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Abstract: Carbon capture is the most critical stage for the implementation of a technically viable
and economically feasible carbon capture and storage or utilization scheme. For that reason, carbon
capture has been widely studied, with many published results on the technical performance, mod-
elling and, on a smaller scale, the costing of carbon capture technologies. Our objective is to review a
large set of published studies, which quantified and reported the CO2 capture costs. The findings
are grouped, homogenised and standardised, and statistical models are developed for each one of
the categories. These models allow the estimation of the capture costs, based on the amount of CO2

captured and the type of source/separation principle of the capture technology used.
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1. Introduction

Global warming, i.e., the rapid and unusual increase in the earth’s average surface
temperature, is considered one of the major current environmental issues. It is caused
by the increased amount of anthropogenic greenhouse gas emissions (carbon dioxide,
methane, nitrous oxide and water), which can trap solar radiation in the form of heat. To
respond to these environmental pressures, the target set by the European Union in the
Roadmap for 2050 is the reduction of greenhouse gas emissions by 40% below the 1990
values by 2030, by 60% by 2040 and by 80% by 2050. The European Commission has thus
defined three alternative approaches that could contribute positively towards achieving
these targets: (a) wider implementation of renewable energy sources, (b) low carbon energy
supply options, supported by carbon capture, and (c) energy-saving measures.

Carbon capture has been thus recognised by many as a mitigation tool for global
warming. In terms of carbon capture and storage (CCS), it can reduce carbon dioxide (CO2)
emissions by capturing and storing CO2 underground. Carbon capture and utilization
(CCU) is an alternative way of reducing CO2 emissions via recycling, by capturing CO2 and
purifying it to the required standards of industries. The purified CO2 is transported by the
available means of transportation to an industrial process to be sold for profit and reuse.

CCU value chains have not been widely commercialised yet because they face multiple
technical, legislative and social barriers (e.g., utilization options, source-sink matching, lack
of relevant policy and regulations, market, public acceptance, construction rate), but the
most critical parameter towards their commercialization is their economic viability [1–3].
The economic components of a CCU value chain include capture cost, transportation cost,
utilisation cost (which expresses the modification required in the production line of the
receiver) and the profits from the carbon trading market and selling of captured CO2. A
CCU value chain is considered viable when the profits from selling captured the CO2 and
carbon trading market are higher than capture, transportation and utilization costs [4].
Estimations show that capture costs comprise 70–90% of costs of the whole value chain,
making capture costs the component with the greatest importance and the critical economic
barrier (or driver) in the development and commercialization of CCU value chains [5,6].

For this reason, and since capture is an integral part of CCS value chains as well, carbon
capture has been given a lot of attention and many studies focused on the quantification
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and reporting of CO2 capture costs. This paper will therefore aim to review such studies,
where capture costs have been quantified, homogenise the approaches used and explain
how their quantification can be incorporated in the optimisation of CCS or CCU value
chains to facilitate its commercialisation. The paper also presents statistical models, and the
methodology of developing such models, for the quantification of CO2 capture costs using
chemical absorption, physical absorption and oxyfuel combustion capture technologies.

2. Materials and Methods

To build the models for the estimation of carbon capture costs, a thorough literature
review has been performed, collecting all the relevant published literature, and presented
in Section 2.1. The collected data have been grouped based on the carbon source and
technology used, and several models have been developed (Section 2.2).

2.1. Carbon Capture Costs

The importance of the economic viability of CCS and CCU value chains has led
many authors and organisations to quantify and report them and as a result, different
nomenclature and costing/reporting methods emerged [7,8]. Although there are many
approaches and methods to estimate economic data, which are carried without specified
boundary conditions or consistency, certain similarities exist across studies, which show
consistency in the cost elements and metrics of CCS and CCU. Various previously published
reviews highlighted the inconsistencies in nomenclature, costing and reporting methods
and proposed a framework for the reporting of CCS and CCU cost data [7–10].

2.1.1. Components of Carbon Capture Costs

Carbon capture costs are divided into two categories; capital costs and operating
and maintenance costs. Capital costs can be expressed in a number of ways where each
expression covers the required costs for building and completing a project in increasing
depth of detail considering more costs.

The Bare Elected Cost (BEC) of a carbon capture project is a value estimated by the
contractor to complete the project and includes the cost of all the required equipment,
materials and labour. BEC can be rated according to the level of detail ranging from
simplified, least detailed to finalised, most detailed. BEC serves as the core for costing CCS
projects as other cost elements are estimated as a percentage of this value [7,11].

The Engineering, Procurement and Construction (EPC) cost is the BEC cost increased
by the cost of fees for additional engineering services, estimated as a percentage of BEC.
EPC costs include direct and indirect costs related to project management, engineering,
facilities, equipment and labour [7,12].

