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Abstract: The migration of heavy metals and radionuclides is interrelated, and this study focusses
on the interaction and complex influence of various toxicants. The rehabilitation of radioactively
contaminated territories has a complex character and is based on scientifically supported measures
to restore industrial, economic, and sociopsychological relations. We aim for the achievement of
pre-emergency levels of hygienic norms of radioactive contamination of output products. This, in
its sum, allows for further economic activity in these territories without restrictions on the basis of
natural actions of autoremediation. Biosorption technologies based on bacterial biomass remain
a promising direction for the remediation of soils contaminated with radionuclides and heavy
metals that help immobilise and consolidate contaminants. A comprehensive understanding of the
biosorption capacity of various preparations allows for the selection of more effective techniques
for the elimination of contaminants, as well as the overcoming of differences between laboratory
results and industrial use. Observation and monitoring make it possible to evaluate the migration
process of heavy metals and radionuclides and identify regions with a disturbed balance of harmful
substances. The promising direction of the soil application of phosphogypsum, a by-product of the
chemical industry, in bioremediation processes is considered.

Keywords: toxicants; remediation; biosorption technologies; phosphogypsum

1. Introduction

The pollution of soils by toxicants of different natures and origins is a current issue,
as it disrupts the homeostasis of ecosystems. The soil is the starting point of the food
chain, where all nutrients accumulate. Therefore, one of the most dangerous types of pollu-
tion associated with radioactive contamination and heavy metal contamination requires
significant efforts in soil remediation [1,2].

An analysis of radioactive contamination of the territory of Europe with cesium-137
shows that about 35% of radionuclide fallout after the Chernobyl radiation accident on the
European continent is located in the territory of Belarus. The contamination of Belarusian
territory with cesium-137 with a density greater than 37 kBq/m2 amounted to 23% of the
entire country’s area; for Ukraine, ~5%. In Ukraine, more than 3.5 million hectares of forest
land is radioactively contaminated by accidental emissions from the Chornobyl nuclear
power plant. A complex set of factors determines the current radiation situation in radioac-
tively contaminated forests, in particular, the density of radioactive soil contamination, the
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composition of radionuclides, the physical and agrochemical properties of soils, etc., which
determine the intensity of the biological circulation of radionuclides in ecosystems [3].

In research by Morooka et al. [4], areas affected by nuclear power plant (NPP) disasters
are presented. Thus, 31 radioactive particles from surface soils were detected in an area
3.9 km northwest of the Fukushima-1 NPP. 134+137Cs had the highest activity ever recorded
for Fukushima-1 NPP (6.1 × 105 and 2.5 × 106 Bq per particle after decay correction until
March 2011). Taking into account their large size (120 µm), the impact of these particles on
human health will be minimal, including radiation during static skin contact [4].

The polluting of soils with heavy metals and radionuclides can be natural or an-
thropogenic. Furthermore, different heavy metals have a specific accumulation rate and
bioavailability based on the physical and chemical properties of soils; therefore, they have
a different biomagnification rate, impact on human health, and ecological risk level [5]. In
this regard, it is important to identify the main sources, fate, and specific features in the
distribution of heavy metals and radionuclides in soils.

A complex interplay of biogeochemical processes, affected by factors such as pH,
clay content, and redox potential, controls the transport and chemical stability of metallic
contaminants in soil and sediment deposits. The transfer of heavy metals from the soil to
plants depends on quantity factors, intensity factors, and reaction kinetics. These factors
represent indicators of the overall quantity of potentially available elements, the activity
and ionic ratios of elements in the soil solution, and the rate of transition of elements
from the solid phase to the liquid phase and within the roots of the plant. Physical clay
(particles < 0.01 mm) and silt particles (particles < 0.001 mm), which have a higher absorp-
tion capacity compared to larger fractions, have the greatest impact on the radionuclide
mobility in soils. The addition of a silt fraction from chernozem or sod–podzolic soils to
sand reduces the accumulation of Sr in oats and wheat by 1.5–2 times, and this effect is more
significant for 137Cs. The transfer of 90Sr from soil to plants is four times higher on sandy
soils compared to loamy soils. Similarly, the transfer rates for 137Cs and 60Co are 100 times
and 40 times higher, respectively, on sandy soils [6]. According to the sorption efficiency of
these isotopes, the soil is arranged in the following order: sod–podzolic soils (Albeluvisols),
grey soils (Calcisols), yellow soils, red soils (Ferralsols, Alisols, and Acrisols), chestnut soils
(Kastanozems), and black soils (Chernozem). Substantial transfer of radiocaesium to plants
in sandy and sandy loam soils with a low content of clay minerals and organic matter
has been reported [7]. However, within the same soil group, the nature of the uptake of
137Cs into plants may vary depending on the absorption capacity of the soil, the content of
macro and microelements, and the pH of the soil solution. The sorption of 137Cs in the soil
depends on the clay mineral content of the soil and K-saturation.

This effect of fine soil fractions is associated with a stronger fixation of radionuclides
in them, which, in turn, is due to a larger specific surface of clay and silt particles and
changes in the chemical properties of the soil: the content of exchangeable cations and
organic matter, as well as the absorption capacity, increases [6]. In general, the effect of soil
properties on the biological rate of radionuclides can be described as follows: the transfer of
radionuclides to plants increases with a decrease in the content of clay, silt, organic matter,
and the absorption capacity in the soil [8,9].

Adsorbed radionuclides are more strongly retained by organic mineral complexes
than when sorbed in minerals of a different nature [10,11].

Summarising several studies, two soil management directions can be outlined:

1. Incorporating soil amendments can effectively fixate toxicants [12,13].
2. Supplying the soil with deficient nutrients is a method that helps plants resist heavy

metal stress [14,15].

The type of soil should be taken into account for its effective treatment. For example,
on loamy soils, the use of almost all types of fertilisers will increase yields and reduce the
level of radioactive substances in plant products. On poorly mineralised and hydromorphic
soils, the absorption of some radioactive substances can sometimes increase with the
application of mineral fertilisers. Research on new fertiliser compositions (also biosolids)
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based on a combination of organic and mineral components of sustainable raw materials to
increase the stability of soil–plant systems remains relevant [16,17]. Furthermore, resistance
of the soil–plant system to radionuclides and heavy metals refers to the ability of the system
to limit the mobility of chemical pollutants due to the inherent buffering properties of the
soil, thus controlling the transition of the latter to the aerial part of the plant [18].

The migration of heavy metals and radionuclides is interrelated, and this study fo-
cusses on the interaction and complex influence of various toxicants. Therefore, this
research aimed to review the problems of the rehabilitation of contaminated ecosystems
and the areas of application of bioremediation processes for this purpose. According to the
goal, the task was set as follows:

1. Review of the state of ecosystems contaminated with heavy metals and radionuclides.
2. Identification of the advantages and disadvantages of using biosorption technologies

for the joint fixation of heavy metals and radionuclides.
3. Substantiation of the possibility of using phosphogypsum for soil bioremediation.

2. Methodological Approach

To implement the objectives of the review, taking into account the analysis of the
general scheme of the pollution cycle to structure the impact and means of reducing it, a
bibliometric analysis was used using data from the Scopus and Web of Science databases.
For the systematisation of data and their management, Mendeley software (Elsevier, Ams-
terdam, The Netherlands) was used.

Therefore, the methodological approach to the literature analysis consists of the fol-
lowing steps described in the flowchart in Figure 1.
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Figure 1. The methodological approach to the implementation of the topic review rehabilitation of
contaminated ecosystems and the areas of application of bioremediation processes.

