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Abstract: Localized vibration (LV) of the lower leg increases arterial blood flow (BF). However, it is
unclear how LV causes this increase. Understanding the mechanisms of this response could lead to
the optimized future use of LV as a therapy. One possible mechanism of LV-mediated BF is through
histamine release by mechanosensitive mast cells. The purpose of this study was to measure the
BF response of 21 recreationally active young adults (11 male, 10 female, mean age 22.1 years) after
47 Hz and 10 min LV to the calf, with and without antihistamine medication (180 mg Fexofenadine).
Each participant received both control (no antihistamine) and antihistamine (treatment) conditions
separated by at least 24 h. BF ultrasound measurements (mean and peak blood velocity, volume flow,
popliteal diameter, and heart rate) were taken before LV therapy and periodically for 19 min post LV.
Using a cell means mixed model, we found that LV significantly increased the control mean blood
velocity immediately post LV but did not significantly increase the antihistamine mean blood velocity
immediately post LV. Therefore, we hypothesize that a primary mechanism of LV increase in BF is
histamine release from mechano-sensing mast cells, and that this response is force-dependent.

Keywords: percussion massage; Hypervolt; blood velocity

1. Introduction

Learning how vibration increases blood flow is essential to better understand and
optimize the physiological benefits of vibration. Studies have shown that vibration reduces
DOMS [1,2], increases oxygenation [3–5], increases muscle performance [6–8], and increases
ROM [9]. It is hypothesized that these benefits of vibration may, in part, be due to increased
blood flow. Therefore, knowing how vibration increases flow will lead to better treatment
targeted for specific outcomes.

Vibration-based studies vary in the source of application, with many studies utilizing
whole-body vibration (WBV) platforms in a standing position, which often perturbates the
entire body system, but is often measured for its effects in the lower extremities [1,3–5,7,8,10–14].
Localized vibration (LV) is targeted vibration to a particular body part or muscle group via
a variety of different devices, such as by resting an extremity on a WBV platform [15] or
the back of the thigh on a marketed foot massage device [6], or through the use of various
handheld vibratory devices [2,16] including massage guns [9,17]. It has been shown that
therapeutic vibration to the leg increases blood flow in the popliteal artery [10,11,17] and
femoral artery [12–14]. It is also clear that blood flow in the lower leg is responsive to other
stimuli such as massage [18,19] and heat [20]. However, it is unclear exactly how these
stimuli cause an increase in blood flow [19]. There are several possible mechanisms of
increasing arterial flow, which include increasing perfusion pressure through augmented
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arterial pressure, heart rate, and stroke volume, or by decreasing vascular resistance with
vasodilators, many of which are sensitive to histamines [21]. Various, external mechanical
stimuli may use one or several of these mechanisms to increase blood flow.

Physiologically, if a stimulus increases cardiac output or arterial blood pressure then
there will be a resultant increase in arterial blood flow. Interestingly, Needs et al. reported
that therapeutic LV to the calf caused a significant increase in popliteal blood flow without
increasing heart rate or arterial diameter [17]. This suggests that mechanical stress induced
by LV on the limb increases blood flow through localized decreases in peripheral vascular
resistance, potentially due to reduced blood viscosity or by vasodilation via mast cell
activation in the endothelial lining. Since blood flow is primarily regulated at the level of
the arterioles, it is our belief that this histamine-induced dilation of peripheral arterioles is
the primary mechanism through which LV (such as the use of a massage gun) increases
arterial blood flow. Determining this mechanism will help explain the apparent relationship
between vibration frequency and duration to increased blood flow. The understanding of
this relationship can then be used to maximize this BF response for personal or clinical
massage gun use, to improve BF and possibly enhance recovery.

Antihistamines are used to block histamine receptors in the endothelial lining of
capillaries. This leads to less capillary permeability and inflammation, which are commonly
a result of allergens entering the blood stream. The effect of antihistamines on blood flow
has been studied in response to various conditions such as exercise [22] and whole-body
heating [23]. Interestingly, Ely et al. reported that during exercise, antihistamines actually
increased arterial blood flow, potentially due to the complex regulation of blood flow during
exercise [22]. We hypothesize that at a resting heart rate, subjects taking an antihistamine
will experience a blunted increase in blood flow after LV treatment.

Boyden et al. demonstrated that ADGRE2, a member of the adhesion G-protein
coupled receptor (AGCPR) family expressed on mast cells, is mechanosensitive and variants
of the receptor in patients with vibratory urticaria were particularly sensitive to mast cell
activation with vibration [24]. They hypothesized that the shear force from a vibratory
stimulus causes a separation of the alpha subunit from the beta subunit of the ADGRE2
receptor, resulting in a degranulation signal. This in turn leads to a measured increase
of histamine in the blood serum [24]. While it may be uncertain exactly how mechanical
stimuli cause mast cell degranulation, it is clear that these stimuli result in an increase of
histamine in the blood.

