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Abstract: The digital twin concept has found widespread application across diverse industries.
Herein, we present a comprehensive conceptual framework for the cognitive soil digital twin, which
embodies the intricate physical reality of the soil ecosystem, aiding in its holistic monitoring and com-
prehension. The digital twin can seamlessly integrate a multitude of sensor data sources, including
field Internet of Things sensors, remote sensing data, field measurements, digital cartography, surveys,
and other Earth observation datasets. By virtue of its duality, this digital counterpart facilitates data
organisation and rigorous analytical exploration, unravelling the intricacies of physical, chemical,
and biological soil constituents while discerning their intricate interrelationships and their impact
on ecosystem services. Its potential extends beyond mere data representation, acting as a versatile
tool for scenario analysis and enabling the visualisation of diverse environmental impacts, including
the effects of climate change and transformations in land use or management practices. Beyond
academic circles, the digital twin’s utility extends to a broad spectrum of stakeholders across the
entire quadruple helix, encompassing farmers and agronomists, soil researchers, the agro-industry,
and policy-makers. By fostering collaboration among these stakeholders, the digital twin catalyses
informed decision-making, underpinned by data-driven insights. Moreover, it acts as a testbed
for the development of innovative sensors and monitoring frameworks, in addition to providing a
platform that can educate users and the broader public using immersive and innovative visualisation
tools, such as augmented reality. This innovative framework underscores the imperative of a holistic
approach to soil ecosystem monitoring and management, propelling the soil science discipline into an
era of unprecedented data integration and predictive modelling, by harnessing the effects of climate
change towards the development of efficient decision-making.

Keywords: digital twins; simulation; artificial intelligence; IoT; Copernicus

1. Introduction

Monitoring soil health is a paramount endeavour due to its pivotal role in sustaining
both agricultural productivity and ecosystem vitality [1,2]. The significance of this practice
extends beyond the realms of conventional farming, encompassing broader environmental
concerns, global food security, and sustainable land use management [3]; for example,
the soil ecosystems serve as the bedrock for sustaining more than 90% of the world’s food
supply [4] and provide habitat for a substantial 25% of the planet’s total biodiversity [5].
By comprehensively assessing soil health, we gain invaluable insights into the intricate
web of interactions occurring within the soil matrix, including nutrient cycles, microbial
communities, and physical structure. This knowledge, in turn, empowers end-users to
make informed decisions to optimise crop yields, conserve natural resources, and minimise
environmental impacts.

Nonetheless, the pursuit of accurate soil health assessment is not without its challenges,
as traditional methods have proven to be limiting in their scope and precision, whilst there
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is not yet a single consensus on the definition of soil quality [6]. Conventional techniques
often involve time-consuming and labour-intensive processes that provide only a snapshot
of soil conditions, failing to capture the dynamic and spatially heterogeneous nature
of soils. Additionally, these methods may lack sensitivity in detecting subtle changes
or emerging issues, thus impeding our ability to proactively address soil degradation,
contamination, or shifts in fertility patterns. Moreover, traditional approaches can be
cost-prohibitive when applied over large areas, hindering widespread adoption among
farmers and land managers.

Recognising the threats that hinder soil health and taking into account that over 60% of
the European soils are currently in an unhealthy state, the European Union with its “Soil
Deal for Europe” aims to establish 100 living labs and lighthouses to lead the transition
towards healthy soils by 2030 [7]. Living labs act as real-life test and experimentation envi-
ronments fostering co-creation and open innovation, involving all actors of the Quadruple
Helix Model, i.e., academia, citizens, government, and industry. The success of such an
endeavour necessitates the utilisation of capable models that can simulate all of the complex
soil processes.

The concept of the digital twin has emerged as a powerful tool in various industries,
aiming to facilitate actions such as real-time monitoring, data fusion, simulation, and projec-
tions and, overall, provide a holistic understanding of complex systems. It was introduced
in 2013, but its definition has since evolved with no widespread consensus on the definition
of various types of twins [8,9]. Nonetheless, in principle, a digital twin may be defined as
a virtual representation of real-world entities and processes, synchronised at a specified
frequency and fidelity [10]. Its purpose is to enable measurements and simulations and act
as a test bed for experimentation with a digital representation in order to better understand
its physical counterpart, performing monitoring, analysis, and prediction. It requires both
efficient and standardised data aggregation capacities and powerful data analytics. Digital
twins have been employed, among others, in manufacturing [11], smart cities [12], and oil
pipeline risk estimation [13]. The integration of digital twins in agriculture, including soil
monitoring, has been performed only at small scales (at the field level) [14–16].

An interesting proposed implementation is the European Space Agency’s (ESA) Dig-
ital Twin Earth initiative, aiming to create a comprehensive digital replica of our planet,
integrating Earth observation data, computational models, and advanced analytics [17,18].
It, thus, provides a means to better understand and manage Earth’s complex systems,
including the atmosphere, oceans, and land and their interconnections. By harnessing
the power of digital twins, ESA can gain valuable insights into climate change, natural
disasters, resource management, and other crucial global challenges, helping to visualise,
monitor, and forecast natural and human activity on the planet. The model will be able
to monitor the health of the planet, perform simulations of Earth’s interconnected system
with human behaviour, and support the field of sustainable development. It, thus, acts
as a vital tool for decision-makers, scientists, and policy-makers, facilitating evidence-
based decision-making, informed policy formulation, and proactive planning towards a
sustainable future.

In this paper, we postulate that the successful monitoring and analysis of soil dynamics
necessitates the integration of diverse technological tools and advances, such as augmented
reality (AR) and extended reality (XR) [19], the Internet of Things (IoT), citizen science [20],
and artificial intelligence/machine learning (AI/ML) [21]. The convergence of these cutting-
edge technologies is crucial for enabling a comprehensive and accurate assessment of
soil properties and processes. The integration of IoT devices within the digital twin
framework enables real-time monitoring of critical soil parameters, ensuring the continuous
acquisition of accurate and up-to-date data. At the same time, data from air- or space-
borne sensors are increasingly becoming available in near-real-time; these include multi-
or hyper-spectral imaging sensors recording the soil’s electromagnetic reflectance in the
visible, near-infrared, and thermal infrared spectrum and radar data, whose microwave
signals penetrate clouds, haze, and vegetation. This continuous data flow, in conjunction
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with AI/ML algorithms, enables advanced analytics to uncover hidden patterns, forecast
soil dynamics, and support precision agriculture practices. Only by seamlessly integrating
these technological advancements can researchers gain a holistic understanding of soil
functioning and develop effective strategies for sustainable land management. Finally,
the incorporation of AR and XR technologies provides researchers and stakeholders with
immersive visualisation and interactive capabilities, enabling enhanced comprehension,
analysis, and decision-making.

