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Abstract: Radio frequency (RF) cavities hold a crucial role in Electron Linear Accelerators, serving
to provide precisely controlled accelerating fields. However, the susceptibility of these cavities to
microphonic interference necessitates the development of effective controllers to mitigate vibration
due to interference and disturbances. This paper undertakes an investigation into the modeling
of RF cavities, treating them as cylindrical beams. To this end, a pseudo-rigid body model is
employed to represent the translational vibration of the beam under various boundary conditions.
The model is systematically analyzed using ANSYS software (from Ansys, Inc., Canonsburg, PA,
USA, 2022). The study further delves into the controllability and observability of the proposed model,
laying the foundation for the subsequent design of an observer-based controller geared towards
suppressing longitudinal vibrations. The paper presents the design considerations and methodology
for the controller. The performance of the proposed controller is evaluated via comprehensive
simulations, providing valuable insights into its effectiveness in mitigating microphonic interference
and enhancing the stability of RF cavities in Electron Linear Accelerators.

Keywords: flexural dynamic; radio frequency; cavity; modeling; observer-based control design;
Lyapunov-based controller

1. Introduction

Microphonic interference, primarily induced by environmental mechanical vibra-
tions, can significantly affect the operational efficiency of superconducting radio frequency
(RF) cavities within electron linear accelerators (e-LINACs). This phenomenon holds par-
ticular relevance to the ongoing construction of the Advanced Rare IsotopE Laboratory
(ARIEL)(Vancouver, Canada) accelerator at TRIUMF(TRIUMF is Canada’s particle accelera-
tor centre in Vancouver), which is Canada’s renowned particle accelerator center, as well
as to other e-LINACs used around the world [1]. In an e-LINAC, the process accelerating
electrons involve raising their energy levels up to 50 MeV while traversing a linear beam-
line. This acceleration is achieved by utilizing RF cavity resonators, which propel charged
particles forward by subjecting them to an oscillating electric field, commonly referred to
as the accelerating field [2]. To deliver a high-quality beam, the bunched particles should
receive the same amount of energy from the multi-cell RF cavities; therefore, the phase
of the accelerating field should be precisely controlled. Well-tuned cavities assure good
field stability; however, microphonic interference can create deformations in the cavity
shape that can lead to shifts in the resonance frequency [3]. However, various studies to
suppress mechanical vibrations have been conducted in the world’s accelerator labs [4–8].
Analytic solutions for RF fields in an RF structure have not been available, except for simple
geometries. Also, an analytical model of mechanical vibration in a multi-cell cavity has not
been available due to the complexity involved in creating such a model.

Further limitations in attempting to measure and control vibrations in TRIUMF’s
nine-cell niobium cavity come from its boundary conditions. The cavity is suspended

Vibration 2024, 7, 129–145. https://doi.org/10.3390/vibration7010007 https://www.mdpi.com/journal/vibration

https://doi.org/10.3390/vibration7010007
https://doi.org/10.3390/vibration7010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vibration
https://www.mdpi.com
https://orcid.org/0000-0002-1665-0759
https://orcid.org/0000-0002-1575-8389
https://orcid.org/0000-0003-4700-7026
https://doi.org/10.3390/vibration7010007
https://www.mdpi.com/journal/vibration
https://www.mdpi.com/article/10.3390/vibration7010007?type=check_update&version=2


Vibration 2024, 7 130

within a Helium bath with restricted access available only from the two ends. A structure
without such boundary conditions would allow for the placement of sensors and actuators
on individual cavities to measure and control vibrations [9–12]. In the case of the cavity at
TRIUMF, we must contend with restricted ability to apply force to the cavity at both ends.
Flexible structures are commonly used in a wide variety of engineering applications such
as beams, rods, cables, plates, and cylindrical shells. These systems can be modeled by
discrete mass and stiffness components and analyzed as multi-degree-of-freedom systems.
Expressions for the natural frequencies and mode shapes can be derived for the classical
homogeneous boundary conditions [13,14]. Various researchers have conducted studies on
the free vibration of beams with uniform and non-uniform cross sections [15–22]. However,
obtaining precise analytical solutions for the free vibrations of beams with varying mass
and stiffness governed by differential equations is challenging. Exact solutions for rod
vibrations are limited to specific beam shapes and boundary conditions. Thus, our objective
is to create an appropriate working model to conduct free vibration analysis and then
design a controller to control active vibration and noise. As such, the contribution of
this paper is developing an observer-based controller that relies on the measurement of
endpoint positions and tests it using an ANSYS model.