The purpose of this study was to measure the effect of histamine receptor antagonism
on resting arterial blood flow after LV therapy, thereby supporting the hypothesis that
histamine secretion by mechanically activated mast cells is a primary mechanism through
which LV therapy increases arterial blood flow.

2. Materials and Methods
2.1. Participants

Twenty-one subjects (11 males, 10 females) completed this study (mean age 22.1 ± 2.0
years). Male subjects were between the ages of 21 and 25 and had a mean height of
181.3 ± 9.6 cm (167.6 cm to 195.6 cm) and mean weight of 80.7 ± 19.0 kg (61.2 kg to
127.0 kg). Female subjects were between the ages of 18 and 24 and had a mean height of
169.2 ± 7.5 cm (157.5 cm to 180.3 cm) and mean weight of 64.5 ± 9.3 kg (49.9 kg to 83.9 kg).
Subjects were recreationally active, which we defined as engaging in a minimum of 30 min
of exercise 3 times per week. Qualifying criteria included having no injuries to the lower
extremities during the 3 months leading up to joining the study and having no active lower
extremity pain or discomfort. Subjects were excluded if they had any prior cardiovascular or
vascular disorders, or if they were currently using any blood pressure medication. Subjects
were not screened for vibratory urticaria or mast cell disorders. However, the results
showed no indication of subjects having any such issues. Subjects who participated in the
study did not engage in lower body exercise at least 4 h prior to each treatment, as well as
abstaining from caffeine consumption for 24 h before treatment. All participating subjects
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signed an approved IRB consent form (IRB2022-083) in accordance with the Declaration
of Helsinki.

2.2. Procedure

Subjects reported for treatment on 2 different days with a minimum of 24 h between
each treatment. Each subject received the same LV treatment condition each day, consisting
of 47 Hz vibration for a 10 min duration. To avoid any potential delayed effect of the
antihistamine, the treatment order was not randomized. It is possible that this lack of
randomization may have led to an unknown effect on the results based on the order of
treatments. Prior to the second treatment, participants took 180 mg fexofenadine antihis-
tamine medication one hour before receiving treatment. It was found that the minimum
detectable difference of the vibration effect on the antihistamine condition for the mean
velocity difference from baseline was 2.02 cm/s.

To start each treatment, subjects were connected to a 3-lead ECG to measure heart
rate. The ECG then connected to the GE Logiq S8 ultrasound unit (GE Healthcare, Chicago,
IL, USA). Then, to allow subjects’ heart rates to reach a baseline level, they remained in a
prone position on a treatment table for 10 min. To avoid unintended muscle contraction to
the calf, their ankles were placed on a foam roller, allowing the feet to be relaxed and the
knee to be mildly bent. Resting blood flow measurements were then taken, followed by
10 min of LV treatment at 47 Hz to the calf area using a Hypervolt percussion massage gun
(Hyperice, Irvine, CA, USA). During the LV treatment, the massage gun was moved over
the gastrocnemius and soleus muscles at an even tempo of about three seconds (proximal–
distal–proximal) with no extra pressure other than the weight of the device. Figure 1
depicts the time points of each blood flow measurement post vibration, with time 0 being
immediately after the treatment ended. In total, 13 measurements were taken; immediately
after LV was completed, and then once every minute for 5 min, and finally 7 measurements
every 2 min until 19 min post-LV.
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2.3. Measurements and Analysis

The popliteal blood flow was measured distally from the knee using a GE Logiq S8
ultrasound. A 9 L transducer set at 10.5 Mhz in vascular mode was used to measure the
blood flow. Previous studies have used similar methods for measuring arterial blood
flow [12,14], and ultrasound blood flow measurements have been shown to be reliable [25].
The transducer was placed on the popliteal area, and using brightness and color-flow
modes, internal landmarks were identified including the femoral condyles and proximal
tibia, along with the bifurcation of the anterior tibial artery. Measurements were taken
1 to 2 cm proximal to the bifurcation. Once the location for the measurement had been
established, the skin was marked with a “permanent” soft-tipped marker to aid in quickly
identifying the same location for subsequent measurements. (Marks were darkened on
subsequent visits, as needed). The long-axis view of the artery was visualized, with near
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and far intima-media layers clearly observed. We recorded a tri-phasic cine-loop of at least
4 s and corrected with a standard insonation angle of 60◦. Outcome measures included
heart rate (bpm), mean blood velocity (cm/s), peak blood velocity (cm/s), arterial diameter
(cm), and volume flow (mL/min). Five cardiac cycles were used to determine mean velocity
and volume flow. Arterial diameter was measured from the inner border of the near vessel
wall, intima-media, to the inner border of the far intima-media during the diastole of the
synchronized ECG waveform. Volume flow was then calculated by internal software using
the diameter measurement. Measurements were repeated according to the same methods
at specified time intervals. Velocity and volume flow measurements are reported as the
difference from baseline values. This allowed for a comparison of treatments within the
same subject. All participants completed the study within one week of starting.