To validate the approach of using phosphogypsum in bioremediation, a comparative
analysis of the elemental composition of phosphogypsum of various origins and locations
was conducted in different regions of the world. This analysis was based on the results
of research on Ukrainian phosphogypsum, as well as previous studies by other authors
in different countries and regions around the world. This allowed for the synthesis of
existing information on the subject and provided a rationale for recommending the genesis
of suitable phosphogypsum for use in bioremediation processes. The main stages of the
analysis are illustrated in Figure 2.
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Figure 2. The methodological approach for the comparative review of phosphogypsum.

The ICP-OES method was used to analyse the elemental composition of phosphogyp-
sum. The measurement protocol is shown in Table 1.

Table 1. Protocol to analyse the elemental composition of phosphogypsum.

Step Description

1 Drying Over-drying at 40 ◦C for 24 h
2 Milling Fraction size smaller than 1 mm

3 Digestion Ethos 1 (MLS GmbH, Leutkirch im Allgäu, Germany) microwave-assisted
wet digestion system for 35 min at 210 ◦C

4 Measurement Inductively coupled plasma-atomic emission spectrometry (ICP-OES,
Agilent 720, Agilent Technologies Inc., Santa Clara, CA, USA)

3. Review of the State of Ecosystems Contaminated with Heavy Metals
and Radionuclides
3.1. Sources of Radionuclides and Heavy Metals in the Ecosystem

Soil is a complex mixture and a non-renewable natural resource, as it can only be
restored on a geological timescale. Heavy metals, unlike biological compounds, are rarely
biodegradable and therefore accumulate in the environment. Heavy metals in the soil
have a toxicological effect on soil microorganisms, leading to a decrease in abundance and
activity [8,19]. The relatively long half-life of radionuclides contributes to their long-term
presence in the environment, leading to various health complications, such as cancer [20].

Table 2 shows that the mentioned metals have a common anthropogenic source. These
activities have led to increased concentrations of heavy metals in the soil, contributing
significantly to their occurrence in the environment [21,22].
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Table 2. Main sources of some heavy metals in soils.

HM Sources Effects on Soil References

Cd

Non-ferrous metal extraction, production of
phosphate fertilisers, burning of fossil fuels, waste
incineration, tannery industry, electroplating, and

battery disposal.

The disruption of metabolic
functions hinders enzyme activities,
reducing the availability of N and S

in the soil for crops.

[20,21,23–25]

Pb

Emissions from power generation, metallurgy,
mechanical engineering, metalworking, electrical

engineering, chemistry and petrochemistry,
woodworking and pulp and paper industries, food
industry, and construction-material production, as

well as automotive transport.

Organisms’ metabolic abnormalities
affect soil enzymes and interrupt

nutrient balance, reducing
soil productivity.

[19,21,23,26–28]

Zn Emissions from non-ferrous metallurgy, waste
incineration plants, coal combustion, and tyre wear.

Phytotoxic effects on soil fertility,
diminishing microbial biomass N;

and lacking essential soil
macronutrients, such

as phosphorus.

[9,21,26,29,30]

Cu
Emissions of non-ferrous metallurgy enterprises;

combustion of leaded gasoline, municipal
incinerators, and copper mining residue.

Limited amounts of soil N and S
hinder crop production. Inhibit

β-glycosidase more than cellulose.
Diminish microbial biomass N.

[21,26,27,31,32]

Hg Emissions from non-ferrous metallurgy, fossil fuel
burning, steel production, metal smelting.

Disruption of metabolic function
in organisms. [21,26,33,34]

As

Burning of fuel, emissions from power generation,
production of construction materials,

pharmaceutical and textile industry. As used in
herbicides, insecticides, and desiccants.

Disruption of metabolic function
in organisms. [21,22,26,27]

Cr
Emissions from ferrous and non-ferrous metallurgy

(alloying additives, alloys, and refractories) and
mechanical engineering (electroplating).

Disruption of metabolic function
in organisms. [21,26,35,36]

Ni Emissions from non-ferrous metallurgy, burning of
fuel, waste incineration, and chemical industries.

Disruption of metabolic function
in organisms. [21,26,37–39]

The application of mineral fertilisers contributes to the increase in these elements
(Cd, Pb, etc.) in the soil. Cu, Cr, As, Hg, Mn, Pb, or Zn enter the soil, along with other
toxic chemicals, such as pesticides. The application of a wide variety of biosolids, such as
livestock manure, composts, and sewage sludge, to the soil unintentionally leads to the
accumulation of heavy metals such as As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Mo, Zn, Tl, Sb, etc., in
the soil [40,41]. The extensive mining and smelting of Pb and Zn ore have resulted in soil
contamination that poses a risk to human and ecological health [42].

3.2. Monitoring of Radionuclides and Heavy Metals in Ecosystems and Impact on Humans:
Ukraine CASE Study

Monitoring radioactive substances and heavy metals in the environment is essential
since pollutants can accumulate and migrate in the elements of the trophic chain. Soil is an
indicator of the ecological state of the environment. Proper organisation of background
monitoring of contaminated areas allows for an effective assessment of the state of envi-
ronmental objects, development of methods for biological soil remediation, and prediction
of the future state of the biological environment. Therefore, the authors investigated [43]
the migration and accumulation of heavy metals and radionuclides in the most significant
protected areas of the Transcarpathian region and identified the main possible factors that
affect the environmental monitoring process. As stated in Savchuk et al. [44], years after
the Chernobyl disaster, the environmental situation in the Polesie zone of Ukraine remains
difficult, as confirmed by the increased content of heavy metals in feed, milk, beef, and
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pork. The highest concentration of Pb was detected in coarse feed and sunflower cake and
meal (2462 mg/kg and 1639 mg/kg); 41.9% and 60.0% of samples of these types of feed,
respectively, had exceeded the maximum allowed concentrations of Cd.

The study revealed that coal mining in Jiangxi Province, China, causes radioactive
uranium contamination and heavy metal contamination with zinc and cadmium in the
soil, and the proposed in situ leaching method can be used to remediate contaminated
soils, but with attention paid to the potential environmental risks to the soil [45]. The
study by Mohuba et al. [46], conducted in the Thyspunt area of South Africa’s Eastern Cape
province, a potential site for a nuclear power plant, revealed elevated levels of radionuclides,
including 238U, 235U, 234U, 226Ra, 232Th, and 210Pb, mainly in rock formations of shale
and quartzite due to the natural geochemistry of these rocks. This indicates the potential
health risks associated with the ingestion of groundwater commonly used in the area. The
study by Baghdady et al. [47] in the Bahariya Oasis of Egypt, located near large iron mines,
identified elevated levels of Ba, Cr, Cu, Fe, and V in cultivated soils and Al, Cr, Cu, and V
in uncultivated soils, exceeding acceptable limits, with the highest concentrations recorded
in the northern oases near iron mines, while the highest values of activity concentrations,
i.e., 40 K, were recorded in uncultivated soils rich in evaporites. The study by Mitrovic
et al. [48] observed a significant decrease in soil 137Cs activity levels over a ten-year study
period (2007–2017) in Palilula, Belgrade, with values declining from 16 Bq/kg to 3.9 Bq/kg;
and in Surcin, Belgrade, from 18 Bq/kg to 12 Bq/kg. The study also identified variations in
soil heavy metal concentrations and attributed the primary source of radionuclides and
heavy metals to the widespread use of mineral phosphate fertilisers in agricultural fields.