The rest of the paper is organised as follows. Section 2 presents the background and
current state-of-the-art in digital twin technologies and contemporary tools used in soil
monitoring; their limitations are explored, and the proposed advantages of the cognitive
soil digital twin are demonstrated. Section 3 outlines the proposed architecture for the
digital twin, exploring its components and enabling technologies. The challenges and
opportunities of the system are laid out in Section 4, with the conclusions presented in
Section 5.

2. Background and State-of-the-Art
2.1. Digital Twin Technologies

Applications and different manifestations of the digital twin paradigm have been
extensively reviewed in the literature in dedicated review papers [9,22–25]. In most cases,
the following fundamental characteristics exist across the various implementations of the
digital twin paradigm (Figure 1):

• Real-time mapping of a physical entity with high fidelity: The digital twin must
be a complete virtual copy of its physical counterpart, with high-precision sensors
providing accurate measurements, which, in turn, enable the twin to simulate and
predict the different system states.

• Entire lifecycle data management: As the physical counterpart is dynamic, it is neces-
sary to store the entire lifecycle data of the system, enabling functions such as historical
state analysis, health analysis, and other data mining and analytical activities. Due to
the high volume of such data, distributed data storage architectures must be consid-
ered. These elaborate analytical processes rely heavily on the data stored and managed
throughout the system’s lifecycle, but empower the retrospective examination of the
soil’s past conditions, which is essential for assessing the performance and health of
the system over time.

• Self-evolution: The digital twin should be able to adapt to changes and evolve; changes
recorded in the physical counterpart ought to be reflected in the twin, with the data
collected in real-time enabling the evolution and maturity of the twin in parallel with
the physical counterpart. The self-evolution aspect also concerns the update of the
various models and simulations when new data become available.

• Multi-disciplinarity in virtual modelling and simulation: Different disciplines such as
computer science, communications and automation and domain-specific knowledge
(such as soil science in the case of the soil digital twin) must be fused to provide high-
fidelity virtual modelling technologies. In effect, multi-domain data and knowledge
coupled with multi-timescale and multi-dimensional information must be combined
in order to provide accurate modelling and simulation.

2.2. Tools and Techniques for Soil Monitoring

Contemporary soil-monitoring and -mapping techniques encompass a variety of tra-
ditional tools that have been refined and augmented with modern technological advance-
ments. Among the commonly employed methods is field sampling, where soil samples are
collected at designated locations and depths for laboratory analysis [26]. This technique
provides essential information on soil properties such as pH, texture, organic matter content,
nutrient levels, and cation exchange capacity [27]. Additionally, soil spectroscopy tech-
niques, such as visible–near-infrared (VNIR) and mid-infrared (MIR) spectroscopy, offer
rapid and non-destructive means of assessing soil composition and properties based on the
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interaction of electromagnetic radiation with soil constituents [28,29]. Space-borne or air-
borne remote sensing is also employed to provide detailed maps of soil properties [30–32]
or to assess land degradation [33]. Another widely used technique is geophysical methods,
including electrical resistivity [34], electromagnetic induction [35], and ground-penetrating
radar [36], which enable the estimation of soil properties by measuring variations in elec-
trical or electromagnetic properties. Furthermore, sensor-based technologies, such as soil
moisture sensors, temperature probes, and nutrient probes, allow for real-time monitoring
of key soil parameters in the field [37,38]. The above notwithstanding, traditional tech-
niques such as soil classification systems (e.g., Soil Taxonomy) [39] and soil mapping using
geostatistical approaches [40,41] continue to play a fundamental role in soil characterisation
and mapping.

Physical counterpart Virtual copy

Simulate & predict

Lifecycle Data management
Self

evolution

Dynamic
process

System state
snapshots

Data storage
architectures

Historic 
& health 
state data

High precision sensors Real time mapping

Multi-discliplinarity
in virtual modeling

& simulation

Figure 1. The fundamental characteristics of a cognitive soil digital twin.

In addition to the traditional tools mentioned earlier, contemporary soil-monitoring
and -mapping techniques encompass advanced tools that provide estimations of carbon
sequestration or carbon stock [42–44], the simulation of climatic scenarios or land use
changes [45], and other simulations crucial for understanding soil dynamics [46]. One
such tool is the RothC model [47] employing carbon models and soil-carbon-mapping
techniques, integrating field data, remote sensing data, and computational algorithms
to estimate soil organic carbon stocks and changes over time. All these models help as-
sess the potential of soils to sequester carbon and contribute to climate change mitigation
strategies. Simulation models, such as ecosystem and agroecosystem models, simulate soil
processes under different climatic scenarios, land management practices, and cropping
systems. They provide insights into soil–water dynamics, nutrient cycling, crop growth,
and carbon fluxes, allowing researchers to project future impacts and optimise land use
strategies. Additionally, soil erosion models, such as the Universal Soil Loss Equation
(USLE) or the Revised Universal Soil Loss Equation (RUSLE) [48], simulate soil erosion
processes and help identify areas prone to erosion, facilitating erosion control and soil
conservation efforts. Moreover, hydrological models, such as the Soil and Water Assess-
ment Tool (SWAT) [49], simulate water movement, infiltration, and runoff in landscapes,
aiding in water resource management [50] and flood prediction. These advanced tools and
simulations play a critical role in assessing the impacts of climate change, land manage-
ment practices, and policy interventions on soil health, carbon dynamics, water resources,
and overall ecosystem sustainability.
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2.3. Limitations of Contemporary Approaches

The tools usually employed currently are associated with certain limitations. Evi-
dently, the most-notable drawback is the lack of the integration of the multiple input data
streams; oftentimes, approaches attempting to monitor the soil focus on one aspect (e.g.,
certain physicochemical properties) while neglecting the others (e.g., soil biodiversity) that
are intertwined. Thus, this shortcoming lies in the scope of simulation and nowcasting
capabilities offered by current tools: while they may provide estimations for specific soil
properties or processes, they often fall short in simulating the entirety of ecosystem services
associated with soils [51]. Furthermore, these models employ different inputs that need to
be prepared in advance, and due to the lack of one central repository, it is cumbersome to
collect and standardise all necessary Earth observation input layers [52]. Another limitation
is the predominantly open-loop control nature of existing approaches. Traditional tools
often provide one-time measurements or data collection, lacking the ability to continuously
integrate and update information in real-time. Contrarily, if continuous monitoring, analy-
sis, and feedback loops are employed, this can facilitate adaptive management strategies
that respond to dynamic soil conditions. Finally, contemporary tools often lack the full
utilisation of data analytics and advanced computational techniques. While data may be
collected, the potential for extracting valuable insights and patterns through data analytics
remains largely untapped.