Hypervolt states that the highest frequency of the gun is 53 Hz at level 3. Using an
omega HHT41 digital stroboscope (Omega Stamford, CT), we determined that the actual
highest frequency of the Hypervolt gun was 47 Hz. We also verified that the Hypervolt
massage gun head had a measured amplitude of 2.56 cm and a weight of 1.14 kg.

Volume flow (VF), mean velocity (MV), and arterial diameter were the only measure-
ments used for statistical analysis. Changes in heart rate were so minimal that they were
not analyzed. Arterial diameter was initially analyzed but was found to have insignificant
changes, so it was not included in further analysis. The change from baseline data for MV
and VF across all twenty-one subjects was averaged for both control and antihistamine
conditions. VF is a function of MV and arterial diameter, and the average changes from the
baseline results were so similar to MV that only MV was used for statistical analysis. Cell
means mixed models were used to account for both within-subject and between-subject
variability, and contrasts were created to perform t-tests of interest. First, the vibration
effect pre to post was tested in both the antihistamine and control conditions for MV. Next,
the average vibration effect was taken over all time periods post-vibration and compared
between the two conditions for MV.

We performed four statistical tests. Analyzing the vibration effect pre to post for
both control and antihistamine conditions for MV requires 2 tests. The comparison of the
vibration effect pre–post and averaged across all time points requires 2 more tests, resulting
in 4 tests in total. Since multiple tests can artificially increase the significance level (α), we
used a Bonferroni correction, resulting in a critical t-value of ±2.41 to maintain a family
alpha level of 0.05.

3. Results

Table 1 shows the t-values of the pre–post effect of vibration for MV and each condition,
as well as the comparison of the average effect of the two conditions. Figure 2 shows the
data distributions for MV difference from baseline immediately post-LV for control and
antihistamine conditions (left), as well as the average MV difference across all time points
post-LV for each condition.

Table 1. T-values for statistical tests used to analyze mean velocity data. The critical t-value was
2.41 and statistical significance is shown via *.

Test/Condition Mean Velocity T-Value

Pre–post vibration/control 4.078 *
Pre–post vibration/antihistamine 0.5173

Pre–post vibration interaction 2.518 *
Average antihistamine effect 12.555 *

This reveals that mean blood velocity was not significantly raised post-vibration after
subjects had received antihistamine medication, but supports our previous finding that
47 Hz 10 min LV significantly increased MV in the control condition. It also shows that
the effect of the antihistamine, immediately post-LV and averaged over 19 min post-LV,
significantly decreased blood flow compared to the control condition.
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Table 2 shows the heart rate and diameter for each subject pre- and post-LV, averaged
over the control and antihistamine conditions. These data show that the vibration effect
on these two outcome measures was small and inconsistent between subjects in this study
population. The correlation between HR and popliteal diameter had an R2 value of 0.033.
This shows that there is no direct relationship between the two measures.

Table 2. Heart rate and popliteal diameter for each subject, pre- and post-LV measurements, averaged
across the control and antihistamine conditions.

Subject
HR

Pre-Vibration
(BPM)

HR
Post-Vibration

(BPM)

Diam.
Pre-Vibration

(cm)

Diam.
Post-Vibration

(cm)

1 72 75.5 0.74 0.77
2 75 69.5 0.5 0.51
3 50 52.5 0.665 0.645
4 53.5 50.5 0.57 0.595
5 62 58 0.55 0.54
6 59.5 58.5 0.63 0.64
7 65.5 59 0.525 0.525
8 78 69 0.545 0.545
9 70 58.5 0.57 0.57
10 62.5 59.5 0.555 0.555
11 60.5 53.5 0.52 0.54
12 56 62 0.645 0.635
13 69 58 0.7 0.715
14 64.5 66.5 0.53 0.525
15 51.5 56.5 0.56 0.575
16 66.5 70.5 0.53 0.535
17 76 79.5 0.58 0.585
18 85.5 80 0.59 0.60
19 88.5 82.5 0.495 0.515
20 81.5 79 0.44 0.45
21 61.5 58.5 0.56 0.56

Figures 3 and 4 show the comparison of the two conditions (control and antihistamine)
over time for MV and VF, respectively, averaged across all 21 subjects. The raw standard
deviations for those averages are also plotted.
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standard deviations.

