67 × 102 1.34 × 10−1 −1.60 × 10−4 −2.09 × 10−5 7.86 × 10−8 3.66 × 10−9

#2 X 3.2 −1.07 × 10−2 1.29 × 10−1 −8.51 × 10−5 −1.84 × 10−5 5.22 × 10−8 2.83 × 10−9

#3 X 2.2 5.15 × 10−3 7.76 × 10−2 1.07 × 10−5 −8.85 × 10−6 −4.94 × 10−9 1.22 × 10−9

ESM40#1 X 2,6 −4.40 × 10−2 1.47 × 10−2 −1.98 × 10−4 −2.44 × 10−5 9.96 × 10−8 4.34 × 10−9

#2 X 2.6 −3.01 × 10−2 1.44 × 10−1 −1.27 × 10−4 −2.16 × 10−5 7.63 × 10−8 3.23 × 10−9

#3 X 2.3 −8.73 × 10−3 8.96 × 10−2 6.21 × 10−6 −1.01 × 10−5 −2.55 × 10−9 1.37 × 10−9

ESM55#1 X 4.2 −5.85 × 10−2 2.2 × 10−1 −3.03 × 10−4 −5.09 × 10−5 2.08 × 10−7 1.34 × 10−8

#2 X 4.6 −2.21 × 10−2 2.41 × 10−1 5.45 × 10−5 −4.74 × 10−5 3.21 × 10−8 1.17 × 10−8

#3 X 4.1 −1.67 × 10−2 1.37 × 10−1 3.18 × 10−5 −1.92 × 10−5 −2.54 × 10−8 3.77 × 10−9

WSM125#1 X 5.0 1.27 × 10−2 1.28 × 10−2 9.97 × 10−6 4.91 × 10−7 1.50 × 10−7 2.44 × 10−9

#2 X 4.3 1.23 × 10−2 1.58 × 10−2 3.35 × 10−5 −6.05 × 10−6 1.42 × 10−7 6.07 × 10−9

#3 X 9.8 −5.03 × 10−3 2.94 × 10−3 2.81 × 10−5 1.01 × 10−6 −5.11 × 10−8 7.55 × 10−10

WSM135#1 X 6.9 8.92 × 10−3 1.04 × 10−2 5.99 × 10−5 1.93 × 10−6 8.90 × 10−8 1.03 × 10−9

#2 X 5.0 −1.11 × 10−2 1.38 × 10−2 2.16 × 10−4 −1.14 × 10−5 −1.01 × 10−7 8.91 × 10−9

#3 X 9.6 −2.34 × 10−4 2.52 × 10−3 5.50 × 10−6 2.80 × 10−7 −4.80 × 10−9 1.32 × 10−10

WSM175#1 X 6.4 9.12 × 10−3 5.16 × 10−3 1.18 × 10−7 −3.09 × 10−7 2.02 × 10−8 2.84 × 10−10

#2 X 5.0 3.84 × 10−3 6.15 × 10−3 −3.78 × 10−6 −1.23 × 10−6 2.14 × 10−8 4.90 × 10−10

#3 X 11.3 3.68 × 10−4 9.26 × 10−4 1.72 × 10−6 1.34 × 10−7 −1.70 × 10−9 2.03 × 10−11

While the drop height influences the velocity change of the shockmount, the combina-
tion of drop height and loading mass always is chosen such that the maximum specified
displacement is obtained.

For each of the exemplary configurations, the measured force-displacement character-
istics, together with the simulated curve, are included in Appendix A, similar to Figure 41.
Inspection of these curves shows that for elastomer shockmounts, the coefficient of de-
termination is R2 = 1.000 within a three-digit precision, and for wire rope shockmounts,
R2 ≥ 0.994. This shows a very good agreement from simulation to measurement and
indicates that the advanced Kelvin–Voigt model for both shockmount types, together with
its gained parameters, is suitable for further usage.

4. Conclusions

Concluding the study, there are three main points:
The proposed setup is versatile for investigating wire rope shockmounts and elas-

tomer shockmounts. The measurement data are not only suitable for calculating the
force-displacement characteristics of the shockmounts under test but also for identify-
ing their parameters for the advanced Kelvin–Voigt model. The advanced Kelvin–Voigt
model, together with the parameter sets identified from measurement data, yields a good
representation of the dynamic behavior of the specific shockmounts. For wire rope shock-
mounts, this applies only in the limited range of the first one to two oscillations after
shock excitation.

This study is focused on shockmounts with elastic deformation. One of many open
perspectives for the inertia-based approach and this setup is the investigation of the dy-
namic behavior of shockmounts with plastic deformation. With minor modification, the
dynamic force-displacement characteristics of yielding straps and crash elements from the
automotive or aviation field can be determined.
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Appendix A

The curves presented here are the calculated (red lines) and measured (blue lines)
force-displacement characteristics (FDCs) of the selected shockmount-load combinations.
The headings of the printouts reveal the combination:

• Shockmount type (ESM32, ESM40, ESM 55, WSM125, WSM135, WSM175, according
to Section 2.1)

• Specimen number (#1, #2, #3) out of three specimens of a shockmount type
• Load directions (compression, tension, shear, roll)
• Drop height (in cm)

In addition to the curves, the damping ratio, ζ, and the stiffness parameters are shown.

Appendix A.1. Elastomer Shockmounts
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The headings of the printouts reveal the combination: 

• Shockmount type (ESM32, ESM40, ESM 55, WSM125, WSM135, WSM175, according 

to Section 2.1) 

• Specimen number (#1, #2, #3) out of three specimens of a shockmount type 

• Load directions (compression, tension, shear, roll) 

• Drop height (in cm) 

In addition to the curves, the damping ratio, 𝜁,  and the stiffness parameters are 

shown. 

Appendix A.1. Elastomer Shockmounts 
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Appendix A.2. Wire Rope Shockmounts
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