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Abstract: Climate changes and poor soil nutrient profiles in sub-tropics are determinant factors to
estimate crop productivity. This study aims to evaluate the impact of phytohormones, e.g., indole
acetic acid (IAA) and gibberellic acid (GA3), on mung bean yield, seed nutritional profile, and soil N
availability in the sub-tropical region of Pakistan. The mung bean plants were treated with three levels
(0, 30, and 60 mg L−1) of IAA and GA3 individually and/or in combination using a hydraulic sprayer.
The amendments were applied in the flowering stage (approximately 25 days after germination)
in a randomized complete block design. The results revealed that the 60 mg L−1 concentration of
IAA and GA3 led to significant changes in the growth and yield traits compared to non-treated
plants. For example, GA3 positively influenced the biological yield (35.0%), total carbohydrate (7.0%),
protein (16.0%), and nitrogen (14.0%) contents in mung bean seeds, compared to the control (CK).
Additionally, the combined foliar treatment of IAA and GA3 (IAA2 + GA2) displayed a much stronger
influence on yield attributes, such as the number of pods by 66.0%, pods’ weights by 142.0%, and
seed yield by 106.5%, compared with the CK. Mung bean plants showed a significant improvement
in leaf photosynthetic pigments under a higher level (60 mg L−1) of sole and combined treatments
of IAA and GA3. Moreover, except abscisic acid, the endogenous concentration of IAA, GA3, and
zeatin was enhanced by 193.0%, 67.0%, and 175.0% after the combined application of IAA and GA3

(IAA2 + GA2) compared to the CK treatment. In addition, soil N availability was increased by 72.8%
under the IAA2 treatment and 61.5% under IAA2 + GA2, respectively, compared with the control
plot. It was concluded that the combined treatment of IAA and GA3 (IAA2 + GA2) followed by
the sole application of GA3 and IAA at a 60 mg L−1 concentration were most effective treatments
to improve the morpho-physiology and nutrient profile of mung beans; however, the underlying
molecular mechanisms need to be explored further.

Keywords: indole acetic acid; gibberellic acid; Vigna radiate L.; photosynthetic pigments; protein;
economic yield
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1. Introduction

The current cultivation pattern depends on 30 crops which are responsible for provid-
ing 95% of the daily caloric requirements of world population [1]. Among them, four crops
are a major part of the diet, namely wheat, rice, maize, and potatoes. However, minor crops
are still very significant at the national, regional, and local levels. Pulses are rich in protein
and contain more than three times higher quality protein than cereals [2]. In addition, pulse
crops preserve and improve soil fertility, especially soil N availability, through biological
nitrogen fixation, and hence have a significant role in sustainable agriculture. Pulses are
popularly known as the “poor man’s meat” in most developing countries due to being
cheaper and more widely available than animal protein [3]. Mung bean (Vigna radiata L.), a
short-duration crop (70–90 days), is an important pulse all over the world with admirable
economic importance. The grains of mung bean contain 25.67% protein, 1–3% fat, 5.4%
carbohydrates, 3.5–4.5% fibers, and 4.5–5.5% ash with very minimal flatulent effects [4], and
they are rich in folate and iron [5]. They contain a high amount of protein with a diversity
of essential amino acids and are especially rich in lysine [6]. They also contain important
forms of fatty acids (linoleic acid and linolenic acid), which are essential in an organism’s
growth. It is a vital crop to Asian farmers with small land holdings [7].

Mung bean (Vigna radiata L.) fixes atmospheric nitrogen and contains high nutritious
value for forage and seed purposes. The crop fits well in multi-cropping systems because
of its rapid growth and early maturity. Subsequently, the crop is widely grown in marginal
and abiotically stressed agro-ecosystems [8], but it experiences considerable yield losses.
Worldwide food insecurity affects more than 800 million people. Almost 60% of them live
in South Asia and sub-Saharan Africa [9], whereby half of them are livestock keepers and
small land holders [10]. Small land holder farmers in dryland areas or areas with erratic
rainfall usually lack technologies to diversify their production, making them particularly
vulnerable. In Pakistan, the production of pulses has stagnated and has not kept the pace
needed to meet consumption demand. The gap has been fulfilled by massive imports [7].
The size of areas suitable for the growth of pulses has been steady since the 1960s, with
chickpeas being the dominant pulse grown in Pakistan [11]. However, the area in which
mung beans are cultivated increased substantially during 2019–20 by 35%, in which produc-
tion increased by 65% in Punjab province, 6% in Khyber Pakhtunkhwa province, and 17%
in Baluchistan province. About 88% of the area in which mung beans are cultivated is in
the Punjab province, which produces 85% of the total production in the country [12]. Still,
a lot needs to be done in Pakistan to enhance mung bean production in terms of quality
and yield. More recently, the Australian Centre for International Agricultural Research,
in collaboration with the Pakistani government, supported research for improving the
productivity and marketing of pulses in Pakistan [11]. Therefore, considering this scenario,
the total pulse production must urgently be increased to meet the consumption and protein
demands [7].