In this paper, we propose a novel approach to examine the flexural free vibrations of
uniform beams, building upon previous research conducted by various scholars [23–29].
The organization of this paper is as follows. In Section 2, a model is presented for longitudi-
nal flexural dynamics of a nine-cell cavity, such as that used in the e-LINAC as TRIUMF.
This model incorporates a pseudo-rigid body framework to effectively capture the effects
of microphonics and mechanical vibrations on the bending and stretching behavior of
the cavity’s flexible structure. Subsequently, we derive the equation of motion for the
developed model by employing the Lagrangian method. In Section 3, a comprehensive
analysis of the cavity’s free vibrations is presented, employing a flexural uniform beam
configuration with boundary conditions. Section 4 presents the design and introduction of
an observer-based controller to mitigate the longitudinal vibrations within the cavity. In
Section 5, the controller’s efficacy is demonstrated via rigorous simulations, showcasing its
ability to effectively suppress undesired vibrations and enhance the overall performance of
the system.

2. Longitudinal Flexural Dynamic Modeling

In our research, flexure and vibration are considered to be longitudinal, and lateral
structural flexibility is neglected because the lateral vibration is not consequential to our
specific noise cancellation needs (see Figure 1). The first step is obtaining the model’s
Partial Differential Equation (PDE).

Figure 1. Sketch of the cavity structure and forces acting on a flexural element (red arrows show the
direcrtion of applied force on each element).

Considering the small element of the cavity, applied forces on the element, f (x, t), and
the element’s displacement, Z(x, t), is a function of the spatial and temporal coordinates
(see Figure 1). Neglecting the higher order of deviations, the net force on the element with
the dx width can be represented as

f (x, t)− f (x + dx, t) ≈ −∂ f
∂x

dx (1)
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where ∂
∂x denotes the partial derivation. According to (1) and Newton’s second law, the net

force on an element is given as

−∂ f
∂x

dx = ρA(x)dx
∂2Z(x, t)

∂t2 (2)

where ρ is the mass density, and A(x) denotes the beam cross section. Also, according to
Hook’s law, the strain of an element along the x direction is calculated as

f (x, t) = EA(x)
∂Z(x, t)

∂x
(3)

where ϵ denotes strain, and E is Young’s modulus. Calculating the derivative of (3) gives

∂ f
∂x

= E
dA
dx

∂Z(x, t)
∂x

+ EA(x)
∂2Z(x, t)

∂x2 (4)

Inserting (2) into (4) results in the wave equation as

−∂2Z(x, t)
∂t2 =

E
ρA(x)

dA
dx

∂Z(x, t)
∂x

+
EA(x)
ρA(x)

∂2Z(x, t)
∂x2 (5)

The obtained wave equation must be satisfied over the entire beam domain, subject
to the boundary and initial conditions. To solve (5), the variable separation method is
used, i.e.,

Z(x, t) =
∞

∑
n=0

Φn(x)δn(t) (6)

where Φn(x) is the mode shape function, and δn(t) is the temporal function, respectively,
and they are independent. Inserting (6) into (5) gives the following equation

− δ̈(t)
δ(t)

=
E

ρA(x)
dA
dx

1
Φ(x)

dΦ(x)
dx

+
E
ρ

1
Φ(x)

d2Φ(x)
dx2 (7)

In order to satisfy this equation, both sides of (7) must be equal to a constant, e.g., ω2,
and give the following equation from the temporal function and for the spatial equation

δ̈(t)− ω2δ = 0 (8)

d2Φ(x)
dx2 +

1
A(x)

dA
dx

dΦ(x)
dx

+
ω2ρ

E
Φ(x) = 0 (9)