2.4. Advantages of a Cognitive Soil Digital Twin

The following section iterates the various advances that a cognitive soil digital twin
offers over the contemporary approaches and how these can be integrated in soil living
labs and lighthouses.

2.4.1. Real-Time Monitoring and Data Fusion

Digital twin technologies offer several advantages in terms of real-time monitoring
and data fusion within the cognitive soil digital twin framework. Firstly, these technologies
enable continuous real-time monitoring of ecosystem parameters, providing up-to-date
and dynamic information about soil conditions. By seamlessly integrating disparate data
sources, including Earth observation data, sensor networks, and IoT devices, the cognitive
soil digital twin fosters a holistic understanding of ecological processes and dynamics.
This real-time monitoring capability allows for a synchronisation between the physical
entity and the digital twin, which, in turn, enables the timely identification of changes or
anomalies in soil properties, enabling proactive decision-making and interventions. Addi-
tionally, the cognitive soil digital twin facilitates data fusion, which involves the integration
and analysis of multiple data types and sources. By combining data from various sensors,
models, and observations, the digital twin can generate a comprehensive and accurate
representation of soil characteristics and behaviour. This data-fusion process enables re-
searchers to uncover complex relationships and patterns, leading to deeper insights into
soil processes, nutrient cycling, water dynamics, and other critical ecosystem functions.
Furthermore, the real-time monitoring and data fusion capabilities of the cognitive soil
digital twin support the generation of near-real-time or predictive models, allowing for
proactive planning and management. By continuously assimilating new data and updating
the models, the digital twin can provide timely and accurate predictions, empowering
stakeholders to make informed decisions regarding soil management, crop growth, and en-
vironmental sustainability. This closed-loop control approach enables, furthermore, the
continuous update of the models simulating the physical counterpart through techniques
such as active learning.

2.4.2. Simulation and Scenario Analysis

Computational simulation has emerged as a crucial technique for analysis and decision-
making support, demonstrating its significance in diverse sectors such as manufacturing,
healthcare facilities, logistics, services, and more [53]. The digital twin paradigm offers
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distinct advantages in the realm of simulation and scenario analysis within the soil science
domain by providing a powerful platform for simulating a wide range of climatic scenarios
and anthropogenic interventions, including agricultural practices such as tillage practices
and crop rotation. By leveraging advanced AI/ML algorithms and integrating Earth
observation data, these digital twin models possess the capability to predict and simulate
ecosystem responses to various scenarios. Through the incorporation of comprehensive
data inputs, such as soil properties, climate data, land use patterns, and management
practices, digital twin models can generate valuable insights into the potential impacts and
outcomes of different scenarios on soil health, crop productivity, and overall ecosystem
dynamics. Moreover, the simulation and scenario analysis capacity of the digital twin
enables researchers and decision-makers to assess the effectiveness of alternative strategies,
optimise resource allocation, and design more-sustainable land management practices.
By providing a virtual environment to explore and evaluate different scenarios, the digital
twin becomes an invaluable tool for informed decision-making and proactive planning in
the realm of soil science research and land management.

2.4.3. Policy Support and Environmental Management

The application of digital twin technologies to ecosystem monitoring provides a
powerful tool for supporting environmental policies and management strategies. The soil
digital twin, for instance, can significantly bolster policy support and environmental
management efforts. By offering a comprehensive virtual representation of real-world
soil ecosystems, the digital twin facilitates informed decision-making in multiple ways.
Firstly, it allows policy-makers to simulate and assess the potential impacts of various
policy interventions on soil health and quality. This predictive capability minimises the
risk of unintended consequences and enables the formulation of well-informed, targeted
policies that align with sustainability objectives.

Moreover, the soil digital twin’s ability to integrate real-time data from sensors and
satellites ensures that policy recommendations are grounded in accurate and up-to-date in-
formation. This dynamic data-driven approach allows for adaptive management strategies
that can respond to changing environmental conditions. Through simulation and scenario
testing, policy-makers can assess the long-term implications of their decisions and fine-tune
strategies for optimal outcomes.

Furthermore, the soil digital twin serves as a platform for collaboration and stakeholder
engagement. It enables policy-makers, researchers, and local communities to interact with
the virtual representation of the ecosystem, fostering a shared understanding of complex
soil interactions and dynamics. This collaborative approach enhances the feasibility of
implementing policies by garnering support from diverse stakeholders.

In essence, the soil digital twin acts as a bridge between scientific insights and pol-
icy implementation. Its capabilities encompass scenario exploration, data integration,
and stakeholder engagement, all of which contribute to evidence-based decision-making
and the achievement of the European environmental goals [7]. As a versatile and powerful
tool, the soil digital twin empowers policy-makers to navigate the intricate landscape of
soil ecosystem management with precision and purpose, thereby propelling sustainable
environmental practices forward.

3. Proposed Architecture for a Cognitive Soil Digital Twin

The conceptual framework for developing the cognitive soil digital twin is presented
in Figure 2. In the subsections that follow, Section 3.1 presents the system components of
Figure 2 and describes their constituent parts, as well as their interconnectivity. Following
this, Section 3.2 moves on to suggest a potential technological stack for the implementation
of these components and of the system as a whole.
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Figure 2. The conceptual framework for the proposed cognitive soil digital twin.

