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Abstract: Unique worldwide, nitrate/iodine deposits (NIDs) are located along a 700 km geological
belt in the Atacama Desert, Chile. They serve as the primary source of mineral ores for the extraction
of iodine, sodium, and potassium nitrates. NIDs have been relatively underexplored from a biological
perspective. To address this, we collected sixteen soil samples from abandoned mines in Oficinas
Pissis and Savona for chemical, mineralogical, and metagenomic analyses. The soils primarily
consisted of halite and darapskite, with only one sample being predominantly composed of thenardite.
Deliquescence and water activity measurements yielded values ranging from 0.02% to 0.40% and
0.47 to 0.62, respectively. To investigate the presence, identification, relative abundance, and diversity
of microbial life in NID soils, we employed MiSeq high-throughput sequencing and bioinformatic
tools. The dominant phyla observed were Firmicutes and Proteobacteria, with Actinobacteria and
Cyanobacteria being predominant in two soil samples. Furthermore, we detected nitrate/perchlorate-
reducing bacterial activity in enriched cultures from the soil samples. This study sheds light on
the resilience of microbial life in the Atacama Desert NIDs, providing compelling evidence for its
existence and offering insight into factors that could facilitate it within this unique environment.

Keywords: Atacama Desert; deliquescence; microbial diversity; metagenomics; nitrate/iodide
deposits; perchlorate; nitrate/perchlorate reducing bacteria; salinity; water activity

1. Introduction

Northern Chile is home to extensive reserves totaling one hundred million tons of
nitrate/iodine deposits (NIDs). These deposits are composed of common sulfates, chlorides,
carbonates, and borates salts, making them unique worldwide due to the inclusion of
rare iodate, chromate, dichromate, and perchlorate salts that are seldom found in nature.
Remarkably, these deposits have been preserved throughout geological eras [1–3]. While
the precise genesis of NIDs remains a subject of ongoing research, it is likely to involve
multiple mechanisms, factors, and nitrogen sources, such as microbial nitrogen fixation,
nitrification, magmatic processes, and atmospheric deposition [1,3–6].
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The Atacama Desert in Chile is globally recognized as the driest region on Earth,
known for its rich nitrate deposits. It serves as a valuable Mars analog, as the nitrate found
in its sediments parallels compositions discovered in Martian sediments. This resemblance
is attributed to prolonged atmospheric photolysis, oxidation, and possibly impact-induced
heating on Mars [1]. Nitrate was identified in mudstone deposits at Gale Crater on Mars
at concentrations ranging from 70 to 1100 parts per million (ppm) by the Mars Science
Laboratory [2]. Similar nitrate levels have been observed in Martian meteorites, such as
EETA79001 and Tissint [3]. These concentrations closely resemble the nitrate levels found
in Atacama sediments [4]. It is also conceivable that some of Martian nitrate may have
originated from carbon dioxide–nitrogen reactions in the ancient Martian atmosphere,
likely stimulated by impact shock heating. Furthermore, thermal decomposition, likely
induced by the late heavy bombardment, could have potentially converted Martian nitrate
back into atmospheric nitrogen. This process would have redistributed the sedimentary
nitrate content, ultimately contributing to the equilibrium between nitrate and atmospheric
nitrogen [5,6].

Elevated nitrate levels that accumulate under hyperarid conditions, as observed in
environments like the Atacama Desert and the recent Martian surface, have the potential
to serve as the primary source of bioavailable nitrogen (N) for local subsurface microbial
communities. Nitrate is a significant nitrogen source for a wide range of microorganisms.
It not only serves as a nitrogen source for biomass production but also functions as an
energy source in chemotrophic metabolisms. As an oxidizing agent, nitrate plays a crucial
role as an electron acceptor in natural processes. Nitrate (or nitrite) can be employed in
chemotrophic metabolisms, including denitrification, dissimilatory reduction of nitrate to
ammonium (DNRA), and anaerobic ammonium oxidation [7].