The solution of (9) will provide proper mode shapes to be used in the Lagrangian method
for obtaining the dynamic equation of the flexural beam. However, considering a beam
with a non-uniform cross section makes (9) difficult to solve, and since the aim of the
research is focused on vibration control, the authors assume a constant cross section for
the beam. Thus, the longitudinal motion of the beam with an invariable cross section (i.e.,
A(x) = constant) is governed from (9) and is given as

d2Φ(x)
dx2 +

ω2

c2 Φ(x) = 0 (10)

where c =
√

E
ρ , which is the speed of the wave propagation in the tube. The general

solution of differential (10) is therefore

Φ(x) = k3 sin(
ω

c
x) + k4 cos(

ω

c
x) (11)

To determine the integration variables k3 and k4, various boundary conditions are
applied and are presented in the following:



Vibration 2024, 7 132

(a) Free–Free Boundary Condition
The boundary conditions are assumed to be free–free, i.e., at both ends of the beam,
and the force is zero. Thus, the frequency and the mode shape function for this
boundary condition can be defined as

ω =
c
L

nπ (12)

Φn(x) = cos(
nπx

L
) n = 0, 1, 2, ... (13)

(b) Free–Fixed Boundary Condition
Assumes that the beam is fixed at one end and free at the other end. The frequency
and mode shape, in this case, have been obtained as

ω = (2n + 1)
πc
2L

(14)

Φn(x) = cos
(2n + 1)πx

2L
n = 0, 1, 2, ... (15)

(c) Free-Ends-Fixed Middle Boundary Condition
Assumes that the beam is free at both ends but fixed in the middle. The dynamic
is symmetric about the midpoint x = L

2 . For this type of boundary condition, the
frequency and mode shapes are determined as

ω = (2n + 1)
π

L
c (16)

Φn(x) = sin(
(2n + 1)π

L
x) n = 0, 1, 2, ... (17)

To sum up these three boundary conditions, Table 1 shows a summary of the frequency
and mode shapes for these three boundary conditions.

Table 1. Different boundary conditions, frequencies, and mode shapes of a cylindrical beam.

Boundary Condition Frequency (rad/s) Mode Shape

Free–Free ωn = n πc∗
L Φn(x) = cos( nπ

L x)
Fixed–Free ωn = (2n + 1)πc

2L Φn(x) = cos( (2n+1)π
2L x)

Free–Mid Fixed ωn = (2n + 1)πc
L Φn(x) = sin( (2n+1)π

L x)
Note: ∗n = 0, 1, 2, ....

3. Free Vibration Analysis
3.1. Energy Method

It is common to study the dynamics of flexible beam systems based on the Lagrangian
equation. Equations of Motion can be written based on the Lagrangian equation, and
boundary conditions are necessary to find the solution. The kinetic energy of a beam based
on (6) is given as

Te =
1
2

∫ L

0
ρA(x)Ż(x, t)2dx =

1
2

δ̇(t)T(
∫ L

0
ρA(x)Φ(x)Φ(x)Tdx)δ̇(t) (18)

where T represents the transpose operator. According to (18), the mass matrix, M, is given as

M =
∫ L

0
ρA(x)Φ(x)Φ(x)Tdx (19)

The potential energy is obtained according to (6) and is given as
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Ve =
1
2

∫ L

0

f 2(x, t)
EA(x)

dx =
1
2

δ(t)T(
∫ L

0
EA(x)

dΦ(x)
dx

dΦ(x)T

dx
dx)δ(t) (20)

The stiffness matrix, K, is given as

K =
∫ L

0
EA(x)

dΦ(x)
dx

dΦ(x)T

dx
dx (21)

The Lagrangian equation results in the differential equations that describe the equa-
tions of motion of the system

Mδ̈(t) + Kδ(t) = Φ(x)u(t) (22)

where u is the input for the system.

3.2. Virtual Work

Considering fg as a generalized force, applying force u at x = 0, the virtual work can
be calculated as

W(x, t) = Φ(x)δ(t)u(t) (23)

Applying virtual work in the boundary conditions, as presented, Section 2 results in a
different input vector, b, according to the mode shapes.

fg = bu(t) (24)

Therefore, the equation of motion for this beam system will become the following

Mδ̈(t) + Kδ(t) = bu(t) (25)

This model captures the dynamics of the system with sufficient accuracy by defining mass,
stiffness, and also the input vector.