In the context of the analysis performed, it is possible to define the main aspects of the
effectiveness of soil-monitoring implementation [49]:

- Availability of sufficient areas that are subject to minimal anthropogenic impact (for
example, biosphere reserves, nature reserves, and national nature parks);

- Selection of background monitoring criteria that would take into account the preva-
lence of individual substances in nature, their migration in the natural environment,
and the presence of potential sources of their anthropogenic intake;

- Selection of effective methods for monitoring the state parameters of environmental
objects.

The impact of the Chornobyl accident is not limited to the exclusion zone. Studies were
carried out in different regions of Ukraine and protected areas to establish the migration
processes of radionuclides and heavy metals and the possible relationships between them.
The determination of the heavy metal content in soils in the Carpathian Mountains region
and bottom sediments and the absolute activity of gamma-active nuclides was measured
by Symkanych et al. [43]. Based on the data obtained, a map of the distribution of the
total gross content of heavy metals and radionuclides was formed, which allowed for
the evaluation of the migration process and the identification of regions with a disturbed
balance of harmful substances.

According to the data of Lee et al. [50], the monitoring of radioactive pollutants,
mainly lying at a depth of 15 cm of the soil surface layer, can be carried out using sev-
eral radiochemical analytical methods: plasma or laser spectrometry; and scintillation or
semiconductor spectrometry. Plasma or laser spectrometry can effectively detect vertical
variations in surface contamination only at a depth of about 10 cm because of its minimal
penetration depth. Therefore, mobile scintillator spectrometry was proposed to compre-
hensively characterise the radioactive contamination of decommissioned nuclear facilities.
In the study by Lee et al. [50], a mobile in situ scanning system, consisting of a gamma-ray
spectrometer, was developed and tested for application in nuclear decommissioning sites.
The results demonstrated its potential as an integrated performance-assessment tool for in
situ monitoring at nuclear decommissioning sites.

Minimising the pollution of agricultural products is the main direction of the state in
ensuring environmental safety and public health, as radionuclides enter the human body
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during the consumption of contaminated products. This relationship characterises the
trophic chain: radioactive fallout–soil–agricultural plants–farm animals–humans [51].

It is possible to form three main migration flows of radionuclides that fell on the
territory of Ukraine (Figure 3) [50–52].
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The set of measures that prevents the entry of radionuclides into agricultural products
includes the following [7,53]:

- Natural autorehabilitation (radioactive decay, and fixation and redistribution of ra-
dionuclides in the soil);

- Strengthening of biogeochemical barriers to fix radionuclides in soils, reducing the
risk of radiation contamination of food;

- Strengthening the radioecological monitoring of soils and agricultural products, radio-
logical control, and compliance with recommendations for agricultural production.

The restoration of radioactive soils is carried out using methods based on such strate-
gies as dry separation, soil washing, flotation separation, thermal desorption, electrokinetic
remediation, phytoremediation, etc. The main factors that help to select soil-cleaning meth-
ods effectively include soil type, particle size, percentage of fine particles, and radionuclide
characteristics [54].

The characteristics and composition of radioactive particles depend on the source of
release, and emission scenarios affect the properties of these particles, which is directly
essential for the transfer to the environment. Radioactive particles in the bio-environment
can come in a variety of physical and chemical forms, ranging from low-molecular-weight
particles, colloids, or nanoparticles to pseudocolloids, particles, and fragments. There-
fore, information on the types of radionuclides that transform over time is important for
assessing the state of contaminated areas and irradiated organisms [55,56]. Radioactive
particles can also carry a certain amount of radioactivity and be point sources of radiological
danger [57].

For the sorption of radionuclides and heavy metals, various matrices can be used. Basic
rock-forming minerals (framework aluminosilicates) are better suited for immobilisation of
radionuclides of alkaline and alkaline-earth element groups, as well as halogens, and the
use of accessory minerals (phosphates, titanates, and titanium zirconate). As reviewed in
our previous studies [14], matrix materials such as phosphates, zirconolites, and sphenes
can be recommended for use. In more detail, it is worth dwelling on biosorption methods
of ecosystem remediation, which are of increasing interest in applied technologies of
radionuclide and heavy metal fixation.
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4. Biotechnologies for Integrated Fixation of Heavy Metals and Radionuclides:
Identification of Advantages and Disadvantages
4.1. Soil Bioremediation Methods

The soil rehabilitation process of microbes is carried out using mechanisms such as
bioprecipitation, biosorption, bioaccumulation, bio-assimilation, bio-extraction, biodegra-
dation, and biotransformation [58–63]. Some methods for fixing heavy metals and radionu-
clides are shown in Figure 4. In situ remediation, which involves treating the contaminated
site directly in place, can be further subdivided into intrinsic bioremediation and engineered
bioremediation. Intrinsic bioremediation occurs naturally without human intervention,
while engineered bioremediation involves manipulating the environment to accelerate the
degradation of the contaminant [64].
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The connection between engineered bioremediation methods and physical and chemi-
cal treatment methods is to complement each other. Therefore, stage-by-stage soil remedia-
tion is needed, including physical, chemical, and biological treatment methods. Physical
and chemical methods can precede biological methods and serve as a preliminary stage.
Groudeva et al. [59] investigated the dissolution and removal of contaminants from soil
using Na2CO3 and NaHCO3 solutions, linked to the activity of heterotrophic and basophilic
chemo-lithotrophic microorganisms. This activity was intensified by the corresponding
changes in environmental factors, such as water, oxygen, and nutrient levels. Furthermore,
dissolved-impurities soil leachates were efficiently treated using a nearby natural wetland
ecosystem [59].

In the context of mechanical and physicochemical soil remediation methods, the
contaminated soil fraction is excavated and then transported to a designated disposal site,
where it is stored and treated, incurring additional space requirements and transportation
costs [60]. This approach has the disadvantage that it essentially relocates contamination
to another location, necessitating ongoing monitoring of the previously contaminated soil
and the surrounding environment. Furthermore, during the removal and transport of
contaminated soil, there is a risk of spreading contaminated soil and dust particles.

Chemical or physicochemical remediation can be used as a standalone method (when
heavy metal concentrations are less than 100 mg/L), but it is more advisable to use it
as a preliminary step before biological remediation. The latter approach allows for the
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removal of heavy metals from an environment with concentrations significantly lower, but
exceeding background levels due to pollution [61].

The chemical and physicochemical methods in the separate application require soil
treatment with certain reagents and subsequent leaching with an organic or inorganic
solvent, which can lead to deterioration of soil properties, creating an additional factor of
destruction of natural soil properties, excluding the possibility of their further use [45].

There are many factors to consider when using physicochemical methods, e.g., pH,
temperature, time, nature of the desorbing agent, etc., making the physicochemical method
not always suitable, effective, or economically feasible [32]. For example, ion exchange, as
a chemical treatment method, can be used to remove various types of metals from the soil
but requires the replacement of ion exchange materials and can be expensive [56,63,65].

Compared to organic contaminants, heavy metals and radionuclides in soil cannot be
destroyed but must either be converted into a stable form or removed. For this purpose, it
is appropriate to use chemical methods to clean soils contaminated with heavy metals and
radionuclides, which allow the reaction mixture to be applied directly to the contaminated
area, while the topsoil that is being cleaned does not have a significant impact on the
functioning of the ecosystem in general [66].

One such approach for the purification of heavy metal-contaminated chernozem
soils involves the incorporation of a residual mixture of organic and mineral compost.
In this scenario, pollutants are not extracted from the soil; instead, they are temporarily
transformed into less readily available forms for plants over a specific duration, typically
4–5 years. However, this method itself does not provide a solution to the problem of
removing pollutants from soils but can be combined with biological methods to achieve a
positive effect.