Deliquescence (Dw) enables the condensation of water vapor within pores in halite
salts at a minimum relative humidity of 75% or even at lower humidity levels in perchlorate
salts [8–10]. This means that local and transient liquid water becomes available to microbial
life when the appropriate humidity levels and salt-dependent Dw occur in the Atacama
region. This phenomenon has been demonstrated in various Atacama habitats, where litho-
biontic microbial communities, including members from genera such as Chroococcidiopsis
and Halothece, act as primary producers within these microbial consortia [8,9,11–19].

The microbiology of the Atacama Desert has been extensively investigated over the
past two decades in this polyextreme hyperarid region characterized by high solar radiation
and a lack of regular liquid water, both of which are significant natural constraints for
life [7–9,11–15]. However, the presence and activity of microbial life within Atacama NIDs
have been largely overlooked as a potential microbial habitat.

Metagenomic studies and culture-dependent approaches have provided insights into
the colonization of halite nodules from Salar Grande by a diverse and complex microbial
community, representing members from the Bacteria, Archaea, and Eukarya domains,
including various viruses [10,13]. Within the driest core of the Atacama Desert, Yungay,
the microbial community was found to include Proteobacteria, Actinobacteria, Firmicutes,
and other phylogenetic groups [7]. Additionally, when examining microbial composition
along a soil column down to a depth of 3.4 m, the predominant phyla were Proteobacteria,
Actinobacteria, Bacteroidetes, and Firmicutes. These composition variations were observed
in response to changes in the physical and chemical soil characteristics [19].

Highly hygroscopic salts, such as halite, perchlorates, and anhydrite, can provide
liquid water to NID microorganisms if microbial life exists. Nonetheless, the relation-
ship between nitrate and perchlorate salts and their impact on microbial diversity within
NIDs remains an unexplored area of study. This study aims to investigate microbial life
within nitrogen/iodide deposits in the arid core of the Atacama Desert. Specific objectives
include assessing the presence, abundance, and diversity of microorganisms using metage-
nomic and culturing techniques and examining their relationship with the physicochemical
characteristics of the samples, such as mineralogical composition and water activity.
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2. Materials and Methods
2.1. Research Site and Sampling Collection

The study area is situated approximately 110 km east of the city of Antofagasta,
spanning between UTM 19K coordinates 7,376,000–7,355,000 m N and 454,500–476,600 m E
(see Figure 1). The Domeyko District encompasses Cerro El Plomo, characterized by
sedimentary deposits, rocks, and salt flats [2]. It is an uninhabited region featuring the
remnants of the former Oficinas Salitreras Domeyko, Pissis, Savona, and Cochrane, which
were operational in the early 20th century.
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Figure 1. Location of Domeyko District and sampling sites at Oficina Pissis (sites 1 and 2) and Oficina
Savona (sites 3 and 4).

The regional geological framework reveals a complex geology marked by overlapping
structures of varying ages. The Caracoles–Punta Negra segment of the Domeyko fault
system, formed during the Eocene era, is prominent, along with kilometer-scale faults and
folds that divide the area into western, central, and eastern structural domains [3,4,20,21].
These subdivisions consider various factors, including primary and secondary origins,
morphology, and ages. These considerations guided our survey campaign planning.

Sixteen mineral soil samples were collected, with ten taken from Oficinas Pissis (OP)
and six from Oficina Savona (OS), utilizing sterilized implements. At each sampling site,
the surface mineral salts were removed, 30 cm holes were excavated, and soil samples
were retrieved from a depth of 15 to 25 cm. Each sample was homogenized using the cone
and quarter technique [22] and then divided into three portions for physical, chemical,
microbiological, and molecular analyses. The samples were stored at 4 ◦C in the dark
until analysis.