(a) Free–Free
For this boundary condition with a uniform cross-section dynamic, the mode shape
function can be defined as (13). So, the generalized force function will be

b1 =
[
0 1 0 1 . . .

]T (26)

(b) Fixed–Free
For this boundary condition, the mode shape function is defined in Equation (15), and
the input vector is

b2 =
[
1 1 1 1 . . .

]T (27)

(c) Ends Free–Middle Fixed
In this case, force is applied at x = ± L

2 . According to (17) for various n, the input
vector is given as

b3 =
[
1 −1 1 −1 . . .

]T (28)

In this condition, the output of the system is a displacement function at point x = 0,
and it is defined as

y(t) = Cδδ(t) (29)

where
Cδ =

[
1 1 . . . 1

]
(30)
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3.3. Transfer Function of the System

To find the transfer function of the system, the first step is to write the system equation,
Equation (25), in the Laplace domain

Ms2δ(s) + Kδ(s) = bU(s) (31)

The output of the system from (29) in the Laplace domain is

Y(s) = Cδδ(s) (32)

Simplifying the system equation in the Laplace domain, the transfer function of the sys-
tem is

Y(s)
U(s)

= Cδ(s2M + K)−1b (33)

Calculating the transfer function for the free–free ends boundary condition with the b1
input vector, the transfer function results in the following:

H(s) =
n

∑
i=1

1
mis2 + ki

(34)

In this method, if we assume that the beam is a uniform cross section, then M and K are
diagonal matrices.

4. Controller Design

In this section, we present an overview of the controller design for active vibration
and noise control systems. The control objective is to design the proper boundary control
for suppressing the longitudinal vibration of the flexural dynamic.

4.1. Controllability

Lemma 1. The system in (25) is controllable if mass and stiffness matrices (M and K) are symmetric,
diagonal, and positive definite, and we assume that the boundary condition is either fixed–free or
free–midway fixed.

Proof. To prove the controllability of the system, considering the original system (25) and
taking all the mentioned assumptions into consideration, we can therefore prove that the
controllability matrix is full rank or rank(QC) = 2n. The state space model of the system
in (25) is

∆̇ = A∆ + Bu (35)

where ∆, the A matrix, and the B matrix are

∆ =

[
δ
δ̇

]
(36)

A =

[
0 I

−M−1K 0

]
(37)

B =
[
0 0 0 . . . 0 M−1b

]T (38)

and the controllability matrix of the system is

QC =
[
B AB A2B A3B ... A2n−1B

]
(39)
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To prove the controllability of the system, we should prove that the controllability matrix is
full rank or rank(QC) = 2n. In order to calculate the rank of QC, we find the columns of the
controllability matrix {

A2i = (−M−1K)i I2n i = 0, 2, 4, ..., n
A2i−1 = (−M−1K)i A i = 1, 3, 5, ..., n − 1

(40)

Considering (40), in general, we are unable to demonstrate that QC is full rank, which means
the system is not fully controllable (for all of its natural frequencies). In order to develop
a controller, we typically first divide the system into controllable and non-controllable
matrices. The controller is then designed to suppress vibrations in the controllable modes.
However, for this specific dynamic and special boundary condition, assuming the mass and
stiffness matrices as diagonal matrices, we can prove that QC is full rank and the system is
controllable. The controllability Gramian of the system is defined as

WC(t) =
∫ t

0
eτAT

BBTeτAdτ (41)

Assuming that the mass matrix is symmetric, diagonal, and homogeneous, and the
boundary condition is either fixed–free or halfway–fixed, we can write

BBT =

[
0 0
0 1

m × In

]
(42)

where 1
m is a constant that relates to our M−1 matrix. This requires rewriting the controlla-

bility Gramian as follows

WC(t) =
1
m

∫ t

0
eτAT

eτAdτ (43)