The biological soil remediation of heavy metals and radionuclides is achieved through
biotransformation. Microorganisms, such as bacteria, fungi, and microscopic algae that
reside in the soil, are effective biotic entities that are capable of efficiently absorbing or
transforming heavy metal and radionuclide compounds [67].

Heavy metals that penetrate living cells exhibit their toxic effects primarily in the
form of ions. However, if heavy metals and radionuclides are transformed into bound
forms through various means, they lose their toxic properties [68]. Consequently, heavy
metals deposited in the cell wall in a crystalline or poorly soluble compound form become
non-toxic to microorganisms but are eventually removed from the environment as a result
of biological remediation.

The mechanisms through which microorganisms interact most frequently with heavy
metals include biosorption (the sorption of metals on cell surfaces through physicochemical
mechanisms), bioleaching (the mobilisation of heavy metals through the excretion of
organic acids or methylation), biomineralization (the immobilisation of heavy metals
through the formation of insoluble sulphides or polymeric complexes), bioaccumulation
(intracellular accumulation), and enzyme transformation catalysis (oxidation-reduction
reactions) (Figure 4) [69,70].

Biological methods of soil remediation offer partial solutions to challenges in this field.
From an economic point of view, they provide benefits by avoiding the need for significant
one-time investments. The associated costs can be spread over several years. These methods
also eliminate the requirement for mandatory soil excavation and can be applied to larger
areas. Furthermore, they avoid the introduction of specific harmful chemical mixtures,
solutions, or reagents into the soil, thus preventing secondary pollution [71,72]. The general
disadvantages of biological methods are their delayed effectiveness; long duration; and
dependence on climatic conditions, including the rate of development of bioremediation
organisms and biotransformations carried out by microorganisms in climatic conditions
with variable temperature and humidity throughout the year [73,74].

Table 3 presents a classification of soil bioremediation methods. The approach chosen
may vary depending on the concentration and type of target metals. It is also essential to
consider an ecosystem-based approach within the context of interconnectedness because
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the soil environment interacts with water resources and the atmosphere, influenced by the
biochemical activities of organisms in the natural components of the ecosystem [75–77].

Table 3. Classification of soil bioremediation methods.

Method Brief Definition Process Features Considering Their Limitations References

Biomineralisation

Deposition of heavy metals as
insoluble compounds. It includes

two primary methods:
microbiological carbonate

precipitation and enzymatic
carbonate precipitation.

It is considered an environmentally friendly
bioremediation method that is not less effective than
chemical methods. However, limitations related to

microorganism strains, pollutant concentrations, and
soil properties must be taken into account. Further

research on soils treated with biomineralization, the
solidification and stabilisation (S/S) of toxicants, is

necessary to understand the patterns of strength
change in polluted soils treated with

biomineralization. Additionally, it is important to
investigate changes in the rate of heavy metal

fixation and the mechanical properties of
contaminated soil.

[77–83]

Biosorption

This is a physicochemical and
metabolically independent

process that relies on various
mechanisms, including

absorption, adsorption, ion
exchange, surface complexation,

and precipitation.

Advantages include low cost and significantly
higher efficiency in removing metals from diluted

solutions. Heavy metal adsorption and removal can
be performed using biomass, which can generate

income for businesses that do not use biomass, such
as organic waste.

Various environmental parameters, such as
temperature, metal type and concentration, metal

oxidation state, microbe type, metal removal
method, and biosorbent concentration, can influence
the ability of microorganisms to bind metals. This

may have a negative impact on
biosorption efficiency.

[84–92]

Bioprecipitation

In the process of bioprecipitation,
the formed metabolites react with

metals present in the
groundwater, resulting in the

precipitation of metals, i.e., the
transformation of metals from the
aqueous phase to the solid phase.

Bioprecipitation is more effective in treating
wastewater than soils; however, the profitability of

recycling or selling recovered metals can vary
depending on the investments in infrastructure of

the investments in infrastructure of a company. It is
recommended to use it in conjunction with other

biological methods.

[78,93–98]

Bioaccumulation

Active uptake of heavy metals
into cells involves the binding of

toxic metals or chemical
compounds inside the

cellular structure.

This method not only is cost-effective but also helps
minimise the environmental impact of pollution.

Metal bioaccumulation is particularly useful as an
impact indicator, as metals are not metabolised.

Metal ions initially attach to the cell surface and are
later transported into the cell. This process can lead
to a temporary reduction in metal ion concentration.
However, it can be utilised to synthesise metal-rich

nanoparticles, provided that the processing is
performed in specialised bioreactors

rather than in situ.

[85,99–105]

Biotransformation

Breakdown of heavy metal
compounds into less toxic forms
or their conversion into less toxic

forms (associated with
biodegradation).

Photoautotrophic microbes are capable of
biotransforming heavy metals into relatively
biologically inaccessible and insoluble metal

sulphides. By characterising the role of sulphur
assimilation pathways in the biotransformation of

heavy metals, we can develop more effective
processes for heavy metal bioremediation. The use
of additional sulphate nutrition can enhance the rate

of biotransformation in aerobic microbes.

[78,85,106–111]
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Bioremediation-based processes can be considered a promising area based on the
transformation of heavy metals and radionuclides into a less dangerous state and, at
the same time, provide sustainable restoration of the environment. Thus, as part of the
study of transformations of metals such as Pb, Zn, and Cd by Thakare et al., a number of
regularities were identified. Metals cannot be decomposed by microorganisms involved in
contaminated soil rehabilitation, but they can be changed from one oxidised form to another,
allowing them to become fixed in insoluble form and be removed from biogeochemical
cycles of migration in the environment [112].

Heavy-metal ions and radionuclides can usually be adsorbed by functional groups
such as carbonyl, carboxyl, sulfhydryl, phosphate, sulphate, amino, and hydroxyl groups
on the bacterial surface. The ability of bacteria to absorb heavy-metal ions generally varies
from 1 mg/g to 500 mg/g [113]. Extracellular polymer substances consisting of proteins,
lipids, nucleic acids, and complex carbohydrates play an important role in the adsorption
of heavy-metal ions. These substances on the surface of the bacterial cell can prevent heavy
metal toxicity and penetration into the inner cell region [112]. When studying the effect of
metals on soil biological properties, it is feasible to use a set of methods, such as microbial
biomass, C and N mineralisation, respiration, and enzyme activity, that will allow for a
complete evaluation of this interaction [114].

In general, the following types of microorganisms are used in the bioremediation
methodology [78]: Bacillus sp., Lysinibacillus sp., Rhodococcus sp., Ascomycota, Basidiomycota,
Perenniporia subtephropora, Daldinia starbaeckii, Phanerochaete concrescens, etc.

4.2. Biosorption Technologies and Their Aspects of Realisation

Today, biosorption has been accepted as an environmentally friendly alternative green
technology for the removal of various human-made pollutants, with the help of microbes
such as bacteria, fungi, algae, and yeast. Pollutants are substances that do not decompose,
are relatively unyielding, are insoluble in water, are impervious to microbial cells, and are
harmful to lower and higher classes of living organisms. Desorbing eluents can be used to
remove adsorbed pollutants, and biosorbent regeneration can be carried out by chemical,
thermal, or electrochemical methods [115].

Fundamental to understanding the biosorption process is knowledge of the mecha-
nism of the process. Based on cellular metabolism, biosorption mechanisms can be classified
into independent and dependent mechanisms. Based on the location of biosorption, the
following are distinguished [116–121]: (i) intracellular accumulation, (ii) extracellular accu-
mulation and deposition, and (iii) cell surface sorption and deposition. The mechanisms
belonging to the first two groups depend on metabolism and are caused by the processes
of complexation, precipitation, and ion exchange; and the last group of mechanisms are
also adsorption (physical and chemisorption).