The Total Plant Cost (TPC) is a term that includes BEC, additional engineering services
and contingency costs. The contingency costs of a project are included to account for
the risks associated with technological maturity, performance and regulatory difficulties.
Contingency costs can be estimated as a percentage of BEC or EPC according to the level of
detail [7,11,12]. TPC is rarely used for reporting capital costs.

The Total Overnight Cost (TOC) equals the total plant cost increased by the owner’s
cost, which covers components that have not been taken into account (e.g., feasibility stud-
ies, surveys, land, insurance, permitting, finance transaction costs, pre-paid royalties, initial
catalyst and chemicals, inventory capital, pre-production (start-up), other site-specific
items unique to the project). The owner’s costs do not include interest during construc-
tion [7,11,12]. TOC is rarely used for reporting capital costs.

Finally, the Total Capital Requirement (TCR) sometimes referred to as Total As Spent
Cost (TASC) or Total Capital Cost (TCC) is the sum of all the previously mentioned costs,
before including interest during construction [7,11,12]. TCR is the most common method
of reporting capital costs.

Operating and maintenance costs are expressed as fixed and variable depending
on whether a component has a fixed or variable cost and involve all costs of running a
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project. They are usually reported as a single value, but they can be broken down into more
components if needed, using estimations provided from different organisations. O&M
costs are estimated as a percentage of capital cost (usually between 3–15%) [7,13,14].

Fixed operating and maintenance costs are independent of plant size and consist
of operating, maintenance, administrative and support labour, maintenance materials,
property taxes and insurance [7]. Variable operating and maintenance costs include cost
components that are directly proportional to the production of the product (usually the
amount of electricity produced). Those components include fuel, other consumables, waste
disposal, by-product sales or emissions tax [7].

2.1.2. Carbon Capture Metrics

A series of metrics have been introduced to express the economic viability of a carbon
capture plant investment and allow the comparison between different configurations.

The Levelized Cost of Electricity (LCOE) is a metric that is widely applied but can only
be applied to power producing industries. It expresses the price that electricity should be
sold, for the capture investment to be profitable, based on a specified return on investment
(ROI) and project lifetime. It is estimated by incorporating all expenses related to producing
a certain amount of electricity per year, for a specified project lifetime and ROI [7,9,15].
Therefore, it serves as an indicator for the potential profitability of a specific project and
allows comparison between projects with different plant sizes and electricity generation
technologies, assuming project lifetime and ROI are the same and TCR costs are estimated
in similar ways. Another similar metric is the first-year cost of electricity, which is identical
to LCOE with the only difference that inflation rates and cost escalation rates are assumed
to be zero for the first year of operation [7,9].

The cost of CO2 avoided quantifies the average cost of avoiding a unit of CO2 per unit
of useful product by comparing a plant with capture to a reference plant of similar type
and size, without a capture unit. This metric is equal to the CO2 emission tax for which
the cost of producing a unit of product for a plant without capture is equal to the same
cost of a plant with capture and includes costs of capture (including transportation and
storage/utilization, otherwise CO2 will not be avoided) [7,9,10]. The cost of CO2 captured
is a similar indicator with the only difference that it covers only the cost of capturing
and producing CO2 as a chemical product, and unlike the cost of CO2 avoided metric, it
excludes transportation and storage/utilization. Both indicators are expressed in monetary
units per tCO2 [1,2,10].

The cost of CO2 abated quantifies the cost of minimising CO2 emissions by changing
the process of producing electricity, i.e., by modifying the process in any way, changing
generators, fuel, region, country, and utility system, anything that changes the current
situation to one with lower CO2 emissions including CCS [10]. The energy penalty metric
expresses the power output difference between a power plant with carbon capture and a
similar reference power plant without capture.

From all the above-mentioned metrics, the only metric that quantifies the cost of CO2
capture and is appropriate for our study is the “cost of CO2 captured”. It includes only the
stage of capturing and excludes the transportation and any potential storage or utilization.

2.2. Estimation of Carbon Capture Costs

The objective of this manuscript is to develop models for the estimation of capture
costs (TCR and O&M), by extracting the relevant data from the published studies. These
models will have as parameters the amount of CO2 captured, the capture technology used
and the carbon source type.

2.2.1. Data Collection

For that purpose, a literature review was performed to collect the cost of CO2 captured
from published studies. Table 1 summarises the studies used in the analysis and the
parameters retrieved from each one of them. The data required for the analysis are the
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capital cost of capture (TCR, TOC or TPC), annual O&M costs and the annual amount
of CO2 captured. The capture cost elements reported usually include the capital costs of
both the base plant and the CO2 capture plant and, if a reference case is provided, then the
capital cost of capture can be estimated by subtracting the cost of the reference case from
the cost with capture. Annual O&M costs, if not reported, can be estimated by assuming to
be equal to a percentage of capital costs. The annual amount of CO2 captured also needs to
be reported, which can be used to adjust the cost of capture based on the required size of
the capture plant.