2.2. Physical, Chemical, and Mineralogical Analysis of NIDs

NID soil samples (5–10 g) were suspended and sonicated in 10–20 mL water. Insoluble
materials were separated through centrifugation, and the resulting supernatants were
subjected to analysis for chloride, nitrate, nitrite, and sulfate concentrations. This analysis
used a Dionex ion-chromatography system (Thermo Fisher Sci., Waltham, MA, USA)
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equipped with an IonPac AS11-HC column. Perchlorate measurements were carried out
using an IonPac AS20 column with an eluent composed of 1.9 mM Na2CO3, 1.9 mM
NaHCO3, and 25% (w/v) acetonitrile. The detection limit for perchlorate is 5.0 mg/kg.

Salinity, pH, and conductivity were measured in a soil-distilled water suspension at a
1:2.5 ratio using a handheld 340i multimeter (WTW, Weilheim, Germany).

X-ray diffraction analyses of pulverized samples were carried out in Lindemann
glass tubes with a diameter of 0.5 mm using a Bruker D8 Advance diffractometer from
Germany. Continuous-scan X-ray powder diffraction data were collected in the 2θ angle
range of 3–80◦, utilizing CoKα radiation. The X-ray diffractograms were analyzed with the
International Centre for Diffraction Database PDF-4 (https://www.icdd.com/ accessed on
10 September 2023).

Total organic carbon (TOC) was determined by measuring the weight difference of
samples after drying at 110 ◦C for 24 h and subsequent incubation at 550 ◦C for 3 h. The
Dw capabilities of the collected samples were assessed following the procedure outlined
in Parro et al. [10]. In brief, dried samples (dried at 110 ◦C for 24 h) were placed in glass
beakers at 4 ◦C below 75% relative humidity and sealed in aluminum foil. Their weight
was recorded daily to track weight gain. Additionally, the samples were visually examined
for the accumulation of liquid water [23].

As previously outlined, water activity (Aw) was assessed using a LabMaster-aw
system® from Novasina Instruments, Lachen, Switzerland.

2.3. DNA Extraction, PCR Amplification, and Sequencing

Samples weighing 25–50 g were suspended in a PBS buffer containing 1% v/v Tween
20 and mixed for 2 h at 120 rpm. After centrifugation for 5 min at 3500 rpm using an
Eppendorf centrifuge 5417R from Hamburg, Germany, the resulting pellets were discarded,
and the supernatants were filtered through 0.22 µm pore size nitrocellulose membranes.
The filters were then recovered, suspended in 1 mL of lysis buffer (composed of 50 mM
Tris–HCl, pH 8.3, 40 mM EDTA, and 0.75 M sucrose), and stored overnight at −20 ◦C. Upon
thawing, the filters were subjected to incubation with lysozyme (1 mg/mL) at 37 ◦C for
45 min. Subsequently, proteinase K (0.2 mg/mL) was added and incubated at 55 ◦C for
1 h. The resulting supernatant was used for genomic DNA extraction, utilizing a High
Pure Template Preparation Kit (Qiagen, Germantown, MD, USA). The yield and DNA
purity were evaluated spectrophotometrically (using a Nanodrop from Thermo, Dreieich,
Germany) and by electrophoresis on a 1% agarose gel, respectively.

Amplification of the 16S rRNA gene was conducted with the bacteria-specific primer set
27F (5′-AGAGTTTGATCMTGGCTCAG-3′) [24] and 519R (5′-GWATTACCGCGGCKGCTG-
3′) [25], flanking variable regions V1–V3 of the 16S rRNA gene. Sequencing was performed at
MrDNA Next Generation Sequencing Service Provider on 11 April 2017 (www.mrdnalab.com;
Shallowater, TX, USA) with a MiSeq sequencer, following the manufacturer’s guidelines.

2.4. Sequence Analysis and Taxonomic Assignation

The QIIME (Quantitative Insights into Microbial Ecology) pipeline [26] was employed
for processing the sequences. Unprocessed sequences underwent filtering based on quality
score, average base content per reading, and GC distribution in the reads. Singleton
reads (abundance < 2) that did not cluster with other sequences were excluded. Chimeric
sequences were also eliminated using the UCHIME program [27].