Many artificial and natural soil amendments, e.g., phytohormones [13,14], C-rich
organic amendments [15–17], and synthetic minerals nutrients [18–21] have been recog-
nized to govern soil fertility; facilitate progressive methods, from the germination to the
harvesting of crop plants; and facilitate improvements in plant production [22]. The natural
form of auxin found in plants is indole-3-acetic acid (IAA), which is primarily present in
the young leaves and stem apex of a plant. Indole-3-acetic acid (IAA) is one of the main
important enzymes, which is non-toxic for plants even at high concentrations [23]. IAA has
been recognized in root growth, cell division, cell elongation, adventitious root formation,
tissue swelling, embryogenesis induction, callus initiation, as well as the loosening of cell
walls even at lower levels of this hormone [24,25]. Gibberellic acid (GA3) is an important
natural plant growth regulator (PGR) which enhances the growth, development, and yield
of different crops. GA3 is a phyto-hormone, and terpenoid compounds containing 19–20
carbon atoms, naturally produced in new leaves and germinated seed embryos, and more
than 136 species have been identified [26]. A very small amount of GA3 enhances stem
elongation [27] by increasing cell divisions and cell size [28]; improves plant growth and
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development [29,30] by inducing metabolic activities [31,32] of many key enzymes such
as carbonic anhydrase (CA) and nitrate reductase (NR) [33] and regulating nitrogen uti-
lization [34]; and consequently, increases the dry weight and yield [35,36]. It also induces
growth and development by enhancing water uptake in plant tissues [37,38], facilitates
the production of photosynthetic pigments and photosynthesis [39], and enables flower
formation and fruit set in legumes [36,40].

Keeping in view the importance of mung beans in sub-tropics, this study aimed to
improve their morpho-physiology, yield, and nutritional profile when grown in a sandy-
loam soil with low-fertility status. In the literature, many researchers have evaluated
the individual beneficial effects of indole acetic acid (IAA) and gibberellic acid (GA3)
on many crops under stressful and non-stressful environments [14,35,41]; however, their
combinations with various dosage levels still have to be evaluated. Therefore, the individual
and/or combined effectiveness of various levels of IAA and GA3 was assessed in the
present study to evaluate mung bean (Var. AEM-96) performance in the sub-tropical
region of Pakistan for two consecutive years (2018–19/2019–20). This experiment has huge
importance as a reference for the impact of two important phytohormones on mung bean
growth, yield, quality, and nutritional contents in the sub-tropical region of Pakistan.

2. Materials and Methods
2.1. Experiment Site and Climate Conditions

The two-year field experiment was carried out in the agronomic research area of The
Islamia University of Bahawalpur, Punjab, Pakistan, during the 2019–20 growing seasons.
The meteorological data were obtained from Bahawalpur meteorological station and are
described in Table 1. The experiment was carried out to determine the properties of the soil
at the experimental site. The soil sample test results showed that the soil was sandy loam
and had an acidic pH (7.2). The detailed statuses of the soil’s physio-chemical characteristics
are depicted in Table 2.

Table 1. Meteorological data recorded at the experimental site during the study period of 2019–2020.

Month
Tmax

◦C Tmin
◦C Total Rain Fall (mm) R.H (%)

2019 2020 2019 2020 2019 2020 2019 2020

October 36.1 37.4 21.6 20.5 0 0 58 54
November 31.6 32.20 13.9 11.6 0 0 53 52
December 27.5 26.6 12.2 9.0 0 0 57 53

January 26.4 22.1 11.3 8.3 0 2.5 61 62
February 22.4 24.2 10.2 11.0 0 0 45 50

March 35.1 34.4 18.1 15.5 0 0 48 48
April 38.0 40.2 21.9 18.9 0 0 44 43
May 39.5 46.0 29.0 28.0 0 0 58 56
June 41.0 42.0 28.0 27.0 0 0 47 45
July 45.0 47.0 27.0 25.0 0.7 0 56 53

August 42.0 43.0 28.0 23.0 0 2.6 47 49
September 38.0 41.0 26.0 24.5 0 0 50 52

Tmax = maximum temperature, Tmin = minimum temperature, and R.H = relative humidity.