3.1. System Components
3.1.1. Physical Layer: Data Acquisition and Feedback

A cognitive digital twin is a real-time dynamic mapping of a physical entity and, thus,
relies on the integration and fusion of diverse datasets from multiple sources, including
Earth observation satellites [54], ground-based sensors and IoT devices [55], and socio-
economic data [56]. From a big data point of view, these data streams are high in variety,
volume (e.g., space-borne data may be hundreds of GBs depending on the examined
period), and velocity [57]. Devices that can be used to apply control and affect the soil such
as performing irrigation [58] are also part of this layer; typically, these devices are referred
to as actuators [59].

The IoT sensors and actuators are typically connected wirelessly to a gateway using
a communication protocol (e.g., LoRA [60,61], Bluetooth, etc.), which, then, relays the
collected data over the Internet to the central data repository. These streaming data are
continuously updated and ingested in the system at high temporal resolution. The use of
actuators that are activated from the gateway, which, in turn, may be activated remotely
through the Internet, enables an operator to manually or automatically control some of
the parameters of the environment (e.g., irrigation or control of greenhouses). At the same
time, the provision of real-time data from the sensors enables the system to have feedback
on the actions performed from the actuator or from changes in the environment.

On the other hand, remote sensing data are sparser and come in batches at pre-defined
time intervals (e.g., the revisit time of Sentinel-2 is about 4 days) or an on-demand schedule
(e.g., UAV flights). The space-borne data may be downloaded directly from the operator
(e.g., Copernicus) or other cloud providers that ingest them (e.g., AWS or Google) [62].
An alternative is to use APIs or cloud services to perform processing on distributed cloud
back-ends (e.g., the openEO API, Google Earth Engine [63], or the Copernicus Data Space
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Ecosystem Services (https://dataspace.copernicus.eu/, accessed on 12 September 2023),
where proprietary data must be connected to these services.

Notwithstanding the above, geospatial and other data from miscellaneous sources
should also be considered to be integrated into the system. These include climatic data
(e.g., ERA5 from the European Centre for Medium-Range Weather Forecasts, ECMWF, or
from other local meteo stations) including future projections or data pertaining to land
management practices.

3.1.2. Data Integration and Fusion

The disparate datasets are ingested, harmonised, and combined to form a comprehen-
sive representation of the Earth’s ecosystems. Data may be subject to curation (e.g., outlier
removal) [64] or other forms of pre-processing (e.g., the generation of second-order prod-
ucts like the transformation of dielectric permittivity to soil moisture). The data are then
stored in a distributed big data management system ideally in an analysis-ready format
using pre-specified protocols and standards [65], which offers multifaceted advantages
such as scalability, performance, resilience, flexibility, and data consistency.

If data from disparate remote sensing sensors should be integrated, at this stage, tech-
niques such as spatiotemporal fusion [66,67] may be used, which can combine the positive
traits of multiple sensors. Moreover, the use of knowledge representation techniques such
as geospatial ontologies [68,69] and semantic datacubes [70], which can represent both
symbolic and numeric knowledge and share knowledge on the interpretation of these
products, can provide a further option to semantically enhance the stored products.

Finally, data from third-party data providers or external APIs should be seamlessly
integrated to allow easy callbacks in the modelling stage. This step is, however, contingent
on potential limitations. Online APIs oftentimes have limitations like rate limiting (i.e., re-
strictions on the number of requests within a given time frame), payment requirements for
certain features or higher usage thresholds, frequent changes that require upkeep, and some-
times, inadequate documentation, all of which necessitate careful integration planning.

3.1.3. Data Analytics: Geospatial Modelling and Simulation

The integration of the data in an analysis-ready format enables the processing of the
data streams and the combinations of the various layers of information, either from primary
data sources or from generated products via modelling techniques. To make sense of the
data, efficient data fusion and analytics must take place.

Geospatial modelling forms a critical component of a cognitive digital twin. It in-
volves the creation of accurate and detailed representations of geographic features, such as
land cover, topography, hydrology, and vegetation, but also layers providing spatiotem-
poral information about the soil’s physical, chemical, and biological properties [71,72].
These models, combined with simulation and forecasting capabilities, allow for the anal-
ysis of ecosystem behaviour under various conditions and the evaluation of potential
interventions [73].

AI and ML algorithms play a pivotal role in a cognitive digital twin [74,75]. They
enable the interpretation and analysis of vast amounts of data, pattern recognition, predic-
tive modelling, and decision support. Various soil quality indicators have been analysed
using data from remote sensing via AI/ML models [76] with the focus oftentimes placed
on croplands [32]. AI/ML techniques facilitate the identification of complex relationships
and trends within ecosystem data, improving the accuracy and effectiveness of monitoring
and simulation processes.

The above notwithstanding, standard statistical tools and processes may be also
fundamental to generate intermediate or final products. For example, multi-temporal
analysis [77] to, e.g., generate bare soil reflectance composites [78] is a typical tool employed
for monitoring of cropland soils.

https://dataspace.copernicus.eu/
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3.1.4. Visualisation and Interaction

Visualisation tools that may also provide the user with the ability to interact with them
or with the digital twin have a two-fold goal:

1. Enhancing understanding: Visualisation and user interface tools are crucial for digital
twins as they translate complex data and simulations into accessible visual represen-
tations. These tools provide stakeholders with an intuitive understanding of intricate
systems, fostering better decision-making and enabling effective communication
across technical and non-technical audiences.

2. Interactivity and engagement: Visualisation and user interface tools offer interactivity
and engagement, allowing users to explore, manipulate, and analyse the digital twin’s
virtual environment. This hands-on experience not only deepens understanding,
but also empowers users to test scenarios, validate hypotheses, and collaborate in
real-time, ultimately driving innovation and efficiency in various industries.

Visualisation techniques, including augmented reality (AR), provide a means for re-
searchers and stakeholders to interact with and comprehend complex ecosystem models
and data [79]. These visual representations transcend language barriers and technical intri-
cacies, fostering a profound enhancement in the understanding of intricate soil processes
and ecosystem dynamics. They can, thus, enhance understanding, aid in decision-making,
and facilitate communication between experts and policy-makers by cultivating an envi-
ronment conducive to effective cross-domain synergies. In the past, AR has been integrated
into the digital twin paradigm with much research focused on digital assembly technol-
ogy [80] and robotics [81]. In addition to providing an immersive and remote-controlled
experience of the physical counterpart, virtual reality also empowers human operators to
engage with the virtual replicas without causing any disruption to the regular operations
of the tangible entities.