These figures depict the effect of antihistamines on blood flow after the LV treatment
has concluded.

To investigate the repeatability of the vibration effect, we also compared the average
control condition with the MV and VF results for 47 Hz 10 min in our previous study [17].
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Plots of the two trials for both MV and VF are shown in Figures 5 and 6, respectively. To
compare these results, we performed two tests, analyzing the average effect of the vibration
over all time points, and found that the differences between our previous results and these
results were not significant. The critical t-value for these tests was ±2.093 and the measured
t-value for MV was 1.084 and for VF 1.080.
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4. Discussion

The intake of an antihistamine blunts the blood flow response in the popliteal artery
following 10 min of LV to the calf area. The difference between the peak increase of the
control and the antihistamine is 2.31 cm/s for MV and 35.62 mL/min for VF, suggesting
that histamines released during LV therapy are blocked when antihistamine medication is
taken. It is likely that one of the primary mechanisms for increased blood flow following
LV is mediated through histamine release.

Halliwill et al. performed a study where subjects were given 540 mg of fexofenadine
and 300 mg of ranitidine to block 90% of histamine receptors and exercise-induced blood
flow changes were measured [22]. Our study used only 1/3 the dose of fexofenadine and
still found a significant effect on blood flow from histamine antagonism. Again, despite
blocking less than 90% of histamines, this suggests that the mechanical stimulus of LV
increases histamine signaling in the blood stream.

Based on the results of our previous study, it is interesting to note that the frequency
and duration of LV exposure play a role in changing levels of blood flow. Higher frequencies
(up to 47 Hz) and longer durations (up to 10 min) resulted in greater changes to blood
flow [17]. This, combined with our current results, implies that frequency and duration
may have an impact on histamine signaling. This may be due to mechano-sensing mast
cells that are responsible for releasing histamines into the blood [26].

Boyden et al. conducted a study on patients who suffered from vibratory urticaria,
a skin disease where small amounts of vibration or friction can cause hives to break out.
In their study, it was found that certain patients with vibratory urticaria had a genetic
mutation in the ADGRE2 receptor (part of the AGPCR family) expressed on their skin mast
cells [24]. A mutation in ADGRE2 receptors in patients with vibratory urticaria resulted in
both an increase in degranulation and a reduced threshold for vibration to cause mast cell
degranulation and histamine release compared to non-mutated ADGRE2 [24,26]. However,
non-mutant ADGRE2 receptors also responded to mechanical signals in healthy cells but
required more vibration to elicit a response [26]. The time-course of increased blood flow
follows similar kinetics to that of serum histamine and mast cell degranulation in response
to vibration challenge, as demonstrated by Boyden et al. [24]. These data suggest that
histamine plays an important role, and that mast cell activation may be the source of
histamines in response to LV treatment. The exact vibration characteristics and thresholds,
as well as in vivo factors that mediate the separation of the subunits of ADGRE2 to trigger
signaling, are not well understood. However, it is likely that a high force and frequency
of vibration signals causes the alpha and beta subunits to separate, resulting in mast cell
degranulation [24]. The results of the study conducted by Boyden showed that patients
with the missense in ADGRE2 had higher levels of histamine in serum than those without,
after a vortex vibration challenge on the arm. This suggests that the mutated ADGRE2
receptor has a lower threshold of activation.

This result was confirmed by Naranjo et al., in their study that investigated the
effects of varying vibration frequency on mast cell activation. This study tested a range
of frequencies from 8.33 Hz (500 rpm) to 33.3 Hz (2000 rpm) for 20 min on both mutated
and non-mutated mast cells in vitro. They found that non-mutated mast cells showed an
increase in granulation percentage from 10% to 14% when the frequency was changed from
25 Hz to 33 Hz [26]. This reflects the data collected from our previous study, which showed
an increase in blood flow as frequency increased [17].