Table 2. The detailed fertility status of the soil at the agronomic research field station used in the
current experiment.

Soil Properties Units Values

Texture
pH

-
-

Sandy loam
7.2

SOM % 1.43
Total N % 0.07

Na meq/60 g soil 0.07
K meq/60 g soil 0.12
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Table 2. Cont.

Soil Properties Units Values

Mg meq/60 g soil 2.1
P ug/g soil 12.3
S ug/g soil 16.09

Ca ug/g soil 3.02
Zn ug/g soil 1.43
B ug/g soil 0.38

2.2. Experiment Design and Treatments

The field experiment was conducted under a randomized complete block design
(RCBD) with three replications per block. The area was divided into different plots, and
each plot size was 10 m2 containing 6 rows. To fulfill the nutrient profile of the growth
media of the experimental site, it was fortified with potassium (K), phosphorus (P), and
nitrogen (N) in the form of calcium superphosphate (12%), potassium sulfate (50%), and
urea (46%), respectively. The above ratio of fertilizer was maintained, with one fertilizer
bag containing 50 kg of DAP (diammonium phosphate) and 10 kg of urea, and it was
incorporated in the soil before planting the mung bean genotypes.

The mung bean seeds (Var. AEM-96) were collected and washed three times with
distilled water. After being washed, these seeds were spread to dry overnight at room
temperature. Later on, the mung bean seeds were sown and thinned after three weeks of
germination for the maintenance of the plant-to-plant distance. The application solutions of
IAA and GA3 were prepared according to the treatment specification (0, 30, and 60 mg L−1

concentrations), and they were applied on the plant foliage at flowering time after 25 days
of germination (DAG) thrice, with an 11-day interval each time. The foliar application with
a hand hydraulic sprayer was carried out at dawn and dusk to avoid evaporation losses.
Optimal cultural and agronomic practices that affect the yield of the crop were applied
efficiently during the whole plant growth cycle. The details of the foliar treatment of IAA
and GA3 are described in Table 3.

Table 3. Treatment layout of the experiment conducted in 2019–2020 in a sandy-loam soil in sub-tropics.

Treatment Number Treatment Labels IAA Conc. (mg L−1) GA3 Conc. (mg L−1)

T1 CK 00.0 00.0
T2 IAA1 30.0 00.0
T3 IAA2 60.0 00.0
T4 GA1 00.0 30.0
T5 GA2 00.0 60.0
T6 IAA1 + GA1 30.0 30.0
T7 IAA1 + GA2 30.0 60.0
T8 IAA2 + GA1 60.0 30.0
T9 IAA2 + GA2 60.0 60.0

IAA: indole-3-acetic acid; GA3: gibberellic acid.

2.3. Determination of Growth Traits

The mung bean plant samples which were to be assessed to determine morphological
parameters were collected 60 days after sowing (DAS) by randomly selecting plants from
each plot for the estimation of growth characteristics. Plant height was recorded with
the help of a measuring scale from the ground to the top of the leaf in centimeters (cm).
Other growth traits, including leaf fresh and dry weight (wt.), shoot length, number of
leaves/plant, and number of branches/plant, were also calculated accordingly.
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2.4. Determination of Agronomic Traits

Post-harvesting data and seed-related traits were measured 75 days after sowing (DAS)
from the agronomic research area, The Islamia University of Bahawalpur, Pakistan. During
harvesting, the mung bean plant samples were collected for the estimation of agronomic
and yield-related parameters. The pod weight/plant, the number of pods/plant, and the
number of seeds/pod were counted from ten randomly selected plants at harvest. Four
rows from each treatment condition were harvested and weighed to compute the biological
yield (kg ha−1). However, the seed yield was recorded at harvest, where the mass of seeds
collected per square meter (g/m2) was recorded and converted to kg/ha.

2.5. Estimation of Photosynthetic Traits

The mung bean fresh leaf samples were collected 60 DAS. The determination of chloro-
phyll pigments was carried out by randomly selecting ten plants/plots. Fresh leaf samples
were collected from each treatment and subjected to grinding with 80% acetone. The
semi-liquid extract was filtered and centrifuged at 10,000 rpm for 5 min. The supernatant
was then subjected to a spectrophotometer (Model Analytikjena Spekol 1500 Germany).
For acetone (80% v/v) extraction, the following equations given by Lichtenthaler [42] were
used to estimate chlorophyll contents (mg/g FW) in the leaves.