The pre-processed consensus V3 sequences were subsequently grouped into opera-
tional taxonomic units (OTUs) using the clustering program UCLUST, with a similarity
threshold of 0.97. All the pre-processed reads were employed for OTU identification
through the QIIME program, and representative sequences were aligned using the PyNAST
program [28] concerning the Greengenes core set reference database. A representative
sequence for each OTU was classified using the RDP classifier and the Greengenes OTU
database. Alpha rarefaction was calculated using the “core diversity analysis” command,
and the number of sequences was standardized to the smallest sample size by applying

https://www.icdd.com/
www.mrdnalab.com
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the Chao 1 method. Alpha and beta diversity analyses were conducted using Primer-6
(Primer-E) [29] and QIIME 2 software (https://qiime2.org). Krona interactive graphs [30]
were utilized for visualization.

2.5. Enrichment Cultures of Nitrate/Perchlorate Reducing Bacteria

The OP and OS site samples were chosen based on their highest nitrate content.
These samples, each weighing 2.5 g, were suspended in a modified enrichment mineral salt
medium (FTW) [31], which included K2HPO4 (225 mg/L), KH2PO4 (225 mg/L), (NH4)2SO4
(225 mg/L), MgSO4·7H2O (50 mg/L), CaCO3 (5 mg/L), FeCl2·4H2O (5 mg/L), and a
mixture of trace metals. Carbon sources in acetate (1.5 g/L) and yeast extract (1.0 g/L)
were added, and the cultures were incubated at 37 ◦C under anaerobic conditions. The
cultures were then exposed to nitrate concentrations of 0.34 and 0.68 g/L and perchlorate
concentrations of 0.1 and 0.2 g/L. Soil samples from the OP site produced four nitrate and
perchlorate-reducing cultures, while the OS site yielded one nitrate-reducing culture.

3. Results and Discussion

The Atacama Desert has been extensively investigated regarding its saline facies, includ-
ing their composition, origin, age, and association with microbial diversity [8,13,32–34]. NID
formation can be influenced by the chemosynthetic metabolism of bacteria and archaea, the
primary sources of carbon at the Atacama nitrate deposits where reduced forms of chromium,
sulfur, and nitrogen are the only chemosynthetic substrate available [35]. Nitrate salts are
potential nitrogen sources for microorganisms in desert soils under extreme environmental
conditions. Atacama soils contain 70 to 1100 ppm nitrate, near those found in Martian
soils [1,2,36]. Nitrogen is also considered a limiting nutrient in arid lands [37]. Nitrate,
an electron acceptor, is an energy source in chemotrophic metabolism, especially during
dissimilatory nitrate reduction to ammonium and anaerobic ammonium oxidation [1,7].
Consequently, nitrate in Atacama and Martian soils may play a role as a contributing factor
to microbial colonization, both in the present and in the past. Nitrogen transformation, which
encompasses decomposition and mineralization, is primarily carried out by soil microor-
ganisms. However, conditions optimal for microbial activity, such as suitable temperature
and soil moisture, are not always present in arid environments, except following rainfall
events [38]. Nitrogen mineralization in arid and semi-arid ecosystems displays significant
heterogeneity across the landscape and typically occurs in patches or fertility islands. This
heterogeneity can be attributed to unique microclimatic conditions, variations in the richness
and abundance of plants, and variations in soil nitrogen content [39].

3.1. Physical, Chemical, and Mineralogical Characterization of NIDs

The physical and chemical characteristics (salt type, temperature, pH, salinity, con-
ductivity, Aw, Dw, humidity, and primary salt content) of sixteen samples collected at OP
and OS sites in the Domeyko District are summarized in Tables 1 and 2. All sample sites
showed a similar temperature range as expected for Atacama as a temperate desert [40].
Other parameters showed an ample range of values among the sixteen samples collected.

Table 1. Physical and chemical characteristics of soil samples collected at Pissis (OP) and Savona (OS)
sites, Domeyko District, Atacama Desert.