In tandem with advanced visualisation techniques like AR, the deployment of inter-
active dashboards and mobile applications stands as a pivotal cornerstone in fostering
comprehensive engagement with the intricate world of soil digital twins. While not reliant
on AR or extended reality (XR) per se, these interfaces provide a dynamic portal into
the layers of data and information encapsulated within the soil ecosystem models. Dash-
boards, meticulously designed with data visualisation and user experience in mind, offer
researchers, policy-makers, farmers, and other stakeholders an intuitive means to explore,
analyse, and interpret complex soil-related data. Mobile applications further extend this ac-
cessibility, facilitating on-the-go interactions and informed decision-making for individuals
across the Quadruple Helix spectrum. Through visually compelling representations, these
interfaces empower users to delve into diverse dimensions of soil processes, enabling them
to grasp interconnected complexities, assess trends, and strategise for sustainable land
use practices. This democratisation of data-driven insights fosters a harmonious synergy
between academia, industry, governance, and society, transcending conventional silos and
catalysing collaborative initiatives aimed at nurturing the soil resource and its multifaceted
contributions to our ecosystem.

3.2. Technological Stack of a Cognitive Digital Twin

The development and operation of a cognitive digital twin requires a robust techno-
logical stack, integrating various components to ensure seamless functioning and efficient
data processing.

3.2.1. Sensor Networks and Internet of Things

Sensor networks and IoT devices play a crucial role in data collection, providing
real-time information on environmental variables such as temperature, humidity, soil
moisture, and air quality. These networks contribute to the continuous monitoring and
updating of the cognitive digital twin. As the IoT connects a wide range of physical objects,
it introduces heterogeneity by operating on a multitude of diverse devices. Therefore,
there is a need for a unified architecture or middleware to effectively implement the
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IoT across this diverse ecosystem [82]. Such a solution is the open-source Eclipse Ditto
framework (https://eclipse.dev/ditto/, accessed on 12 September 2023), which serves as
an IoT middleware, offering an abstraction layer that facilitates the interaction between IoT
solutions and physical devices using the digital twin pattern. The integration of devices is
achieved through device connectivity layers or MQTT brokers.

An important aspect in that regard is edge computing [83]. By processing and
analysing data at or near the data source, edge computing minimises latency, enhances
real-time responsiveness, and reduces the burden on network infrastructure [84]. This
distributed approach optimally caters to the dynamic demands of IoT devices and applica-
tions, enabling localised decision-making, data filtering, and immediate responses. As a
result, edge computing augments the efficiency, security, and scalability of IoT deployments
while fostering resource efficiency. In the realm of soil monitoring, edge computing may be
used from soil sensors to pre-process or compress information to near-real-time processing
of the large UAV or LiDAR data to generate second-order products that are stored in the
cloud (as opposed to original raw data). Thus, edge computing may be performed both
by high-performance ARM-based micro-controllers that are integrated into the sensors
themselves (or on hardware middleware), as well as by more-powerful CPUs.

3.2.2. Data Infrastructure and Management

A comprehensive data infrastructure is necessary to handle the vast amounts of hetero-
geneous data generated by Earth observation systems, sensors, and IoT devices. This data
influx demands an intricately designed infrastructure that encompasses sophisticated data-
storage mechanisms, efficient data-processing pipelines, and meticulous data-management
systems. The fundamental goal of this infrastructure is to not only facilitate real-time data
streams, but also to ensure the accuracy, integrity, and accessibility of the collected data.
Moreover, the infrastructure must possess the capacity to store and manage the entire
lifecycle data of the system.

To address these challenges, the big data infrastructure for the cognitive soil digital
twin must exhibit the following essential attributes:

• Scalability and elasticity: The architecture should possess the capacity to scale seam-
lessly as the volume and complexity of incoming data expand. It should also ex-
hibit elasticity to handle sudden surges in data influx without compromising perfor-
mance. Various databases provide both horizontal and vertical scaling, e.g., MongoDB,
DynamoDB, and Cassandra [85].

• Data integration and fusion: The data infrastructure must be capable of seamlessly
integrating data from various sources, regardless of format or origin. This entails
overcoming data silos and harmonising data from disparate sensors and platforms to
provide a coherent and holistic view of soil behaviour. For example, platforms and
initiatives such as the SensorThings API or Telegraf (https://www.influxdata.com/
time-series-platform/telegraf/, accessed on 12 September 2023) provide standardised
interfaces for seamless integration and management of sensor data [86].

• Real-time processing: Given the dynamic nature of soil systems and the need for timely
decision-making, the architecture’s data-processing capabilities should be optimised
for real-time or near-real-time analysis. This empowers users to make informed
decisions promptly.

• Data quality and validation: Ensuring the accuracy and reliability of data is crucial.
The infrastructure should include mechanisms for data quality assessment and valida-
tion, identifying outliers or errors that could lead to misleading insights. The exact
mechanisms used in each database management system differ, but most address
these using data constraints, enforcing data types, using referential integrity, and/or
providing trigger mechanisms (e.g., to detect outliers before inserting new data).

• Security and privacy: As data encompass sensitive information, the infrastructure
must be fortified with robust security measures to safeguard against unauthorised
access, data breaches, and cyber threats. Data privacy concerns, including compliance

https://eclipse.dev/ditto/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
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with regulations such as the General Data Protection Regulation (GDPR), must also be
rigorously addressed.

• Transparency and ownership: A clear delineation of data ownership and sharing
rights is essential to establish trust among stakeholders. Additionally, transparency in
data-processing and analytics methodologies fosters credibility in the insights derived
from the digital twin.

Modern data lakes (either cloud-based or on-premise) comply with all of the above
requirements [87,88]. A data lake serves as a centralised depository capable of accommo-
dating extensive volumes of both structured and unstructured data (Figure 3). It facilitates
the storage of raw data without the prerequisite of prior data structuring, as it can ac-
cept both structured and unstructured data. Furthermore, it extends support to diverse
analytical methodologies, encompassing tasks ranging from generating dashboards and
visualisations to the execution of comprehensive big data processing, real-time analytics,
and machine learning, all designed to inform and enhance decision-making processes.

Data Lake

Raw data interface Transformation layer

Metadata management Data quality & validation Security & privacy Data catalog & monitoring

Data query & output

Unstructured data Knowledge
information

Figure 3. The components of a modern, scalable, data lake ecosystem acting as a centralised
data repository.