Chl. a = {(12.25A663.2 − 2.79A646.8) × V} ÷ W

Chl. b = {(21.50A646.8 − 5.10A663.2) × V} ÷ W

Carotenoids = {(1000A470 − 1.82Chl.a − 85.02Chl. b) × V} ÷ (198 × W)

where V represents the final volume of chlorophyll extract in 80% acetone, and W is 0.1 g.

2.6. Determination of Total Carbohydrates, Nitrogen, and Protein Contents

The leaves of 3 randomly selected plants 60 DAS were subjected to the estimation of
total carbohydrates, nitrogen, and protein contents. The phenol–sulfuric acid method was
applied to measure the total carbohydrates from the IAA and GA3 treatment individually or
in combination. Micro Kjeldahl’s apparatus was used to estimate the nitrogen contents [43].
The crude protein was determined using a previously reported method [44]. In this method,
crude protein was measured by multiplying protein contents with a 5.75 factor.

2.7. Estimation of Endogenous Growth Regulators

The mung bean plant samples were collected randomly from each plot and treatment
75 DAS for the determination of endogenous critical plant regulators. For this particu-
lar trait, the plants were screened based on data obtained from morphological and yield
attributes. The most promising treatments were then selected for the estimation of endoge-
nous regulators, including IAA, GA3, ABA, and zeatin. The hormones were extracted using
the previously reported method described by Shindy et al. [45]. Briefly, 2 g of fresh leaves
was ground in cold 80% (v/v) aqueous methanol with a mortar and pestle for extraction.
After extraction, the gas–liquid chromatography (GLC) technique was used to determine
the IAA, GA, and ABA contents [45]. Furthermore, the cytokinin contents were estimated
using the method previously reported by Müller [46] via HPLC (high-performance liquid
chromatography).

2.8. Statistical Analysis

The data were pooled for both the growing years. All the experimental data were
recorded and subjected to a one-way analysis of variance (ANOVA) with three repli-
cates to record statistically significant/non-significant differences among different traits of
mung bean through a computer program, Statistix Version 8.1 (Analytical Software, 2005).
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Moreover, Bonferroni’s statistical analysis test was applied to verify the level of significance
(5%) among different treatment means.

3. Results
3.1. Influence of Natural Phytohormones on Mung Bean Growth

The statistical data of morphological/vegetative parameters depicted that the applica-
tion of two phytohormones, i.e., IAA (T2–T3) and GA3 (T4–T5), individually or in combi-
nation (T6–T9), significantly influenced the growth of mung bean plants (Figure 1A–F). A
significant increase was observed under IAA2 + GA2 treatments in shoot length by 33.8%,
leaf fresh weight by 56.0%, leaf dry weight by 57.7%, no. of leaves by 34.8%, and no. of
branches per plant by 22.9%, as compared to the control (CK) treatment. The maximum
growth performance was observed in the IAA2 + GA2 (T9) treatment compared to the other
treatments (T1–T8) and the control (T0).
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Figure 1. Influence of individual and/or combined foliar application of natural phytohormones on 
growth and biomass characteristics, e.g., shoot length (A), total plant height (B), leaf fresh weight 
Figure 1. Influence of individual and/or combined foliar application of natural phytohormones on
growth and biomass characteristics, e.g., shoot length (A), total plant height (B), leaf fresh weight (C),
leaf dry weight (D), no. of leaves (E), and no. of branches (F) of mung bean plants grown in sandy-
loam soil in sub-tropics. The bar values are an average of three replicates (n = 3), and the bars
not sharing the same lowercase letters indicate significant differences from each other according to
Bonferroni’s statistical analysis at p < 0.05.
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3.2. Influence of Natural Phytohormones on Yield and Yield Related Parameters

The foliar application of the singular or combined treatment of IAA and GA3 hormones
positively influenced the mung bean yield and yield-related parameters, as presented in
Figure 2A–F. The data analysis showed that the highest yield of each parameter was
obtained with the IAA2 alone and IAA2 + GA2 treatment. However, the most effective
treatment was found to be IAA2 + GA2 (T9), which led to the highest mung bean yield
in terms of seed yield (>230.3%), straw yield (>29.5%), and biological yield (>43.4%), as
compared with the CK treatment in which no phytohormone was supplied. In most of
the yield attributes, however, there was no statistical difference among the effect of the
IAA2 (T3) and IAA2 + GA2 (T9) treatment levels. On the other hand, it was noticed that a
lower concentration of GA3 hormone (GA1 treatment) was less effective in improving mung
bean’s yield-related traits when compared with the higher dosages of the studied hormones.
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Figure 2. Influence of individual and/or combined foliar application of natural phytohormones on 
yield-related characteristics, e.g., no. of pods (A), weight of pods (B), no. of seeds per plant (C), seed 
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Figure 2. Influence of individual and/or combined foliar application of natural phytohormones on
yield-related characteristics, e.g., no. of pods (A), weight of pods (B), no. of seeds per plant (C), seed
yield (D), straw yield (E), and biological yield (F) of mung bean plants grown in a sandy-loam soil
in sub-tropics. The bar values are an average of three replicates (n = 3), and the bars not sharing
the same lowercase letters indicate significant differences from each other according to Bonferroni’s
statistical analysis at p < 0.05 level.
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3.3. Influence of Natural Phytohormones on Photosynthetic Pigments