Name Site Samples Temp.
(◦C) pH Salinity

(%)
Conductivity

(mS/cm) Aw OC
(%)

Dw
(%)

Humidity
(%)

OP1 OP Salts–thenardite mixture (surface) 26.5 7.98 3.4 15.53 0.503 0.0737 0.002 0.0418
OP2 OP Salts–thenardite mixture (deep) 26.4 8.65 3.2 15.63 0.529 0.0224 0.033 0.0143
OP3 OP White caliche 26.6 8.54 3.4 21.49 0.505 0.0191 0.010 0.4106
OP4 OP Sample with chromate 23.9 6.26 3.0 15.92 0.617 0.0225 0.385 Bdl *

OP5 OP Massive light greenish-yellow
mineral 26.7 8.04 3.0 15.56 0.590 0.0747 0.022 Bdl

OP6 OP Moistened salt inside Socavon 25.9 7.76 3.2 18.87 0.501 0.0498 0.013 0.3030

https://qiime2.org
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Table 1. Cont.

Name Site Samples Temp.
(◦C) pH Salinity

(%)
Conductivity

(mS/cm) Aw OC
(%)

Dw
(%)

Humidity
(%)

OP7 OP Fibrous halite 26.3 6.39 3.8 23.52 0.511 0.0242 0.007 0.3290
OP8 OP Salts from the deep zone 26.1 6.08 3.0 17.37 0.511 0.0959 0.008 0.6444
OP9 OP Sample nitrous of porous texture 23.4 8.43 3.0 17.04 0.542 0.0345 0.015 0.3431
OP10 OP Yellow-green salts 26.1 8.48 3.4 13.40 0.469 0.0774 0.012 0.8349
OS11 OS Anhydrite (cast) pink salts 26.4 7.58 3.0 16.50 0.496 0.0418 0.016 0.3997
OS12 OS Mixed mineral 25.0 9.06 1.4 6.00 0.521 0.3406 0.401 0.5071

OS14 OS Mineral redeposited nitratine
(yellow base) 25.2 9.03 2.4 17.45 0.527 0.0413 0.006 0.1057

OS16 OS Guano nitrate 25.6 4.68 2.0 8.96 0.487 3.6568 0.012 0.8319
OS17 OS Guano nitrate 25.6 8.92 3.0 15.49 0.487 0.0709 0.010 1.3600
OS18 OS Cement-type sample 23.0 8.97 2.0 10.70 0.555 0.1593 0.021 0.7898

* Below detection limit.

Table 2. Chemical analysis of the main salts found in the soil of Domeyko District sampling. Oficinas
Pissis (OP) and Savona (OS).

Samples Site Nitrate
(mg/kg)

Chloride
(mg/kg)

Sulfate
(mg/kg)

Perchlorate
(mg/kg)

OP1 OP 22.8 2.4 28.5 bdl *
OP2 OP 22.3 2.5 63.9 bdl
OP3 OP 18.0 2.3 12.9 bdl
OP4 OP 23.3 3.1 32.2 bdl
OP5 OP 30.8 2.5 25.0 bdl
OP6 OP 106.2 708 127.2 bdl
OP7 OP 129.9 1.2 142.3 bdl
OP8 OP 83.3 628 163 bdl
OP9 OP 107.9 462 203.8 bdl

OP10 OP 106.1 295 207.1 bdl
OS11 OS 205.9 568 258.3 bdl
OS12 OS Bdl 380 188.4 bdl
OS14 OS 562.7 465 68.6 bdl
OS16 OS 67.4 143 147.6 bdl
OS17 OS 156.4 226 296.5 bdl
OS18 OS 133.2 101 198 bdl

* Below detection limit.

The Aw values in NID soils exhibited a relatively narrow range, falling between
0.60 and 0.47. These values are below the lower limit proposed for microbial cell division,
as observed in the case of Xeromyces bisporus, a sugar-tolerant xerophilic fungus, and
halophilic archaea and bacteria [41]. Among the samples from the Domeyko District,
Atacama OP4 was the sole soil sample with an Aw of 0.617, surpassing this limit.