To prove that this specific dynamic is controllable, we need to prove that another equivalent
system is controllable. Assuming a new system’s pair as ( AĈ, BĈ ) where AĈ = A and
BĈ = I2n and the controllability matrix for this newly defined system is

QĈ =
[
BĈ ABĈ A2BĈ A3BĈ ... A2n−1BĈ

]
(44)

rank(QĈ) = 2n, then it is full rank. Therefore, the newly defined system is controllable. On
the other hand, the controllability Gramian of the new system is defined as

WĈ(t) =
∫ t

0
eτAT

BĈBT
ĈeτAdτ =

∫ t

0
eτAT

eτAdτ (45)

Considering BĈBT
Ĉ
= I2n, the relation between these two system Gramians is WC(t) =

1
m ×WĈ(t).

4.2. Lyapunov-Based Controller

Theorem 1. The system introduced in (25) is asymptotically stable using the following controller

u = −γbT δ̇ (46)

where γ is a positive gain and δ̇ is replaced with an observer designed in section (observer design)
as follows

˙̂∆ = A∆̂∆̂ + Bu (47)

where the A∆̂ (2n × 2n) matrix is

A∆̂ =

[
l1 × I I

−M−1K + l2 × I 0

]
(48)
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and the input to the observer-based controller is

u =
[
0 −γbT]∆̂ (49)

Proof. Defining the Lyapunov function of the system as VL, the derivative of this spec-
ified Lyapunov function candidate (V̇L) should be negative definite or negative semi-
definite; thus,

VL =
1
2

δ̇T Mδ̇ +
1
2

δTKδ (50)

V̇L = δ̇T Mδ̈ + δTKδ̇ = δ̇Tbu (51)

If the input is defined as the multiplication of a negative value and the input b matrix and
a derivative of the delta function

u = −γbT δ̇ (52)

where γ is a positive gain, then the derivative of the Lyapunov function is

V̇L = −γδ̇TbbT δ̇ ≤ 0 (53)

Therefore, the first derivative of the Lyapunov function is negative semi-definite, and the
system is asymptotically stable.

4.3. Observability

In this section, we show the system observability through a lemma, and then we
proceed to design an observer-based controller.

Lemma 2. The system in (54) is observable if K and M (stiffness and mass matrices, respectively)
are symmetric positive definite matrices and the boundary condition is considered as fixed–free or
free–mid fixed.

Proof. Recalling the original system in (35), we can rewrite the system as{
∆̇ = A∆∆ + Bu
y = C∆∆

(54)

where
C∆ =

[
Cδ 0 0 . . . 0

]
(55)

and the observability matrix of this system is

Q∆ =
[
C∆ C∆ A∆ C∆ A2

∆ . . . C∆ A2n−1
∆

]T
(56)

To prove the observability of the system, we should have rank(Q∆) = 2n that is full rank.
The observability Gramian for our system is defined as

WO(t) =
∫ t

0
eτAT

∆ CT
∆C∆eτA∆ dτ (57)

The system is observable if, and only if, W0(t) is non-singular for any t > 0

CT
∆C∆ =

[
In 0
0 0

]
= In (58)

WO(t) =
∫ t

0
eτAT

∆ eτA∆ dτ (59)
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We consider K and M as the symmetric positive definite matrix. To prove that Gramian
WO(t) is non-singular for all t, we must first consider defining a new pair as follows
(A∆̂, C∆̂), where C∆̂ = I2n and A∆̂ = A∆. This pair is observable; that is rank(Q∆̂) = 2n,
where Q∆̂ is the observability matrix for the new pair. To show this, we must obtain Q∆̂ for
the new pair

Q∆̂ =
[
C∆̂ C∆̂ A∆̂ C∆̂ A2

∆̂
. . . C∆̂ A2n−1

∆̂

]T
(60)

A∆̂ = A∆ = A so (40) is also valid here and we can apply the same logic. The first two
columns of Q∆̂ are independent, so all other blocks of matrices are independent, and Q∆̂
has a rank of 2n, so (A∆̂, C∆̂) is observable. In other words, according to our definition,
we have

C∆̂ = CT
∆̂C∆̂ = I2n (61)

We can write the observability Gramian for the newly defined pair as

W∆(t) =
∫ t

0
eτAT

∆̂ CT
∆̂C∆eτA∆ dτ =

∫ t

0
eτAT

∆̂ eτA∆̂ dτ = WO(t) (62)

Therefore, the Gramian matrix for the new pair becomes equal to the Gramian matrix of
our original system pairs. When Q∆̂ is full rank, and two Gramians are equal, therefore,
Q∆ is also full rank. This proves that the new defined pair (A∆̂, C∆̂) is observable and so is
our system (A∆, C∆).