The influence of different concentrations of the spraying of IAA and GA3, combined
or alone, on total photosynthetic pigments, carotenoids, chlorophyll a (Chl a), and chloro-
phyll b (Chl b) are presented in (Figure 3A–D). Overall, the photosynthetic pigments and
carotenoid contents were influenced positively by the foliar application of IAA and GA3.
The analysis of the results showed that IAA and GA3 treatments caused a significant
increase in photosynthetic pigments. Briefly, maximum enhancements of 16.5%, 19.7%,
and 17.9% was reported in chlorophyll a, chlorophyll b, and carotenoid contents, respec-
tively, under the combined application of phytohormones (IAA2 + GA2), as compared with
the plants grown in the control plot. Moreover, quite similar results were observed for
the total concentration of pigments in the leaves of mung bean under the application of
phytohormones.
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Figure 3. Influence of individual and/or combined foliar application of natural phytohormones on 
the physiological parameters, e.g., chlorophyll a (A), chlorophyll b (B), carotenoid contents (C), and 
total pigment contents (D) of mung bean plants grown in a sandy-loam soil of sub-tropics. The bar 
values are an average of three replicates (n=3), and the bars not sharing the same lowercase letters 
indicate significant differences from each other according to Bonferroni’s statistical analysis at P < 
.05 level. 
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on the physiological parameters, e.g., chlorophyll a (A), chlorophyll b (B), carotenoid contents (C),
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bar values are an average of three replicates (n = 3), and the bars not sharing the same lowercase
letters indicate significant differences from each other according to Bonferroni’s statistical analysis at
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3.4. Influence of Natural Phytohormones on Nutritional Status of Mung Bean Seeds

The findings related to the nutritional status of the seeds of mung bean plants, e.g.,
total carbohydrates, protein contents, and nitrogen contents, from the current trial are given
in Figure 4A–C. The results revealed that the singular or combined foliar application of
IAA and GA3 significantly improved the total carbohydrate, protein, and nitrogen contents
in the yielded mung bean seeds as compared with the control (CK) plants. The highest
increases in the contents of total carbohydrates (6.6% and 7.5%), protein (17.0% and 17.3%),
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and nitrogen (13.2% and 14.5%) were observed under the IAA2 and IAA2 + GA1 treatments,
compared to the other treatments and control plants. On the contrary, it was noticed that
the lower concentration of GA3 hormone (GA1 treatment) was not effective in improving
nutritional traits of mung bean seeds as compared to the other treatments.
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3.6. Influence of Natural Phytohormones on Endogenous Phytohormone Production  
The current study determined the changes in the endogenous IAA GA3, zeatin, and 

ABA contents after the foliar application of varying concentrations of natural phytohor-
mones on seedlings 60 days after sowing (DAS). The corresponding results are presented 
in Figure 5 A–D. The endogenous production of IAA GA3, zeatin, and ABA was only eval-
uated under the higher application doses of IAA and GA3 based on the results obtained 
for growth- and yield-related characteristics. It was noticed that the exogenous applica-
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Figure 4. Influence of individual and/or combined foliar application of natural phytohormones on
the nutritional status of seeds of mung bean plants, e.g., total carbohydrates (A), protein contents (B),
nitrogen contents (C), and soil N availability (D) of the studied sandy-loam soil in sub-tropics. The
bar values are an average of three replicates (n = 3), and the bars not sharing the same lowercase
letters indicate significant differences from each other according to Bonferroni’s statistical analysis at
p < 0.05 level.

3.5. Influence of Natural Phytohormones on Soil N Availability

The influence of different concentrations of the spraying of IAA and GA3, combined
or alone, on soil N availability was determined after harvesting in the experiment (75 DAS),
and the data are presented in Figure 4D. Overall, the availability of N in the soil was
positively influenced with the foliar application of IAA and GA3. It was observed that the
IAA and GA3 treatments caused a significant increase in N availability in sandy-loam soil.
The maximum increase was reported under the IAA2 (71.8%), IAA1 + GA2 (66.5%), and
IAA2 + GA1 (83.8%) treatments.