3.2.3. Cloud Computing and High-Performance Computing

The computational demands of a cognitive digital twin necessitate the use of cloud
computing and high-performance computing (HPC) resources: real-time performance
stands as a pivotal benchmark for evaluating the efficacy of digital twins. Cloud platforms
provide scalable storage and processing capabilities, while HPC systems enable intensive
computational tasks required for large-scale simulations and data analysis [89]. Notwith-
standing the high throughput of modern hardware, enhancing the execution speed of
these systems further necessitates strategic refinements to data and algorithmic structures.
In the domain of DT applications, adopting a holistic perspective is paramount—one that
encompasses the comprehensive performance of the computing platform, the time delays
inherent in data transmission networks, the computational prowess of cloud computing
platforms, and the strategic blueprinting of an optimal system computing architecture.
This architecture should be adept at fulfilling the real-time analytical and computational
prerequisites of the system. It is crucial to recognise that the digital computing capabilities
intrinsic to the platform hold the reins of the system’s overall performance, serving as the
cornerstone of its computational bedrock.

In this regard, contemporary platforms that can serve the soil digital twin may utilise
the JRC big data analytics platform to generate spatially explicit indicators for large areas
(https://jeodpp.jrc.ec.europa.eu/bdap/, accessed on 12 September 2023), Google Earth
Engine [63], or datacube platforms [90].

https://jeodpp.jrc.ec.europa.eu/bdap/
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3.2.4. AI/ML Algorithms and Models

The implementation of AI/ML algorithms and models forms a fundamental compo-
nent of the technological stack. These algorithms enable data analysis, pattern recognition,
predictive modelling, and decision support, enhancing the cognitive capabilities of the
digital twin. A structured approach in the development and production of the models
should be followed across their entire lifecycle to facilitate the automation and operationali-
sation thereof. The field of machine learning operations (MLOps) describes a set of best
practices that should be followed, covering aspects such as CI/CD automation, workflow
orchestration, reproducibility, versioning, collaboration, continuous training and evalua-
tion, metadata tracking, monitoring, and feedback [91,92]. An example of such a framework
is Kafka-ML [93], which is designed to oversee the lifecycle of ML/AI applications within
production environments, all facilitated by a seamless flow of continuous data streams.

3.2.5. Visualisation and User Interface Tools

Digital twin implementations often rely on a variety of visualisation and user interface
tools to provide interactive, immersive, and informative experiences for users. Most com-
monly, a dashboard is used to visualise the various data recorded. A typical tool is Grafana
(https://grafana.com/, accessed on 12 September 2023), which serves as the user interface,
acting as the front-end for end-users. This technology offers robust support for visualising
metrics sourced from popular databases like InfluxDB. Utilising the query language specific
to the chosen data source, Grafana enables dynamic querying and showcases outcomes
through diverse interactive panels. These panels are integral to customizable dashboards,
which can be tailored according to user preferences. Furthermore, Grafana encompasses
a role-based access control system. Its notable feature lies in the creation of personalised
panels and the integration of versatile functionalities using plugins, supported by compre-
hensive libraries and documentation. Other solutions building on web technologies and
visualisation engines such as d3.js (https://d3js.org/, accessed on 12 September 2023) or
plotly (https://plotly.com/, accessed on 12 September 2023) may also be used.

Typically, 3D renders are also incorporated. These can be developed using 3D vi-
sualisation platforms that are commonly found in the gaming industry, such as unity
(https://unity.com/, accessed on 12 September 2023) and blender (https://blender.org/,
accessed on 12 September 2023). The generated models may then be incorporated into the
dashboard using WebGL technology.

Finally, with respect to AR/XR technologies that can help establish immersive visualisa-
tions, the most-widespread are ARCore (for Android) and ARKit (for iOS), which are devel-
opment platforms for creating augmented reality applications. VR headsets (e.g., Oculus Rift)
also provide their own development interfaces to help create immersive representations.

3.2.6. Backup and Disaster-Recovery Systems

Implementing resilient backup and disaster-recovery systems is paramount to guaran-
tee the utmost integrity and accessibility of vital data and essential system components.
By deploying cutting-edge automated backup solutions, bolstered by robust data replica-
tion mechanisms and fortified with redundant infrastructure, the potential for data loss and
system downtime is significantly mitigated. These measures work harmoniously to create a
fortified safety net that safeguards against unexpected disruptions, whether caused by hard-
ware failures, natural disasters, or cybersecurity threats. This proactive approach ensures
the continuity of operations, empowers swift data restoration, and maintains a seamless
user experience, ultimately reinforcing the organisation’s resilience and fortitude in the
face of unforeseen challenges. Various open-source and closed-source systems offer such
layers of protection. Volume and filesystem snapshots can be provided inherently by most
operating systems (including Linux) and database systems (e.g., MongoDB), while various
cloud providers offer cloud-based solutions for backups (e.g., Microsoft Azure Backup).

https://grafana.com/
https://d3js.org/
https://plotly.com/
https://unity.com/
https://blender.org/
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3.2.7. Performance Evaluation and Iterative Improvement

The performance of the cognitive digital twin should be continuously assessed through
systematic comparisons between simulation outputs and real-world observations, as well as
leveraging expert insights. This ongoing evaluation process serves as a compass, ensuring
the accuracy and fidelity of the model’s predictive capabilities. By actively engaging
domain experts, stakeholders, and end-users, valuable feedback is harvested, contributing
to a continuous cycle of enhancement. This iterative approach, informed by diverse
perspectives, fuels a relentless pursuit of refinement, resulting in a cognitive digital twin
that aligns ever-more closely with real-world dynamics. The collaborative efforts to fine-
tune and optimise the model translate into a potent decision-making tool that resonates
with the complexities of the actual system, ultimately amplifying its value and impact
within the ecosystem it represents.

4. Challenges and Opportunities

The proposed cognitive soil digital twin, despite its advantages, needs to overcome
some challenges in order to be effectively used. At the same time, some opportunities arise.