Therefore, we hypothesize that mast cell mechanical activation is force-dependent and
that greater amounts of force result in a larger amount of mast cells being activated in the
deeper tissue. This hypothesis explains the impact of frequency on mast cell activation
and histamine release. According to accepted guidelines for reporting vibration interven-
tions, the equation for peak acceleration as a function of vibration frequency is given in
Equation (1) [27]. Equation (2) is the equation for force due to an accelerating mass:

apeak = 2π2 × d × f2 (1)
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F = m × a (2)

The mass of the massage gun head (m) and the distance (d) traveled by the head are
constant. The distance (d) is constant because the device head does not bounce off the soft
tissue, meaning it is always in contact with the skin. Any variations in the distance due
to resonant vibrations would be negligible. This means that the peak force exerted by the
massage gun is inversely proportional to the frequency (f) squared. Therefore, the peak
force (F) of the massage gun can be expressed in terms of frequency (f) as

Fpeak = m × d × 2π2 × f2 (3)

This shows that the force of the massage gun is proportional to the frequency squared,
which is supported by our previous results [17] and Naranjo [26]. This hypothesis could
potentially explain the significance of vibration displacement, as well. If frequency remains
constant between two devices but one device has a longer ‘throw’, resulting in a larger
displacement, that device will exert a greater force and may activate a greater number of
mast cells that are deeper in the tissue. Prior studies of mast cell responsiveness to vibratory
stimuli have primarily focused on cutaneous mast cells in the vibratory urticaria. In this
setting, the vibratory challenge applied to the forearm and mast cell activation generally
caused localized erythema, likely due to the dilatation of the capillaries. However, these
challenges used a laboratory vortex, which likely stimulates superficial mast cells rather
than mast cells deeper in the tissue, as we would expect with LV stimulation. In addition,
the vortex vibration was applied to the anterior forearm, where the deeper muscular tissue
does not have an abundance of mast cells. In the present study, the vibration was applied
with greater displacement into an area where mast cells are present in the deeper loose
connective tissues around the synovial joint and cartilage of the knee, where they reside
close to blood vessels and nerves [28]. Here, the mast cell activation caused by vibration
may be sufficient to cause localized effects on the vasculature, but not sufficient to cause
systemic effects.

Further research is needed to validate this mechanism of vibration-induced blood
flow by measuring the response of mast cells in the skin and deeper tissue. Also, the
population of this study was limited to recreationally active, healthy young adults, and
further testing on a wider population is needed to determine the efficacy of this therapy. It
is also important to note that the increase in MV and VF due to LV is minimal compared to
increases caused by light exercise or increased heart rate. Further research is required to
determine the extent, if any, of therapeutic benefit existing from LV treatment.

Other mechanisms that we believe are unlikely to primarily cause an increase in blood
flow due to LV include the shear thinning of the blood and muscle activation. Shin et al.
performed a study measuring the blood flow resistance of a red blood cell suspension in
Dextran-40 in a microchannel under various transverse vibration frequencies. They found
that at very low flow rates (<0.01 mL/min), increasing the vibration frequency from 0 Hz
to 30 Hz significantly decreased the blood flow resistance. However, at flow rates greater
than 1 mL/min, the change in blood flow resistance was insignificant with a changing
vibration frequency up to 70 Hz [29]. The lowest measured resting flow rate of this study
was over 2000 mL/min. Based on the results of Shin et al., the transverse vibration applied
via LV would not significantly change the blood flow resistance, suggesting that blood
thinning is not a primary mechanism of increasing blood velocity [29]. Finally, there may
be local muscle activation caused by the LV therapy, but not enough to cause an increase in
heart rate. Since the 1960s, the application of higher frequency LV (150–200 Hz) has been
noted to have an effect on the tonic vibration reflex (TVR), which in turn helps to produce
muscle contraction [30]. Earlier studies have reported the potential application of LV to
be useful in the treatment of muscle spasticity and the facilitation of muscle contraction
in paretic muscles [31]. Further analyses of effective vibrational frequency have noted
that muscle contractions are best induced in the frequency range of 100–150 Hz due to a
combination of the harmonic synchronization of motor units decreasing while subharmonic
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synchronization increases [32]. Frequencies beyond 150 Hz are not considered beneficial for
facilitating contraction and become uncomfortable, while frequencies below 100 Hz have
mixed results but appear to not have an appreciable effect on muscle contraction [32,33].

5. Conclusions

This study shows that the use of antihistamine medication resulted in an insignificant
increase in BF post LV. It also shows that an LV of 47 Hz for 10 min applied to the calf,
without antihistamine, significantly increased popliteal BF. This blunted BF response to
LV, after antihistamine use, implies that the mechanism behind LV-induced arterial BF
is increased histamine signaling. It is our hypothesis that LV may cause an increase in
histamine signaling through the mechanoactivation of mast cells. We also hypothesize
that this mechanoactivation is force-dependent, as the force generated by a massage gun is
proportional to the frequency squared. Future work should investigate the limits of the
frequency and duration effects on increasing BF.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vibration7020017/s1, Table S1: Blood flow and antihistamine dataset.
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