3.6. Influence of Natural Phytohormones on Endogenous Phytohormone Production

The current study determined the changes in the endogenous IAA GA3, zeatin, and
ABA contents after the foliar application of varying concentrations of natural phytohor-
mones on seedlings 60 days after sowing (DAS). The corresponding results are presented
in Figure 5A–D. The endogenous production of IAA GA3, zeatin, and ABA was only eval-
uated under the higher application doses of IAA and GA3 based on the results obtained
for growth- and yield-related characteristics. It was noticed that the exogenous applica-
tions of GA3 and IAA were correlated with the changes in their endogenous contents
of studied phytohormones in mung bean. The combined foliar application of IAA and
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GA3 (IAA2 + GA2) markedly increased the IAA, GA3, and zeatin concentrations, while it
declined the ABA contents in the leaves of mung bean seedlings.
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Figure 5. The influence of individual and/or combined foliar application of natural phytohormones 
on the endogenous concentration of phytohormones, e.g., IAA contents (A), GA3 contents (B), ABA 
contents (C), and zeatin contents (D) in the leaves of mung bean plants grown in a sandy-loam soil 
in sub-tropics. The bar values are an average of three replicates (n=3), and the bars not sharing the 
same lowercase letters indicate significant differences from each other according to Bonferroni’s 
statistical analysis at P < .05 level. 

3.7. Hierarchical Agglomerative Cluster Analysis 
A two-dimensional relationship analysis was carried out to elaborate the distinction 

between the studied treatments and various physio-biochemical attributes of mung bean 
plants (Figure 6). The double hierarchical heatmap presented the correlation between the 
various studied traits of mung bean (row) and different singular and/or combined appli-
cation levels of natural phytohormones (columns). The column hierarchical dendrogram 
clearly showed that the effect of IAA2 and GA2 and IAA2+GA2 on the studied variables of 
mung bean seedlings under a subtropical environment was much more superior com-
pared to all the other treatments. On the other hand, the analysis also showed that the 
effect of these treatments was very useful to boost the growth, yield, and biochemical at-
tributes of mung bean seedlings.  

Figure 5. The influence of individual and/or combined foliar application of natural phytohormones
on the endogenous concentration of phytohormones, e.g., IAA contents (A), GA3 contents (B), ABA
contents (C), and zeatin contents (D) in the leaves of mung bean plants grown in a sandy-loam soil
in sub-tropics. The bar values are an average of three replicates (n = 3), and the bars not sharing
the same lowercase letters indicate significant differences from each other according to Bonferroni’s
statistical analysis at p < 0.05 level.

3.7. Hierarchical Agglomerative Cluster Analysis

A two-dimensional relationship analysis was carried out to elaborate the distinction
between the studied treatments and various physio-biochemical attributes of mung bean
plants (Figure 6). The double hierarchical heatmap presented the correlation between the
various studied traits of mung bean (row) and different singular and/or combined appli-
cation levels of natural phytohormones (columns). The column hierarchical dendrogram
clearly showed that the effect of IAA2 and GA2 and IAA2 + GA2 on the studied variables of
mung bean seedlings under a subtropical environment was much more superior compared
to all the other treatments. On the other hand, the analysis also showed that the effect of
these treatments was very useful to boost the growth, yield, and biochemical attributes of
mung bean seedlings.
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Figure 6. Heatmap analysis based on the correlation matrix of the growth and physio-biochemical
variables measured in mung beans (Vigna radiata L.) grown in a sandy-loam soil sprayed with
two natural phytohormones, viz., IAA and GA3. The double hierarchical dendrogram reveals the
relationship among treatments (column) and among various plant characteristics of mung bean
seedlings (row).