4.1. Challenges for Developing a Soil Digital Twin
4.1.1. Data Acquisition and Integration

Without reliable data, it is impossible to provide a real-time dynamic mapping of the
physical entity. However, gathering accurate and diverse soil data in real-time to cover
the multi-faceted soil functions is challenging, as it requires a number of different sensors
with enough spatial coverage to be installed or used, which need to reliably work and be
monitored for failures. At the same time, integrating all these data from various sources,
such as sensors, satellites, and historical records, necessitates the usage of multiple sub-
components of the ingestion interface to work with the various protocols and endpoints
specified by each manufacturer or data provider.

Another important aspect that needs careful consideration is the data curation and pre-
processing, which primarily should take place for each data source independently, in order
to deal with missing data, data inconsistencies, and other quality issues. Techniques such as
gap-filling of time series or remote sensing data may be employed [94,95], while automated
procedures to detect outliers can help preserve data quality [96].

In addition to the challenges of data acquisition and pre-processing, it is essential to
acknowledge the limitation of error propagation when fusing data from diverse sources [97].
Each data source, whether it is ground-based sensors, satellite observations, or historical
records, inherently comes with its own margin of error and uncertainty. When these
datasets are integrated within the framework of the cognitive soil digital twin, these errors
can accumulate and propagate, potentially leading to inaccuracies in the overall model and
predictions. The fusion of data with varying error profiles demands careful consideration,
as the uncertainties from one source may interact with those from another. Mitigating
this limitation requires robust error modelling, propagation analysis, and quality control
measures at each stage of data integration. Furthermore, to address these challenges, it is
imperative to develop and implement model uncertainty estimation techniques within the
cognitive soil digital twin. These techniques can help quantify the inherent uncertainties
within the predictive models themselves, providing a more-comprehensive understanding
of the overall accuracy and reliability of the system’s outputs [98,99]. Properly accounting
for model uncertainty is an essential step in enhancing the robustness of the cognitive soil
digital twin and ensuring its practical applicability in real-world scenarios.

4.1.2. Model Accuracy, Uncertainty, and Validation

Although AI/ML models (and, in particular, deep learning models) and process-based
models have exhibited reliable accuracy in the modelling of specific soil processes or
quantifying soil properties, nevertheless, they are not panacea. Developing sophisticated
models that accurately represent the entire complex behaviour of soil systems and the
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intricate cross-independencies between its ecosystem functions is still a challenge that
needs to be addressed. Of course, this can only take place with (a) continuous and reliable
monitoring, which provides the essential data to benchmark these models and improve
them, and (b) more-elaborate or -appropriate models.

At the same time, the use of more complex and computationally intensive workloads
is a two-edged sword, as one should always balance model accuracy with computational
efficiency to ensure real-time simulations. It should also be noted that the accuracy of
the digital twin’s predictions should be coupled with uncertainty estimations, as they
foster transparency, accountability, and responsible decision-making [100,101]. They, thus,
provide a means to acknowledge the inherent unpredictability in many situations and help
the users of the digital twin navigate uncertainty with greater confidence and effectiveness.

Finally, validating the accuracy of the digital twin against real-world soil conditions
should take place regularly, to ensure the reliability of the models’ processes. This, however,
incurs a cost associated with the sampling and analytical methods that need to take place
to independently verify the digital twin’s outputs.

4.1.3. Privacy and Security

Although the use of cloud storage and computing greatly facilitates the development
of the digital twin, their adoption elevates potential risks, such as unauthorised access, data
leakage, disclosure of sensitive information, and breaches of privacy [102]. The use of cloud
technologies increases the attack surface; ergo, implementing robust encryption, access
controls, and intrusion-detection systems is essential to mitigate security risks. Security
measures should be enforced to safeguard sensitive soil data and data from other sources,
as well as preventing unauthorised access. Considering also that the digital twin may also
involve actuation, only authorised users should have access to sensitive parts of the system;
thus, access control mechanisms must be installed [103,104].

It is also important to ensure compliance with data protection regulations and take
into account the ethical considerations. Some of the data used by the digital twin may
be of a personal or sensitive nature, particularly when they include geospatial data and
localised soil conditions. Adhering to data protection regulations such as the GDPR in
Europe or similar laws globally is non-negotiable [105,106]. Failure to comply can result in
severe legal consequences, necessitating meticulous data anonymisation, secure storage,
and controlled access mechanisms to protect individuals’ privacy and meet regulatory
requirements. Ethical considerations include issues related to consent, data ownership,
and the responsible handling of data to prevent misuse or harm.

4.1.4. End-User Engagement and Acceptance

End-user engagement and acceptance are foundational challenges in the deployment
of a cognitive soil digital twin within the scientific and agricultural communities. The as-
similation of novel technological paradigms can often encounter significant resistance,
stemming from diverse factors, including entrenched traditional methodologies, appre-
hensions regarding the technological intricacies, and the learning curve associated with
embracing an advanced computational tool set.

To navigate these challenges effectively, it becomes imperative to substantiate its worth
through the delivery of palpable and immediate benefits. Such evidence is instrumental
in dissipating initial scepticism and galvanising user engagement. These benefits may
encompass, for instance, the digital twin’s capacity to optimise irrigation practices, increase
crop yields, reduce resource profligacy, and refine land use planning. The articulation of
these advantages is not only pivotal, but also demands precision to appeal to the discerning
scientific and agricultural audience. Educational initiatives form an essential component of
this endeavour: facilitation mechanisms, such as didactic workshops, structured training
programs, and comprehensive user manuals, underpin this effort.

Additionally, the iterative and dynamic nature of user feedback holds profound
significance. The integration of end-user insights into the developmental and refinement
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phases in its entire lifecycle is indispensable. It not only enriches its functionality, but also
conveys a responsiveness to user exigencies and aspirations. This user-centric approach
contributes substantively to the acceptance and continual utility of the digital twin.

4.2. Opportunities of the System
4.2.1. Data-Driven Research and Analysis Using Co-Design

The soil cognitive digital twin fosters the development of transdisciplinary research
and innovation ecosystems and acts as an accelerator to co-create knowledge and innova-
tions. The involvement of all actors of the Quadruple Helix is, thus, integral. Researchers
and stakeholders can actively engage with a cognitive digital twin to advance scientific
understanding, inform decision-making processes, and address environmental challenges.
Researchers can leverage the wealth of integrated data and simulation capabilities offered
by a cognitive digital twin to conduct data-driven research, analyse ecosystem dynamics,
and gain insights into complex environmental phenomena.