4.4. Observer Design

The design of an observer to estimate the states of the system in order to design a
controller is defined as follows.

˙̂∆ = A∆̂ + Bu + l(−y + ŷ) (63)

Recalling the system output y from (29), the estimated output of the system is defined as

ŷ = C∆∆̂ (64)

l is the observer gain (2n × 1) vector defined as

l =
[

l1
l2

]
(65)

where each l1 and l2 is an observer gain (n × 1) vector. The observer equation is

˙̂∆=(A + lC∆)∆̂ + Bu (66)

The new system’s equation with the observer will become the following

˙̂∆ = A∆̂∆̃ + Bu (67)

where

A∆̂ =

[
l1 × I I

−M−1K + l2 × I 0

]
(68)

The estimation error of the states is written as

∆̃ = δ̂ − δ (69)
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Therefore, the observer error system can be defined as

˙̃∆ = (A + lC∆)∆̃ = A∆̂∆̃ (70)

Using MATLAB (from Mathworks, Inc., Natick, MA, USA, 2022) to find mass and stiffness
matrices numerically, it can be proven that the system is observable. Therefore, we can
place eigenvalues of (67) in the LHP (left-half plane) as our observer pole placement and
design our observer.

4.5. Observer-Based Controller Transfer Function

To find the overall transfer function of the system, the system needs to be considered
as an equation

˙̂∆ = A∆̂ + Bu − ly + lŷ (71)

u = −γbT ˙̂δ (72)

where y is input to the controller, and the observer gain vector is

˙̂∆ = A∆̂ + B(−γbT ˙̂δ)+lC∆∆̂ − ly (73)

Our observer-based controller system can be written in matrix form, defined as follows

˙̂∆ = A∆̂∆̂ − ly (74)

u =
[
0 −γbT]∆̂ (75)

where

A∆̂ =

[
l1Cδ I

−M−1K − γM−1bbT + l2Cδ 0

]
(76)

The transfer function of the observer-based controller is

H∆(s)=
U(s)
Y(s)

=
[
0 −γbT]×(SI−A∆̂)

−1
[
−l1
−l2

]
(77)

To calculate the transfer function of this observer-based controller, we need to find the
determinant of the A∆̂ matrix.

det(A∆̂)=det(S2I−Sl1Cδ+M−1K+γM−1bbT−l2Cδ)>0 (78)

This determinant is greater than zero; therefore, A∆̂ is invertible, and the transfer function
can be calculated. Figure 2 illustrates the block diagram of the observer-based controller, in
which the input u and output y are fed to the observer described by (71) with the control
input specified by (72).

Figure 2. Block diagram of the proposed observer-based control system.

5. Experiment and Simulation Studies

In our experiment on the nine-cell Niobium cavities (manufactured and fabricated in
PAVAC and TRIUMF, Vancouver, Canada) at TRIUMF, shown in Figure 3, we measured
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the vibration signal or phase noise from the cavity using a Spectrum Analyzer (Keysight
Technologies, Santa Rosa, CA, USA).

Figure 3. TRIUMF’s nine-cell cavity structure.

As can be seen in Figure 4, some of the noise frequencies that we measured that
caused the microphonics’ effect on the cavity’s signal are 20.332, 40.698 Hz, 46.077 Hz,
60.012 Hz, 124.664 Hz, 137.843 Hz, and 300.088 Hz. Given the limited availability of
Niobium superconducting radio frequency cavities, or the limited time available to conduct
experiments on existing cavities, it is challenging to experimentally develop a control
system for them. The most straightforward and reliable way to design a controller for such
a system is through simulation studies.