4. Discussion

In a natural system, the ratio of various phytohormones is maintained to a required
level by finely regulating their synthesis, transport, metabolism, and/or destruction to
ensure the coordinated growth of various tissues/organs along a defined pattern of growth
and development in the life span of the plant. A limited desired deviation in this set pattern
of growth and development may, however, be possible by enhancing the level of any of
these regulators by their exogenous application to intact plants or their parts [47]. Therefore,
it has been very well established that exogenous hormonal treatment alters plant growth
and development by modifying their growth, physiology, and endogenous contents [48,49].
However, it is still ambiguous as to whether the effects of exogenous hormones on growth
are direct or whether they are related with changes induced in endogenous hormones [50].
With reference to the comparison of two hormones, IAA foliar application was more
efficient in improving the growth attributes of mung bean than GA3. The present increase
in growth is in parallel to the earlier reported studies on various plants, including faba-bean
and mung bean [51,52] with the exogenous treatment of plant growth regulators (GA3 and
IAA). Another study also supported the current findings that GA3, IAA, and the interaction
of both phytohormones significantly contributed towards plant height, the number of
pods/plant, biological yield, straw yield, seed yield, total carbohydrates, protein and N



Soil Syst. 2023, 7, 34 12 of 17

contents in the seeds [35]. IAA has been recognized to increase growth and photosynthetic
pigments’ concentration in the leaves of plants, as shown in the current study [53], and
stimulate cell division and enhance biochemical traits, i.e., total carbohydrates content and
polysaccharides [54]. Furthermore, previously, an important role of GA3 on the growth
traits of the Simmondsia chinensis plant was observed under a sub-tropical environment [55].
In the current study, the statistical results revealed that all the treatments, including the
singular and/or combined application of phytohormones, had a promotive effect on the
growth and yield of mung bean and faba-bean, as reported by [53] and [54], respectively.
For example, it was suggested that a combined dose of auxin (1.0 mg L−1) and gibberellin
(200 mg L−1) is recommended for the enhancement of seed yield, whereas a 0.5 mg L−1 dose
of auxin is recommended for the enhancement of vegetative growth. This enhancement
of mung bean growth (Figure 1), photosynthetic assimilates (Figure 3), and endogenous
phytohormones (Figure 5) after the spraying of plant growth regulators, alone or combined,
might lead to the accretion of photo-assimilates in the seed and enhance the transfer rate of
these assimilates to boost the yield of mung bean (Figure 2). Additionally, the exogenous
foliar application of IAA at a 100 ppm concentration previously resulted in maximum
plant height, chlorophyll content, spike length, 1000-grain weight, and grain yield in bread
wheat [56]. Moreover, an increase in grain yield could be positively correlated to enhanced
grain numbers per spike of two growth hormones (IAA × 6-BAP) in the booting stage of
wheat [57].

Our results were in accordance with the “acid growth theory” of auxin, e.g., the
indole-3-acetic acid (IAA) causes acidification (excretion of protons into the apoplast) of
cell walls which ultimately increases stem growth by loosening 0f cell walls via cleavage
of the bonds [47,58] and also has an impact on the functioning of ionic channels, thereby
affecting the direction of the movement of ions and solutes and the turgor of cells [47].
Moreover, auxins also involve genes in inducing certain expressions by altering the type,
activity, and level of the proteins [47]. This is possibly the reason for the enhanced rate
of photosynthesis in the leaves of mung bean in the current study, and therefore, it may
have gave a boost to the growth of the root and the shoot, as expressed in the form of
increased fresh and dry mass (Figure 1). On the other hand, GA3 has been reported to
increase the pigment content of Vicia faba [59], and the water use efficiency of wheat [60],
and it increased photosynthesis by increasing the carboxylase activity of Rubisco in broad
bean and soybean [61] and regulated the transport of ions in plants. Additionally, it might
increase water uptake in plant tissues, causing cell expansion and the dilution of sugars in
tissues under harsh conditions [13]. Likewise, GA3 tends to boost the protein content by
increasing the nitrate reductase activity in cowpea [62], wheat [60], black cumin [63], and
mung bean [41]. The growth-promoting effect of GA3 may be attributed to the stimulation
of the mobility of soil nutrients towards the buds, thereby increasing cell division and/or
increasing the differentiation of the vascular tissues. Additionally, the increases in the yield
of mung bean plants via the application of different growth hormones might result by
breaking the apical dominance of mung bean plants, leading to the increase in flowering,
branches, and consequently, the number of fruits. The increase in seed weights might be
because of the promotive effect of IAA and/or GA3 in increasing the assimilates and their
translocations from leaves to fruits, where the seed weight increases [64].