The process of adsorption involves the attraction of other dissolved particles to the
surface of a solid substance (adsorbent), primarily through adhesion, electrostatic attraction,
and ion exchange. The adsorbent “fixes” all contaminants in its structure and thus purifies
the sample [116].

An integrated approach is necessary for the restoration, regeneration, revegetation, and
management of areas with a high level of anthropogenic loads, such as areas contaminated
with heavy metals and radionuclides. Methods can be applied effectively for soil restoration,
including some green activities, such as phytoremediation, and an appropriate soil cleanup
process can be established. The enhancement of phytoremediation takes place through
organic additives, namely agricultural waste and pretreated sewage sludge, biochar, humic
substances, plant extracts, exudates, etc. [117].

At the same time, the commercialisation of biosorption technologies is hindered by
technical problems associated with the operation and regeneration of native biosorbents.
This problem is partially solved by immobilising microorganisms in a solid inert carrier,
such as biochar, zeolites, and vermiculite, or by including them in an alginate gel. In
this case, it becomes possible to apply a dynamic sorption process, the so-called “column
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variant” [118–121]. However, the sorption capacity of the biosorbent decreases significantly
in comparison to static biosorption. Furthermore, there are still problems with biosorbent
regeneration and replacement in the event of complete depletion.

The key advantages and disadvantages of biosorption technologies are shown in
Figure 5. Biosorption is well suited for use in large areas of contaminated soil where other
remediation methods are not economically feasible or difficult to implement practically and
where soil productivity can be restored over long periods of time. It can be combined with
other technologies, such as phytoremediation, for the final closure of the site with vegetation.
In emergency situations or military action that involves the release of high concentrations
of pollutants into the ecosystem, it is initially necessary to use physicochemical methods
to quickly stop vertical and horizontal migration into natural components. Biosorption
technology has some limitations that should be considered before choosing it for the
remediation of areas contaminated with heavy metals and radionuclides: the prolonged
duration of territorial restoration and the fixation and transformation of pollutants into less
toxic forms have a long-term positive effect, but there is a potential risk of contamination
through the food chain.
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A biostimulation approach is used to improve biosorption processes. It includes stimu-
lating the growth of microorganisms in a contaminated soil area to introduce pH-correcting
substances, nutrients, surfactants, and oxygen [122], which requires further research.

However, it should be noted that there is a lack of information on the synergistic or
inhibitory effect on the sorption processes of metal ions in multicomponent solutions with
different ionic strengths, effective methods of immobilisation of microorganisms for the
implementation of flow biosorption processes, selectivity and ways to increase it in the
concentration of heavy metals, etc. This indicates the need to create a research algorithm
for the study of biosorption processes using microorganisms.

Thus, to date, the following directions are relevant [60,123–128]:

- Studies of microorganisms of different physiological groups (including the use of
genetically modified strains) on the ability to sorb and transform soluble forms of
heavy metals and radioactive elements into insoluble ones;
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- Bacterial reduction processes of technetium, chromium, and uranium when used
as final electron acceptors in bacterial energy metabolism for the purpose of their
detoxification in systems with neutral, acidic, and alkaline pH values;

- Determining the products of bacterial transformation of radionuclides and heavy
metals formed under different conditions;

- Possibilities of reducing the toxic effects of heavy metals and radionuclides on soil
microorganisms;

- Development of nanobioremediation technology.

5. Possibility of Using Phosphogypsum for Soil Bioremediation

The use of phosphogypsum is associated with challenges that have gained increasing
importance [129], as shown in Figure 6. Furthermore, it should be noted that phospho-
gypsum may be contaminated with radionuclides [130]. According to EPA data, phos-
phogypsum contains significant quantities of uranium and its decay products, such as
radium-226, attributed to its presence in phosphate ores. The concentration of uranium in
phosphate ores identified in the United States varies within the range of 0.26 to 3.7 Bq/g
(7 to 100 pCi/g) [131]. However, various raw materials are used in different countries
and regions globally; consequently, not all phosphogypsum exhibits elevated levels of
radioactivity [129,132].
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In order to address the development of environmentally friendly technologies for the
use of phosphogypsum within the context of the bionics concept that integrates biological
methods and structures for engineering solutions and technological approaches, it is neces-
sary to improve the technical solutions and technologies for phosphogypsum utilisation in
potential soil applications. A crucial element involves precise control over the composition
of the soil solution through in situ synthesis of essential compounds directly within the
soil. Given the present issue of soil degradation, there is a pressing need to actively explore
novel soil management strategies. Furthermore, the effective resolution of this problem
requires the availability of suitable design tools [18].

We emphasise the use of phosphogypsum, which does not have significant radioactive
contamination, in bioprocesses. Therefore, Figure 7 shows the main elements of phospho-
gypsum that positively affect soil properties [133,134]. Furthermore, phosphogypsum has
an impact on the growth of microorganisms, which has been confirmed by several stud-
ies [135–139]. Through the regulation of soil moisture, it is possible to significantly reduce
the leaching of unproductive substances and address issues related to the hydromorphic
regime of the soil, including the degradation of organic matter and the reduction of sul-
phate to sulphides. Moisture control also enhances the protective effect of the geochemical
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barrier “soil–rhizosphere”, effectively retaining harmful compounds within soil solution,
particularly for Pb, Cd, and Sr [140].
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Figure 8 shows the distribution of countries according to their publication activity
in the phosphogypsum research documented in the Scopus database. Distribution of
countries by publication activity in the field of phosphogypsum research according to the
Scopus database.
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Tables 4 and 5 show a comparative analysis of the concentrations of elements in
phosphogypsum from different countries.

Table 4 shows that the main components of calcium and sulphur oxides fluctuate in
significant intervals in phosphogypsum samples from different regions of the world, with
calcium in the range of 17.7–45.9 wt% and sulphur in the range of 17–51.4 wt%, respectively.
At the same time, components such as iron, potassium, aluminium, magnesium, and
manganese also have a significant difference in the amount of content in phosphogypsum
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from different locations of generation in the world. This is due to the technological process
of production, but the special influence on changes in the content of trace elements is
influenced by the raw materials used (phosphates and apatites).

In terms of the content of radionuclide isotopes, the data vary significantly depending
on the region of phosphogypsum deposition. A review of previous studies [130,141,142]
showed that radioactivity varies according to the type of phosphate ore and is mainly
caused by the decay series U-238 and Th-232. Since U-235 is not as common in nature
as U-238, the radiation of this decay series is not considered a threat [143]. However, the
information about harmful impurities in phosphogypsum related to its environmental
impact is not yet fully understood, which requires scientific evaluation in the future and
the expansion of research in this area [144].

Therefore, it is worth concluding that Ukrainian phosphogypsum (in particular, from
the Sumy region, since its samples were studied) is the most environmentally acceptable
for bioremediation processes (Tables 4 and 5):

- Heavy metals (e.g., As, Pb, and Cr) have lower concentrations in phosphogypsum
from the Sumy region than in phosphogypsum from China, Spain, the USA, and Brazil;

- Some rare earth elements (such as La, Ce, Pr, and Y) are represented in phosphogyp-
sum from the Sumy region (Ukraine) and less represented in phosphogypsum from
other regions of the world.

However, this conclusion requires several further studies on the testing of Sumy
phosphogypsum on different types of soil in bioremediation practice.