Figure 4. Experimental vibration measurement data for TRIUMF nine-cell cavity (Yellow, Green and
Purple sign waves show different vibration measurements).

In order to simulate the nine-cell cavity at TRIUMF’s e-LINAC, we consider the
superconducting cavity with its specific environment, that is, the cavity inside the injector
cryomodule (EINJ), cooled down to 2 K. Considering this special setup of the cavity, in
order to control the vibration of the cavity, we have some limitations in that we cannot
attach any sensor or actuator attached to the body of the cavity because it is placed inside
the Helium bath.

In our simulation studies, we utilize ANSYS from Ansys, Inc., USA, 2022, MATLAB
(from Mathworks, Inc., USA, 2022), and SIMULINK software (from Mathworks, Inc.,
Natick, MA, USA, 2022). We use ANSYS for modeling, MATLAB for modeling and control
designing, and we use SIMULINK to simulate the result of our proposed controller. In
ANSYS Mechanical software, we import the actual geometry of the nine-cell cavity, and via
finite element analysis, we find the eigenvalues of the system to calculate the Mass matrix
and the Stiffness matrix.

5.1. Model Verification Using ANSYS Mechanical Analysis

Although, the actual structure of the cavity is more complicated and has both lon-
gitudinal and transverse vibration, in this study, we simplified the cavity structure as a
uniform beam to focus our analysis and solution on only one dimension of the structure’s
longitudinal vibration.

In this section, we use ANSYS software to perform modal analysis on the actual
structure. In our modeling, it was helpful that we utilized finite element analysis using the
ANSYS Mechanical interface. In this mechanical analysis, we set the model as TRIUMF’s
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nine-cell cavity structure, and the material has been set as Niobium. In the dynamic
analysis for different boundary conditions, solving the modal analysis will result in different
frequency solutions.

5.1.1. Free–Free Ends Model in ANSYS

Assume the cavity has two free ends and no fixed support. In general, for a free
boundary condition dynamic, at least one zero natural frequency appears. The first six
natural frequencies for this structure are shown in Table 2, Column 1. The first three
modes in this Free dynamic are zero. The modes that affect the cavity in the x-direction
are the modes that we are interested in controlling by adding external forces to both ends
of the model. As an example of the Free–Free boundary condition’s natural frequency, a
comparison between the original model and the displacement for the first mode in the
x-direction is shown in Figure 5.

Figure 5. ANSYS nine-cell cavity modal analysis for free–free boundary condition: Comparison
between the original model and the first mode.

Table 2. Cavity’s modal frequencies (Hz) in the x direction for various boundary conditions.

Mode Free–Free Fixed–Free Free–Mid Fixed Fixed–Fixed

1 0 8.64908 19.0875 82.049
2 0 8.81699 19.6901 85.962
3 0 56.8637 40.7481 200.68
4 47.396 59.1113 46.3741 200.47
5 49.182 112.567 127.646 299.59
6 129.69 153.406 147.42 342.29

5.1.2. Midway–Fixed and Both-Ends-Free Models in ANSYS

Assume the cavity is free at both ends but fixed in the middle. The cavity is symmetric
about the midpoint x = L

2 . The force that the actuator should apply is assumed to be equally

applied at both ends ( f (0,t)
2 , f (L,t)

2 ). By considering such a system, the only vibration that is
controllable with the help of an actuator would be in the x direction; for example, the sixth
mode is 140.107 Hz (see Table 2, Column 4). In Figure 6, the displacement for the sixth
mode of vibration for this boundary condition is shown.
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Figure 6. ANSYS nine-cell cavity structure modal analysis for midway fixed and both ends free:
Comparison between the original model and the displacement for the sixth mode in the x-direction).

5.1.3. Fixed–Free Ends Model in ANSYS

Assume one end is free and the other end has fixed support. Therefore, at x = 0, there
is no force, and we need to calculate the force value at x = L to suppress the vibration and
control the displacement. In this boundary condition, the values of the natural frequencies
are half compared to the one that has two free ends (See Table 2, Column 5). As an example
of this boundary condition, the displacement for the fifth mode of vibration is shown in
Figure 7.