As an indicator of water vapor trapped as liquid water brines by salt crystals, NID
samples displayed a high variability in Dw values, likely attributable to differences in salt
content and composition. Notably, the OP1 site, rich in nitrate and sulfate salts, exhibited
the lowest Dw value at 0.002%, while the highest Dw was recorded at the sulfate-rich
OS12 site at 0.401% (refer to Tables 1 and 2). In comparison, studies on brine formation
on the surface of Mars have shown that metastable brines of calcium perchlorate and
magnesium perchlorate can be generated at Aw values ranging from 0.80 to 0.01, typically
at temperatures around 225 K [42]. Consequently, salt deliquescence can be considered a
crucial mechanism that supports the potential existence of extinct or extant life forms on
Mars and here in the Atacama Desert [43,44]. A recent report provides compelling evidence
of the presence of hydrated salts on the soil crust of the Martian surface [45].

Organic carbon (OC) in soils represents the organic matter fraction resulting from all
types of life forms, whether alive or in the decomposition process. OC plays a vital role
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in providing nutrients to ecosystems [40,46]. In the collection sites for NID samples, OC
levels ranged from 0.019% to 3.657% (see Table 1). Notably, Sample OS16, known as Guano
Nitrate and rich in nitrate and sulfate, exhibited the highest OC content at 3.66%. It also
had the most acidic pH value at 4.68 and was one of two sites with the lowest conductivity
at 8.96 mS/cm (refer to Tables 1 and 2). These distinctions from other NID sites may be
attributed to the fact that OS16 has been identified as a nursery site for migratory birds [47].

The chemical composition of major salts in soils collected from sixteen sites within
the Domeyko District displayed significant variations (see Table 2). The approximate
minimum and maximum values for nitrate, chloride, and sulfate content ranged from
8 to 560, 2 to 700, and 13 to 297 mg/kg, respectively. The level of perchlorate salts fell
below the detection limit (with a detection limit of 5.0 mg/kg).

The XRD mineralogical analyses revealed that soils from NID sites consisted of a com-
bination of minerals, including halite (NaCl), darapskite (Na3(SO4) (NO3)·H2O), nitratine
(NaNO3), thenardite (Na2SO4), anhydrite (CaSO4), and other salts (see Figure 2). While the
salt composition of NID soils was generally similar, variations in their salt contents were
observed. However, there were some exceptions to this pattern: the soil at the OP2 site
consisted of more than 80% thenardite and less than 20% anhydrite, the soil at the OP7 site
was exclusively composed of halite, and neither OP2 nor OP7 contained darapskite. Prior
studies on nitrate minerals in the Atacama Desert have identified nitratine (soda niter or
Chilean saltpeter), darapskite, and humberstonite (Na7K3Mg2(SO4)6(NO3)2·6H2O) as the
most abundant minerals [2,48]. Notably, darapskite is slightly soluble in water [49], and
our study only detected it in soil samples that also contained halite.
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Soil Syst. 2024, 8, 46 8 of 15

Halite and nitratine salt crystals provide access to liquid water for microbial life
through deliquescence in Atacama NIDs. Additionally, they serve as a protective shield
against damaging UV photons while allowing the passage of photosynthetically active
radiation, as discussed previously in the context of halite crusts as effective lithobiontic
microhabitats [8,15,43,49].