Hormonal coordination is an important aspect which regulates leaf growth pro-
cesses [22]. The current findings related to pigment formation are in line with those
obtained for maize [65], wheat [66] and pulses [53,67]. Moreover, the plant growth regula-
tor IAA presumably acts as a coenzyme in the metabolism of higher plants, which directly
affects the synthesis or formation of photosynthetic pigments [68]. These increments in pho-
tosynthetic pigments may play their role in improving photosynthesis and the retardation
of its degradation. It was confirmed that GA3 is involved in the photosynthates machinery
of the Simmondsia chinensis plant, and irrespective of the dosage of GA3 used in the current
experiment, it was shown that 300, 200 and 100 ppm of GA3 differentially modulated the
studied traits of mung bean (photosynthetic pigments: carotenoids, chlorophyll a, and
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chlorophyll b): yield-contributing traits such as pod length, the number of grains pod−1,
plant height, the number of pods plant−1, and 100-grain weight; and quality parameters
including seed protein and nitrogen [55]. It is important to increase protein rich crops
such as mung bean in developing countries, because they can serve both as food and feed.
Our findings from the current experiment are also in parallel with several scientific results
that state that GA3 improves the photosynthetic attributes in V. radiate [35,41], wheat [69],
cotton [70], broccoli leaves [71], Simmondsia chinensis [55], and Visiafaba [13]. It has also been
scientifically proven that the application of GA3 alters the specific components of plastids
that affect the retention of chlorophyll apparatus in maize [72]. Among all photosynthetic
species, carotenoids act as a non-enzymatic antioxidant, protecting the “antenna complex”
from photo-oxidative damage, enabling wavelengths of light to be available for photosyn-
thesis [73]. Our findings are supported by the previous results from V. radiata that GA3
treatment significantly increased leaf carotenoid contents [35]. It was then recommended
that the improvement in carotenoid capacity by GA3 may be attributed to the ultrastructural
morphogenesis of plastids [74].

It has been well established that to prevent oxidative plant injury, plants have evolved
adaptive mechanisms, including the upregulation of the antioxidant defense system, which
includes ROS-scavenger enzymes, e.g., ascorbate peroxidase (APX), catalase (CAT), and
superoxide dismutase (SOD), and non-enzymatic antioxidants such as glutathione, α-
tocopherol, ascorbic acid, and phenolic compounds [75–79]. On the other hand, many
researchers have explored whether the application of plant growth regulators degrade
the activities of various enzymes which are directly related to improving endogenous
phytohormone production [13,80]. Therefore, the increased endogenous phytohormone
production in our study might have been due to the alleviation of oxidative stress and
the improvement in antioxidant capacity, as suggested by various researchers [81,82].
These results are also comparable to those obtained for cowpea [70], wheat [45], and faba-
bean [46]. The previous findings suggest that isopentenyl pyrophosphate is a common
precursor for the biosynthesis of cytokinin and/or gibberellins and ABA [50]; apparently,
the exogenous application of IAA and GA3 may have caused a shift into cytokinin or
gibberellin biosynthesis instead of ABA, which resulted in a decline in ABA content in the
current research (Figure 5).

The exogenous application of natural phytohormones such as IAA and GA3 has been
shown to be an emerging trend which can positively regulate growth parameters and
total carbohydrate, polysaccharide, proline, free amino acid, and total phenolic contents in
faba-beans [54]. Moreover, many studies have shown that foliar and seed-priming-based
applications of phytohormones have increased the availability of N in soil by enhancing
nitrogenase activity in mung bean crops [83]. Higher nitrogenase activity signifies an
increase in the rate of the reduction of nitrogen to ammonia. Therefore, more and more
organic forms of nitrogen are made available in plants to be incorporated with keto acids
to generate additional quantities of the required amino acids/amides [84]. Simultaneously,
the synthesis of additional proteins (Figure 4) could have also sped up the availability
of the enzymes (glutamin synthetase and glutamate synthase) involved in the glutamin
synthase cycle determining the incorporation of ammonia [85]. It seems quite natural from
these observations that the hormones might have elevated the useable form of nitrogen
(ammonia) to produce a larger pool of amino acids/amides.

5. Conclusions

The application of natural phytohormones, e.g., IAA and GA3, affected plant growth,
and it enabled the mung bean plants to survive in a sandy-loam soil with nutrient deficiency.
Moreover, these phytohormones also enhanced the yield of mung bean in two different grow-
ing seasons in 2019–2020. The most effective treatment was 60 mg L−1 IAA + 60 mg L−1 GA3
(IAA2 + GA2), which improved the growth characteristics, photosynthetic pigments formation,
yield attributes, endogenous phytohormone production, and biochemical composition of
mung bean seeds. In the current investigation, it was therefore suggested that the mung bean
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performed better and gave the maximum capability of yield after the singular or combined
application of high doses of IAA (60 mg L−1) and GA3 (60 mg L−1) in a subtropical region of
Pakistan. However, the recommended dosages, in future experiments, should be tested in
various field environments in different parts of the world to confirm the potential of these
two hormones.
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