Table 4. Concentrations of major elements in phosphogypsum.

wt.% Ukraine a China b United
States c Spain d Brazil e India f Morocco g Poland h Tunisia i France j Greece k

CaO 22.9–31.4 31.6–43.3 22.7–39.4 17.7–32.6 31–36 30.9–38.9 32.2–35 29.6–42.7 30.7–37.2 31.3–33.4 34.30

SO3 29.8–36 34–49 22.9–51.9 30.7–46 44.5 44.2–52.9 17–45.1 42.1–56.5 37.5–47 n.m. 41.50

SiO2 13.1–24.7 3.6–15.3 3.2–51.3 n.m. 0.8 0.5–4.3 0.3–9.7 0.4–1.8 1.0–3.8 0.6–1.5 n.m.

Al2O3 0.96–2.52 0.08–2.59 0.069–1.14 n.m. 0.11–0.2 0.1–0.77 0.13–0.77 0.18–1.7 0.04–0.11 0.11–0.31 n.m.

P2O5 0.63–0.79 0.68–1.82 0.5–3.8 0.49–1.18 0.07–1.29 0.82–1.04 0.59–1.62 1.5 0.8–1.69 0.36–0.69 n.m.

Fe2O3 0.41–0.94 0.05–1.95 0,13–1.15 n.m. 0.25–0.77 0.1–0.56 0.15–0.83 0.06–0.20 0.03–0.13 n.m. 0.84

K2O 0.1–0.32 0.17–0.33 0.02–0.9 0.02 0.04 0.03 0.05–0.4 n.m. 0.01–0.03 n.m. n.m.

TiO2 0.05–0.17 0.04–0.27 0.03–0.46 n.m. 0.18–0.52 0.02–0.05 0.01–0.03 n.m. n.m. n.m. n.m.

Na2O 0.02–0.07 0.05 0.11–1.42 0.02 0.02–0.09 0.03–0.11 0.14–0.55 n.m. 0.05–0.29 0.02–0.19 n.m.

MnO 0.01 0.08–0.18 0.06–0.07 n.m. 0.004–0.017 n.m. 0.01 n.m. n.m. 0.0002–0.0004 n.m.

MgO 0.01 0.01–0.23 0.03–0.13 n.m. 0.02–0.76 0.02–0.56 0.21–0.54 n.m. 0.01–0.07 n.m. 0.13

a Ukraine (author’s results); b China [145–149]; c United States [150–152]; d Spain [153,154]; e Brazil [155–157];
f India [158–160]; g Morocco [161–165]; h Poland [166–170]; i Tunisia [171–174]; j France [175]; k Greece [176,177];
n.m., not measured.

The selective removal of Na+ and Cl− from soil, without affecting other macroelement
ions, is an integral aspect of the scientific and technical field known as biogeosystem
engineering. Biogeosystem engineering deals with engineering solutions and technologies,
unprecedented in nature, aimed at managing the cycling of biogeochemical substances in
gaseous, liquid, and solid phases. Its primary focus is the ecologically safe use of substances
in soils, the improvement of resources and food products, and the solution of the production
and environmental challenges in the noosphere through a unified technological cycle based
on the principle of natural consistency. In the context of ensuring a quality environment
for healthy living, the issue of phosphogypsum involves considering methods for its
neutralisation as a more environmentally friendly alternative to the disposal in storage
facilities [18,178]. However, for the reclamation of saline soils, neutralising phosphogypsum
should be avoided, as its residual acids enhance the solubility of calcium compounds in the
soil, promoting sodium displacement by calcium. Therefore, the supply of phosphogypsum
to consumers in reusable containers for soil application appears to be a rational solution.
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Mixing phosphogypsum with ash from a power plant appears promising for optimising
the use of by-products [179]. The lower the coal quality, the higher the CaO content in
the ash, leading to a higher level of phosphogypsum neutralisation. Simultaneously, both
materials can be recirculated in the soil.

Table 5. Concentrations of trace elements in phosphogypsum.

ppm Ukraine a China b United
States c Spain d Brazil e India f Morocco g Poland h Tunisia i France j Greece k

Cu 3.6–7.0 27.6 2.5–35.1 2.5–11 6.3–9 n.m. 1.5–2.9 3.39 6–9.6 5.4–17.5 13

As <4.96 7.15 0.77–20.1 0.6–8.56 n.m. n.m. 1.84–1.94 8.05 1 n.m. 0.61–17

Pb 4.6–4.7 28.15 2.06–11.4 1.99–10.8 7.2–31 0.07 0.17–1.7 10.4 0.9 1.68–4.57 11

Zn 3.2–19.7 37.5 1.19–32.1 1.92–13.1 4.4–85.1 n.m. 3–28 n.m. 9–137 n.m. 12–123

Cr 4.6–11.9 37 1.69–20.2 3.59–20.3 11.1–14.7 2.73 5.85–11 5.9 6–13 n.m. 15.8–153

Ni 1.4–1.7 16.6 0.21–17.79 0.87–2.67 5.4–11 14.48 1.2–300 3.6 0.94–4.1 n.m. 21

Cd 1.19–6.36 0.48 0.28–10.8 1.39–2.83 <0.1 n.m. 0.8–7.38 1.7 8–17.7 1.2–2.1 0.98–6.67

V 1.6–2.2 27.5 0.38–10.7 2.9–12.8 6.9–9.2 n.m. 1.94–5 n.m. 2–3 1.43–3.91 n.m.

Ga 0.49–0.78 n.m. n.m. n.m. 9–10.4 n.m. n.m. n.m. 0.87 n.m. n.m.

Sr 981 n.m. 1.05–899 360–596 4884.9–6179.1 n.m. 530–778 n.m. n.m. 813.2–1275 172–470

Ba 20.5–27.2 215 30.3–88.9 37 767.1–6104 n.m. 23–63.3 n.m. 10 92.36–215.6 38.3–331

Y 197.2–148.8 74 43.36 106–142 90–105.3 n.m. 127 n.m. 53.2 34.65–100.7 n.m.

La 195.3–137.1 36.5–46 36.38 n.m. 921.1–1969 n.m. 60.7 40 46.3 12.96–43.35 24.9–30.5

Ce 282.1–200 30.6–32 63.84 19.5–81.2 2109.1–3547 n.m. 39 53 74.4 6.53–18.72 19.2–60.7

Pr 46.7–33.4 5 5.01 n.m. 256.1–276.2 n.m. 11 8 n.m. 1.9–6.9 n.m.

Eu 0.98 n.m. 1.4 n.m. 23.7–25.9 n.m. 2.48 2 n.m. 0.49–1.7 0.85–1.08

Cs 0.38 n.m. n.m. n.m. <0.1 n.m. n.m. n.m. 0.05 n.m. 0.09–4.82

Th 3.3–5.8 n.m. n.m. 1.1 67.2–81 n.m. 3.04–3.27 n.m. 0.74 0.22–1.39 0.59–10.1

a Ukraine (author’s results); b China [145–149]; c United States [150–152]; d Spain [153,154]; e Brazil [155–157];
f India [158–160]; g Morocco [161–165]; h Poland [166–170]; i Tunisia [171–174]; j France [175]; k Greece [176,177];
n.m., not measured.

In our previous study, Chernysh et al. [18], the introduction of phosphogypsum into
the process of anaerobic fermentation of sustainable feedstock (sewage sludge, etc.) leads
to the introduction of additional macroanalogues into the organo-mineral structure of
digestate. It should be noted that the introduction of phosphorus and calcium compounds
contained in phosphogypsum intensified the process of fixation of heavy metals and
radionuclides in the sludge. As a result, calcium and potassium hydrogen phosphate
compounds, which have the ability to adsorb radionuclides, were found in the mineral
composition of the digestate [18].