3.2. Genomic Analysis of NID Soils

DNA extraction was completed for ten NID soil samples. Quality trimming of the raw
sequence data resulted in 1,065,152 reads, with 83,570 sequences remaining after standard-
ization using the Chao1 index for rarefaction. Ultimately, 14,234 operational taxonomic
units (OTUs) were identified and defined with a 97% similarity threshold, considering
all 10 samples. High levels of alpha diversity, richness, and evenness were observed in
bacterial communities across all NID sampling sites studied (see Figure 3). This is ev-
ident in the Shannon and Simpson indices, with values ranging from 3.82 to 5.88 and
from 0.70 to 0.98, respectively. Furthermore, species and individual richness varied from
6783 to 28,729 and 45,940 to 242,048, respectively. The Pielou evenness index produced
values between 0.37 and 0.61. The remarkable microbial diversity discovered in Atacama
NID strongly suggests that deliquescent minerals, such as halite, nitrate, and thenardite,
provide the necessary moisture to support the development and sustenance of microbial life.
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Genomic analyses of microbial life in Atacama NID soil samples revealed the domi-
nance of four phyla: Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes
(see Figure 4). A recent study conducted at the Yungay salt flat, located in the core of
the Atacama Desert, also reported similar findings regarding microbial diversity, with the
presence of less abundant phyla, including Cyanobacteria, Verrucomicrobia, Acidobacteria,
and division TM7, among others [19]. The relative abundance of the phyla Bacteroidetes,
Cyanobacteria, and Actinobacteria ranged from approximately 1% to 11%, 0.1% to 27%,
and 0.2% to 14%, respectively, among the NID soil samples (refer to Figure 4).
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While Actinobacteria exhibited a low relative abundance in NID soils, it is worth
noting that culturable Actinobacteria have been previously reported at various sites in the
Atacama Desert, with some strains identified as sources of bioactive molecules [11,50,51].
In comparison, the microbial diversity in soils from Yungay displayed a dominance of the
phylum Actinobacteria, followed by Firmicutes, Proteobacteria, and TM7, aligning with
findings from soils in other parts of the world [19,52].

Within NID soil sites, Firmicutes and Proteobacteria were the dominant phyla, with
the Firmicutes class exhibiting the highest relative abundance and diversity (refer to
Figures 4 and 5A). Notably, soil samples from sites OP3, OS11, OS16, and OS18 showed
low diversity but were highly enriched (over 90%) in unclassified Alicyclobacillaceae. In
contrast, other NID sites exhibited a more diverse array of microbial genera (see Figure 5A).
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All NID soil sites exhibited the presence of the Proteobacteria phylum, ranging from
approximately 8% to 60% relative abundance (see Figure 4). This phylum was primar-
ily represented by the genera Alphaproteobacteria, Betaproteobacteria, and Gammapro-
teobacteria, with site OS18 showing a significant enrichment in Betaproteobacteria (see
Figure 5B). These findings align with previous studies emphasizing the importance of the
Proteobacteria phylum and its major genera in Atacama soils containing nitrate, halite, and
perchlorate [10,53,54].

The information provided in Figure 6 presents the microbial genera identified within
the Proteobacteria phylum in Atacama NID soils. Alphaproteobacteria were represented
by Novosphingobium, unclassified Bradyrhizobiaceae, unclassified Rhizobiales, Sphin-
gomonas, unclassified Sphingomonadaceae, unclassified Caulobacteraceae, and Pedomi-
crobium (see Figure 6A). Notably, Novosphingobium is known as a metabolically versatile
bacterium found in various soil environments [55]. The Betaproteobacteria phylum in
NID soils exhibited enrichment in genera such as Burkholderia, Limnobacter, unclassified
Oxalobacteraceae, and unclassified Comamonadaceae (see Figure 6B). In the case of the
Gammaproteobacteria phylum in Atacama NID soil samples, the dominant genera included
Pseudomonas, unclassified Pseudoalteromonadaceae, Halomonas, and Vibrio (see Figure 6C).

Known members from the families Pseudoalteromonadaceae and Halomonadaceae
have shown high metabolic versatility and adaptability to extreme environments [56,57].
Unclassified Pseudoalteromonadaceae from Gammaproteobacteria predominates in all
samples tested; the family Pseudoalteromonadaceae includes many species with protein-
producing members involved in the degradation and recycling of organic nitrogen, highly
productive on secondary metabolites, and adaptable to various habitats [57]. Halomonas
were also present in all NID samples; members of this genus can colonize and adapt to
environments with high variability in temperature, salinity, and pH values [56]. These
properties make them suitable for biotechnological applications, such as the production of
polyhydroxyalkanoates [58].
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3.3. An Insight on Nitrate/Perchlorate Reducing Bacteria in NID Samples