The cognitive digital twin serves as a collaborative platform, enabling growers, re-
searchers, institutions, industry experts, policy-makers, and other stakeholders to share
data, models, and insights. This fosters interdisciplinary collaboration, encourages knowl-
edge exchange, and facilitates collective efforts towards sustainable ecosystem manage-
ment, allowing stakeholders to share best practices, lessons learned, and innovative ideas.
The digital twin will serve as a virtual meeting point, enabling remote collaboration and
ensuring wider participation in soil research and innovation.

4.2.2. Education and Outreach

One of the most-important aspects of the cognitive digital twin is that it facilitates
research and education through a virtual experimentation platform for different soil sce-
narios. This platform empowers researchers to simulate and assess a spectrum of soil
conditions, facilitating controlled experimentation in silico. This capability is particularly
valuable in addressing the challenges of practical experimentation in the field, such as
resource constraints, time-intensive data collection, and environmental factors. Researchers
can leverage the digital twin to test hypotheses, validate models, and explore diverse soil
dynamics, thereby advancing the frontier of soil science and related disciplines.

The digital twin assumes also a dual-role as an educational catalyst, supporting educa-
tional initiatives through interactive learning tools. It not only empowers practitioners and
researchers, but also functions as an interactive learning tool to augment the understanding
of soil processes and behaviours among students and the broader public. This educational
facet aids in disseminating knowledge about soil science in a comprehensible and engaging
manner. By visualising complex ecosystem processes and engaging the public through
interactive interfaces, the digital twin fosters a deeper understanding of environmental
issues among diverse audiences. Through these user-friendly interfaces and visualisations,
the digital twin demystifies complex soil concepts and fosters a deeper appreciation of
soil’s role in agriculture, environmental conservation, and land management. As an educa-
tional resource, it equips learners with the insights necessary to make informed decisions
and contributes to building a community of soil-aware citizens and professionals, thereby
increasing soil literacy in society.

4.2.3. Innovation in Sensor Technology

Another noteworthy opportunity is the potential to drive significant advancements in
sensor technology, by either developing new sensor systems or improving the capacities
of existing systems. Soil data collection is highly dependent on the accuracy, granularity,
and cost-effectiveness of sensors. The digital twin can act as a catalyst for the development
of state-of-the-art soil sensors that offer improved precision and cost-efficiency. It effectively
serves as a test bed for the rapid prototyping and testing of new sensor technologies.
Researchers and manufacturers can collaborate to iterate and fine-tune sensor designs
in real-world soil conditions. This accelerates the development cycle of cutting-edge
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sensors, ultimately leading to more-accurate and -affordable data-collection tools. It can
also encourage the exploration of diverse sensor modalities, including optical, chemical,
biological, and remote sensing technologies.

The capabilities of the digital twin can also be continuously expanded and enhanced,
through the incorporation of improved data inputs. As technology evolves, new sources of
data become available (e.g., new sensors), which can be seamlessly integrated, enriching
the understanding of soil behaviour and enabling more-robust predictions. Continuous
improvement and adaptation can be achieved through feedback loops with users and
stakeholders. Their insights and needs can drive further enhancements in the data inputs,
ensuring that the digital twin remains relevant and valuable over time.

4.2.4. Policy Evaluation: Climate Resilience and Adaptation and Soil Health

The cognitive soil digital twin harbours substantial potential for policy evaluation,
particularly in the domains of climate resilience, adaptation, and soil health. This tool
offers stakeholders and policy-makers a versatile platform to comprehensively assess the
potential repercussions of policy interventions, spanning diverse realms like land-use
modifications, climate adaptation tactics, and pollution-mitigation measures. By simulating
and visualising scenarios, the digital twin assists in evidence-based decision-making and
policy formulation.

In the context of climate resilience and adaptation, the digital twin plays a pivotal role
by forecasting the ramifications of climate change on soil behaviour. This foresight enables
the strategic development of adaptive measures that mitigate adverse impacts and enhance
resilience in the face of changing environmental conditions. Furthermore, it supports
sustainable land use planning by meticulously evaluating soil responses to evolving climatic
circumstances. This informs decisions regarding optimal land utilisation, fostering practices
that align with both agricultural productivity and environmental sustainability objectives.

Its utility extends beyond climate considerations to encompass efficient resource
management. Data-driven decision-making, facilitated by the digital twin, empowers
stakeholders to minimise resource wastage and curtail environmental impacts. By pro-
viding actionable insights to farmers, land planners, and policy-makers, it equips them
with a powerful tool set for navigating the complexities of soil management and land use
planning. In this manner, the digital twin not only contributes to policy formulation, but
also aids in the realisation of sustainable and resilient soil ecosystems, ultimately benefiting
both society and the environment.

5. Conclusions

In this paper, we presented a comprehensive framework for the cognitive soil digital
twin, ushering in a new era in soil science and ecosystem monitoring. The framework
not only introduced the conceptual underpinnings, but also delineated the architectural
elements and essential building blocks necessary for the realisation of this technology. Em-
phasis was placed on the technological stack underpinning the digital twin, underscoring
its capacity to integrate vast and diverse datasets and perform the simulation of ecosystem
services, thereby providing a holistic perspective on the soil ecosystem.

Moreover, this study delved into the critical aspects of both the limitations and op-
portunities inherent in this paradigm. We elucidated the challenges encompassing data
integration and data privacy, model accuracy, and end-user engagement. Simultaneously,
we underscored the immense potential of the digital twin, spanning policy evaluation, data-
driven research, education and soil literacy in society, sensor development, and enhanced
soil health monitoring.

As we contemplate the future, it is evident that the implementation of an open-source
framework, rooted in the principles of collaboration and knowledge sharing, is imperative.
Such a framework holds the potential to not only support the advancement of soil science,
but also transcend disciplinary boundaries, nurturing cross-sectoral collaboration. With a
commitment to transparency and open access, the framework can act as a catalyst for a new
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wave of soil research, agricultural sustainability, and environmental stewardship. As soil
science and related fields stand at the precipice of transformation, embracing the cognitive
soil digital twin heralds a promising path toward a more-sustainable and -informed future.
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AI Artificial intelligence
API Application Programming Interface
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HPC high-performance computing
IoT Internet of Things
MIR Mid-infrared
ML Machine learning
UAV Unmanned aerial vehicle
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