The factors that influence the migration of radionuclides into the ecosystem and the
impact of the organo-mineral complex on the fixation of heavy metals and radionuclides in
soils are described in Figure 9.

Thus, the uptake of radionuclides by plants and their accumulation by chemicals
in crop fields are largely dependent on the amount of their chemical analogues in the
environment. An increase in the exchange capacity usually leads to an increase in the
adsorption strength of radionuclide traces. Therefore, the accumulation of 137Cs by plants
in most cases is inversely proportional to the absorption capacity of the soil and the amount
of exchangeable K in it, and for 90Sr [3]. The uptake of 90Sr and 137Cs by plants decreases
with an increase in the content of calcium and potassium in the soil or growing medium [18].
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6. Conclusions

A review of studies of heavy metal content was conducted in radioactively contami-
nated areas. In particular, the sources of heavy metals and radionuclides in the soil and
their impact on ecosystem services with inclusion in food chains were identified. This
article discusses the important issue that is the remediation of soils contaminated with
heavy metals and radionuclides, especially if these toxicants are present simultaneously
in contaminated areas. Therefore, remediation methods should take into account the
specificity of both of them.

The advantages and disadvantages of immobilising heavy metals and radionuclides
are identified using biosorption methods. Technical problems associated with the use
and regeneration of local biosorbents have hindered the commercialisation of biosorption
technologies. The immobilisation of biomass on solid inert carriers (e.g., biochar, zeolite,
and vermiculite) can partially solve this problem. However, the issue of regeneration and
replacement of the biosorbent in case of its complete exhaustion arises. In addition, the
directions for the use of phosphogypsum as a sorption carrier for soil bioremediation were
determined. It is necessary to take into account the neutralisation of phosphogypsum
in this field as a promising one, which requires further research within the framework
of the development of the biogeosystem approach. It should be noted that the post-war
restoration of the contaminated territories of Ukraine is a complex and strategic task within
the framework of the global issue of food security.
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129. Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.-G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.-L.; et al.
Phosphogypsum Circular Economy Considerations: A Critical Review from More than 65 Storage Sites Worldwide. J. Clean. Prod.
2023, 414, 137561. [CrossRef]

130. Diwa, R.R.; Tabora, E.U.; Palattao, B.L.; Haneklaus, N.H.; Vargas, E.P.; Reyes, R.Y.; Ramirez, J.D. Evaluating radiation risks
and resource opportunities associated with phosphogypsum in the Philippines. J. Radioanal. Nucl. Chem. 2022, 331, 967–974.
[CrossRef]

131. TENORM: Fertilizer and Fertilizer Production Wastes. U.S. Environmental Protection Agency. Available online: https://www.
epa.gov/radiation/tenorm-fertilizer-and-fertilizer-production-wastes (accessed on 22 December 2023).

132. Plyatsuk, L.; Balintova, M.; Chernysh, Y.; Demcak, S.; Holub, M.; Yakhnenko, E. Influence of Phosphogypsum Dump on the Soil
Ecosystem in the Sumy region (Ukraine). Appl. Sci. 2019, 9, 5559. [CrossRef]

133. Mahmoud, E.; Ghoneim, A.M.; Seleem, M.; Zuhair, R.; El-Refaey, A.; Khalafallah, N. Phosphogypsum and Poultry Manure
Enhance Diversity of Soil Fauna, Soil Fertility, and Barley (Hordeum aestivum L.) Grown in Calcareous Soils. Sci. Rep. 2023, 13,
9944. [CrossRef] [PubMed]

134. Qi, J.; Zhu, H.; Zhou, P.; Wang, X.; Wang, Z.; Yang, S.; Yang, D.; Li, B. Application of Phosphogypsum in Soilization: A Review.
Int. J. Environ. Sci. Technol. 2023, 20, 10449–10464. [CrossRef]

135. Li, C.; Dong, Y.; Yi, Y.; Tian, J.; Xuan, C.; Wang, Y.; Wen, Y.; Cao, J. Effects of Phosphogypsum on Enzyme Activity and Microbial
Community in Acid Soil. Sci. Rep. 2023, 13, 6189. [CrossRef] [PubMed]

136. Ben Mefteh, A.; Bouket, L.; Daoud, A.; Luptakova, L.; Alenezi, F.N.; Gharsallah, N.; Belbahri, L. Metagenomic Insights and
Genomic Analysis of Phosphogypsum and Its Associated Plant Endophytic Microbiomes Reveals Valuable Actors for Waste
Bioremediation. Microorganisms 2019, 7, 382. [CrossRef]

137. Lei, L.; Gu, J.; Wang, X.; Song, Z.; Wang, J.; Yu, J.; Hu, T.; Dai, X.; Xie, J.; Zhao, W. Microbial Succession and Molecular Ecological
Networks Response to the Addition of Superphosphate and Phosphogypsum during Swine Manure Composting. J. Environ.
Manag. 2021, 279, 111560. [CrossRef] [PubMed]

138. Trifi, H.; Najjari, A.; Achouak, W.; Barakat, M.; Ghedira, K.; Mrad, F.; Saidi, M.; Sghaier, H. Metataxonomics of Tunisian
Phosphogypsum Based on Five Bioinformatics Pipelines: Insights for Bioremediation. Genomics 2020, 112, 981–989. [CrossRef]

139. Chernysh, Y.; Hasegawa, K. Improvement of the Model System to Develop Eco-Friendly Bio-Utilization of Phosphogypsum; Lecture Notes
in Mechanical Engineering; Springer: Cham, Switzerland, 2020; pp. 357–366.

140. Ulianchuk-Martyniuk, O.V.; Michuta, O.R.; Ivanchuk, N.V. Finite Element Analysis of the Diffusion Model of the Bioclogging of
the Geobarrier. Eurasian J. Math. Comput. Appl. 2021, 9, 100–111. [CrossRef]

141. Yimer, A.M.; Assen, A.H.; Mghaimimi, I.E.L.; Lakbita, O.; Adil, K.; Belmabkhout, Y. Unlocking the potential of phosphogypsum
waste: Unified synthesis of functional metal-organic frameworks and zeolite via a sustainable valorization route. Chem. Eng. J.
2024, 479, 147902. [CrossRef]

142. Ait Brahim, J.; Merroune, A.; Mazouz, H.; Beniazza, R. Recovery of rare earth elements and sulfuric acid solution from phosphate
byproducts via hydrofluoric acid conversion. J. Ind. Eng. Chem. 2023, 127, 446–453. [CrossRef]

143. Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.-L. Exploring the potential reuse of phosphogypsum:
A waste or a resource? Sci. Total Environ. 2024, 908, 168196. [CrossRef]

144. Wei, Z.; Deng, Z. Research hotspots and trends of comprehensive utilization of phosphogypsum: Bibliometric analysis. J. Environ.
Radioact. 2022, 242, 106778. [CrossRef]

145. Wang, J.; Dong, F.; Wang, Z.; Yang, F.; Du, M.; Fu, K.; Wang, Z. A novel method for purification of phosphogypsum. Physicochem.
Probl. Miner. Process. 2020, 56, 975–983. [CrossRef]

146. Zou, C.; Shi, Z.; Yang, Y.; Zhang, J.; Hou, Y.; Zhang, N. The Characteristics, Enrichment, and Migration Mechanism of Cadmium
in Phosphate Rock and Phosphogypsum of the Qingping Phosphate Deposit, Southwest China. Minerals 2023, 13, 107. [CrossRef]