Soils from NIDs had a nitrate content ranging from ≤22 to 560 mg/kg, while perchlo-
rate was below the detection limit (Table 2). This suggests that the microbial population
in NIDs had adapted and grown under low concentrations of sodium chloride, nitrate, or
perchlorate. Samples from sites OP6, OP8, OP9, OS14, and OS17 yielded enriched cultures
capable of growing at 3 g/L NaCl under anaerobic conditions in 8 mM nitrate or 1 mM
perchlorate. These enriched cultures exhibited an average nitrate reduction of 62.9 ± 6.4%
and could remove up to 0.25 ± 0.06 g of nitrate. When grown with perchlorate, enriched
cultures from OP6 soil showed a maximum perchlorate reduction of 18.6 ± 2.1% and
removed 0.021 ± 0.01 g of nitrate.

Atacama soils have been proposed as a terrestrial analog for Martian soils [33]. Both
Atacama and Mars share evidence of hygroscopic salts (such as halite, sulfate, and per-
chlorate) at the surface and subsurface of saline soils. Their deliquescence capabilities
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provide valuable insights into understanding the possibility of past or present microbial
colonization on Mars.

Metagenomic analyses of NID soils revealed the presence of Betaproteobacteria and
Alphaproteobacteria (specifically, the Azospirillum genus) (Figure 6). Many members of the
phylum Proteobacteria are perchlorate-tolerant bacteria capable of catalyzing the reduction
of perchlorate to chlorate and, subsequently, to chlorite. These substances are strong
oxidizers with toxic and damaging effects on cells. However, perchlorate metabolism in
bacteria and archaea may provide an alternative to environmental detoxification. This
microbial activity depends on several factors, including the presence of oxygen, competing
electron acceptors for anaerobic respiration, the availability of molybdenum, and the
presence of chlorite dismutase, among others [13,50,59].

Nitrate serves as a potential source of biological nitrogen for microorganisms, sup-
porting biomass production and acting as an energy source for chemotrophic metabolizers
engaged in processes like denitrification, dissimilatory reduction of nitrate to ammonium
(DNRA), and anaerobic ammonium oxidation [1,7]. Microbial DNRA plays a central
role in nitrogen conservation within ecosystems, but its dynamics are influenced by vari-
ous factors, including climate, oxygen levels, redox conditions, and organic carbon con-
tent in soils [51]. Notably, in addition to deliquescent salts, nitrate deposits have been
identified at Gale Crater on Mars, with concentrations similar to those in Atacama sed-
iments (70–1100 ppm) [1,2,36]. This discovery raises the possibility of extinct or extant
chemotrophic microorganisms on Mars, adding to the realm of scientific speculation.

Finally, the enriched cultures from NID soils contain native nitrate–perchlorate-
reducing bacterial populations. Once these populations are isolated and identified, the
anaerobic chemotrophs from NIDs can serve as valuable experimental models to enhance
our understanding of their reductive nitrate and perchlorate metabolism.

4. Conclusions

This study employs metagenomic and culturing approaches to shed light on the pres-
ence, relative abundance, and diversity of microbial life within nitrogen/iodide deposits in
the Atacama Desert’s arid heart. These nitrogen/iodide deposits are considered ‘islands of
fertility’ within one of our planet’s driest and oldest deserts. Here, the deliquescence of
salts provides a source of liquid water, sustaining a diverse community of bacteria, with
Firmicutes and Proteobacteria as the dominant phyla.

Water availability in these halite–nitrate-rich deposits, as indicated by water activity
(Aw) values, hovers close to the lower limit required for cellular division. These soils
are replete with hygroscopic salts and serve as a nitrogen source through darapskite and
nitratine, albeit containing minimal levels of perchlorate. Notably, these nitrogen/iodide
deposits house a native nitrate/perchlorate-reducing bacteria population whose activity
was validated in enriched cultures. Further experiments will offer invaluable insights into
these reducing bacteria’s metabolic roles, particularly in providing biological nitrogen and
detoxifying perchlorate.
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