Figure 7. ANSYS nine-cell cavity structure modal analysis for one end fixed and one end free:
Comparison between the original model and displacement for the fifth mode of vibration).

5.1.4. Fixed–Fixed Ends Model in ANSYS

Assume we have the cavity with two ends having fixed support. Therefore, six
dominant frequencies for this cavity are presented in Table 2, Column 5. The modes that
affect the cavity in the x-direction are the modes that we are interested in controlling by
adding actuators to the ends of the model. In our ANSYS simulation, we observed that
the mode that has the most displacement in the x direction in the fixed ends’ boundary
condition is the fifth mode (see Figure 8).
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Figure 8. ANSYS nine-cell cavity structure modal analysis for both ends fixed. The displacement has
been shown for the fifth mode compared to the original model).

5.2. Active Vibration Control Design in MATLAB

Our main focus in the cavity’s active vibration control is canceling the low-frequency
longitudinal vibrations. Therefore, we just consider those first eigenvalues that are related to
the longitudinal displacement of the cavity to build up the mass and stiffness matrices. After
obtaining the reduced order mass and stiffness matrices of the cavity’s dynamic, we build
a mathematical model for this simplified nine-cell cavity in MATLAB. The displacement of
the endpoint in this simplified cavity without any control is shown in Figure 9.

Figure 9. Cavity flexural model endpoint displacement without control.

In designing our controller, we are constrained by the superconducting cavity inside
a 2 K Helium bath, meaning we only have access to both ends of the cavity to apply the
actuator’s forces as our control signal. In this study, we developed an observer-based
algorithm to cancel out the microphonic noises caused by the mechanical vibration activity.
The control algorithm has been derived via a Lyapunov-based analysis. In the proposed
observer-based controller, we considered the boundary condition resulting from the special
situation that there is no access to the body of the cavity for placing the sensors and the
actuators. The control design process consists of the use of a pure simulation environment
based on MATLAB/SIMULINK, where the mathematical model includes a cavity model,
an observer-based control system, and control strategies, considering the constraint in
placing the actuator’s force.

In MATLAB, we design our proposed observer-based controller for this model, and in
SIMULINK, we present the simulation results to evaluate the performance of the algorithms
in canceling the microphonics. By applying the input signal to our model and closing the
system’s loop through our proposed observer-based controller, we control the displacement
function at the endpoint of our structure. Therefore, vibration in the endpoints of our
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structure has been suppressed for those specific frequencies that we designed our controller
for (see Figure 10).

Figure 10. Cavity flexural model endpoint displacement with observer-based controller.

The control input signal is shown in Figure 11. In Figure 12, the displacement function
for one of the modes without and with our controller is shown. The result shows that
our proposed controller can suppress that vibration at the endpoint of the cavity’s model.
Our proposed Lyapunov-based observer controller has been applied for three modes of
vibration, and as has been shown in Figure 13, the controller cancels out those three modes
of vibration for our simplified cavity model.

Figure 11. Control input signal to the observer-based controller.

Figure 12. Displacement function for the first mode at the endpoint of the model.
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Figure 13. Comparison of the displacement functions at the endpoint of the cavity’s model for three
modes of vibration. Blue signals are displacement without control and the red signals are with
observer-based control.

6. Conclusions

The flexural dynamics of a simplified nine-cell cavity modeled as a uniform cylin-
drical beam was studied in this paper, based on which a Lyapunov-based controller was
developed for suppressing vibrations. A simulation study was conducted using ANSYS
modal analysis to analyze the influence of boundary conditions on the natural frequency.
By comparing the first six natural frequencies of the model under each boundary condition,
it was observed that the absence of any fixed support results in specific natural frequencies
being zero. When comparing the fixed-free, midway-fixed, and both-ends-free natural
frequencies with those of the actual cavity model, the midway-fixed, both-ends-free modes
closely matched the natural frequencies of the nine-cell cavity. The controllability and
observability of the system were further investigated, leading to the development of an
observer-based controller tailored for the system. The controller was simulated using MAT-
LAB/SIMULINK and the results demonstrated the successful control of specific desired
modes and the suppression of structural vibration.
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