147. Guan, Q.; Sui, Y.; Liu, C.; Wang, Y.; Zeng, C.; Yu, W.; Gao, Z.; Zang, Z.; Chi, R.-A. Characterization and Leaching Kinetics of Rare
Earth Elements from Phosphogypsum in Hydrochloric Acid. Minerals 2022, 12, 703. [CrossRef]

148. Zhou, B.; Zhu, H.; Xu, S.; Du, G.; Shi, S.; Liu, M.; Xing, F.; Ren, J. Effect of phosphogypsum on the properties of magnesium
phosphate cement paste with low magnesium-to-phosphate ratio. Sci. Total Environ. 2021, 798, 149262. [CrossRef] [PubMed]

149. Wu, F.; Liu, S.; Qu, G.; Chen, B.; Zhao, C.; Liu, L.; Li, J.; Ren, Y. Highly targeted solidification behavior of hazardous components
in phosphogypsum. Chem. Eng. J. Adv. 2022, 9, 100227. [CrossRef]

150. Weiksnar, K.D.; Clavier, K.A.; Robey, N.M.; Townsend, T.G. Changes in trace metal concentrations throughout the phosphogypsum
lifecycle. Sci. Total Environ. 2022, 851, 158163. [CrossRef]

151. Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D. Rare earths recovery and gypsum upgrade from Florida phosphogypsum. Miner. Metall.
Process. 2017, 34, 201–206. [CrossRef]

152. Al-Thyabat, S.; Zhang, P. REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum. Miner. Process.
Extr. Metall. 2015, 124, 143–150. [CrossRef]

https://doi.org/10.1134/S0003683822100039
https://doi.org/10.11591/ijaas.v12.i1.pp7-14
https://doi.org/10.1016/j.jclepro.2023.137561
https://doi.org/10.1007/s10967-021-08142-8
https://www.epa.gov/radiation/tenorm-fertilizer-and-fertilizer-production-wastes
https://www.epa.gov/radiation/tenorm-fertilizer-and-fertilizer-production-wastes
https://doi.org/10.3390/app9245559
https://doi.org/10.1038/s41598-023-37021-3
https://www.ncbi.nlm.nih.gov/pubmed/37337035
https://doi.org/10.1007/s13762-023-04783-2
https://doi.org/10.1038/s41598-023-33191-2
https://www.ncbi.nlm.nih.gov/pubmed/37062764
https://doi.org/10.3390/microorganisms7100382
https://doi.org/10.1016/j.jenvman.2020.111560
https://www.ncbi.nlm.nih.gov/pubmed/33172706
https://doi.org/10.1016/j.ygeno.2019.06.014
https://doi.org/10.32523/2306-6172-2021-9-4-100-114
https://doi.org/10.1016/j.cej.2023.147902
https://doi.org/10.1016/j.jiec.2023.07.028
https://doi.org/10.1016/j.scitotenv.2023.168196
https://doi.org/10.1016/j.jenvrad.2021.106778
https://doi.org/10.37190/ppmp/127854
https://doi.org/10.3390/min13010107
https://doi.org/10.3390/min12060703
https://doi.org/10.1016/j.scitotenv.2021.149262
https://www.ncbi.nlm.nih.gov/pubmed/34375242
https://doi.org/10.1016/j.ceja.2021.100227
https://doi.org/10.1016/j.scitotenv.2022.158163
https://doi.org/10.19150/mmp.7860
https://doi.org/10.1179/1743285515Y.0000000002


Soil Syst. 2024, 8, 36 24 of 25

153. Romero-Hermida, M.I.; Flores-Alés, V.; Hurtado-Bermúdez, S.J.; Santos, A.; Esquivias, L. Environmental Impact of
Phosphogypsum-Derived Building Materials. Int. J. Environ. Res. Public Health 2020, 17, 4248. [CrossRef]

154. Pérez-López, R.; Nieto, J.M.; López-Coto, I.; Aguado, J.L.; Bolívar, J.P.; Santisteban, M. Dynamics of contaminants in phospho-
gypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl. Geochem. 2010, 25,
705–715. [CrossRef]

155. Costa, R.P.; de Medeiros, M.H.G.; Rodriguez Martinez, E.D.; Quarcioni, V.A.; Suzuki, S.; Kirchheim, A.P. Effect of soluble
phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration. Case Stud.
Constr. Mater. 2022, 17, e01413. [CrossRef]

156. Calado, B.; Tassinari, C. Geochemistry of the upper estuarine sediments of the Santos estuary: Provenance and anthropogenic
pollution. J. Geol. Surv. Braz. 2020, 3, 189–209. [CrossRef]

157. Lütke, S.F.; Oliveira, M.L.S.; Silva, L.F.O.; Cadaval, T.R.S.; Dotto, G.L. Nanominerals assemblages and hazardous elements
assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 2020, 256, 127138. [CrossRef]
[PubMed]

158. Shah, J.; Puthiyaveetil Othayoth, S.; Pania, R.; Parikh, S.; Vaishnav, P. Efficient Recovery of Trapped Phosphorus from Waste
Phosphogypsum of a Phosphoric Acid Plant. Chem. Sci. Rev. Lett. 2022, 11, 340–348. [CrossRef]

159. Raut, S.P.; Patil, U.S.; Madurwar, M.V. Utilization of phosphogypsum and rice husk to develop sustainable bricks. Mater. Today
Proc. 2022, 60, 595–601. [CrossRef]

160. Muthukumar, P.; Shewale, M.; Asalkar, S.; Shinde, N.; Korke, P.; Anitha, M.; Gobinath, R.; Anuradha, R. Experimental study on
lightweight panel using phosphogypsum. Mater. Today Proc. 2022, 49, 1852–1856. [CrossRef]

161. Yassine, I.; Joudi, M.; Hafdi, H.; Hatimi, B.; Mouldar, J.; Bensemlali, M.; Nasrellah, H.; El Mahammedi, M.A.; Bakasse, M. Synthesis
of Brushite from Phosphogypsum Industrial Waste. Biointerface Res. Appl. Chem. 2021, 12, 6580–6588. [CrossRef]

162. Ennaciri, Y.; Bettach, M.; El Alaoui-Belghiti, H. Recovery of nano-calcium fluoride and ammonium bisulphate from phosphogyp-
sum waste. Int. J. Environ. Stud. 2020, 77, 297–306. [CrossRef]

163. Arhouni, F.E.; Hakkar, M.; Ouakkas, S.; Haneklaus, N.; Boukhair, A.; Nourreddine, A.; Benjelloun, M. Evaluation of the
physicochemical, heavy metal and radiological contamination from phosphogypsum discharges of the phosphoric acid production
unit on the coast of El Jadida Province in Morocco. J. Radioanal. Nucl. Chem. 2023, 332, 4019–4028. [CrossRef]

164. Akfas, F.; Elghali, A.; Bodinier, J.-L.; Parat, F.; Muñoz, M. Geochemical and mineralogical characterization of phosphogypsum
and leaching tests for the prediction of the mobility of trace elements. Environ. Sci. Pollut. Res. 2023, 30, 43778–43794. [CrossRef]

165. Abouloifa, W.; Belbsir, H.; Ettaki, M.; Mounir, S.H.; El-Hami, K. Moroccan Phosphogypsum: Complete Physico-Chemical
Characterization and Rheological Study of Phosphogypsum-Slurry. Chem. Afr. 2023, 6, 1605–1618. [CrossRef]

166. Szajerski, P.; Bogobowicz, A.; Bem, H.; Gasiorowski, A. Quantitative evaluation and leaching behavior of cobalt immobilized
in sulfur polymer concrete composites based on lignite fly ash, slag and phosphogypsum. J. Clean. Prod. 2019, 222, 90–102.
[CrossRef]
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