Table 1. Summary of Literature Sources Characteristics.

Parameters [10] [16] [2] [17] [11] [18] [19] [1] [12] [20] [21]

Source type NPR PR PR PR Both PR PR Both PR PR NPR
Separation principle Y Y Y Y Y Y Y N Y Y N

Compression Y Y Y Y Y Y N N Y Y Y
Amount of CO2 captured E Y Y N Y E N N E Y Y

Currency Y Y Y Y Y Y Y Y Y Y Y
Year Y Y Y Y Y Y Y Y Y Y N

Constant/Current Co Co Co Co Co N N Co N Co Cu
Project lifetime Y Y N Y Y N N N Y Y Y

Annual Working Hours Y Y Y Y Y Y N N A Y Y

Reference Plant Capacity N Y Y Y N N N N Y Y N
Reference Capital cost N N Y Y N Y N N Y Y Y
Reference O&M cost N N N Y N Y N N Y Y Y

With Capture Plant Capacity Y Y Y Y N N Y N Y Y N
With Capture Capital cost Y Y Y Y Y Y N Y Y Y Y
With Capture O&M cost Y Y N Y Y Y N N Y Y Y

Cost of CO2 captured N N Y N N N N N N N N
Cost of CO2 avoided N Y Y N N N N N Y Y N

LCOE N Y Y N N Y Y N Y Y N

Parameters [22] [23] [24] [25] [15] [26] [13] [27] [28] [29] [30]

Source type PR PR PR PR PR NPR PR PR Both PR Both
Separation principle Y Y N N Y Y Y N Y N Y

Compression Y N N Y Y Y Y Y N Y
Amount of CO2 captured E Y N Y Y Y Y Y N Y

Currency Y Y Y Y Y Y Y Y Y Y
Year Y Y N Y Y N Y Y Y Y

Constant/Current Cu Y N Co Co Co N Cu N Co
Project lifetime N Y Y N Y Y Y Y N N

Annual Working Hours A N Y N N N N N N N
Reference Plant Capacity Y Y N N Y N Y N N Y Y

Reference Capital cost Y Y N N Y Y Y Y N Y Y
Reference O&M cost Y Y N N A Y N N N N N

With Capture Plant Capacity Y Y N Y Y Y Y Y Y Y Y
With Capture Capital cost Y Y Y Y Y Y Y Y N Y Y
With Capture O&M cost Y Y N Y A Y N N N N N

Cost of CO2 captured Y N N N N Y Y N Y Y Y
Cost of CO2 avoided Y N N N Y Y Y N Y Y Y

LCOE Y N N N Y N N N N Y Y

From the parameters reported in Table 1, the “source type” indicates whether the
published study included data for power related sources, non-power related sources or
both. The separation principle determines if the type of capture technology used was
specified. The amount of CO2 capture indicates if the annual amount of CO2 captured is
directly reported or if it can be estimated. Currency, base year, constant/current, project
lifetime and working hours per year are the data required to standardise cost. The base year
specifies the year of the reported costs, whereas constant or current indicates if inflation is
included. The cost of CO2 captured, cost of CO2 avoided and LCOE are not required for
this study, but they were included as reference values.
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2.2.2. Data Standardisation

The extracted cost data were standardised to constant USD2018 prices [31]. The method
adjusts for inflation of the reported currencies to 2018 prices using local CPI values and
then converting currencies to USD2018 using market exchange rate data from [32]. The
selected studies usually report cost data in US dollars, British pounds or euro. A base year
was always provided, and it was specified whether inflation was included. For US dollars
and British pounds, it was easy to find CPI values which are based on location because
it is a country-based index, but for costs reported in Euro, it was not possible to find CPI
values because there was no indication of country. Instead, the costs were converted to
USD of the base year and then adjusted for inflation to USD2018 using the USD CPI. Cost
data in current values were standardised for inflation of currencies to 2018 prices using
local CPI values by dividing the CPI2018 by 100 and multiplying by the current price and
then converting currencies to USD2018 using market exchange rate data from [32].

2.2.3. Data Aggregation

The extracted data include information on the source type and capture technology
and ideally a model can be developed for each type of source using all available capture
technologies. Because of the lack of data, this was not possible for all of them. Instead of
developing a model for each capture technology applied on every source the data were
sorted per source type and capture technology, and a model was developed for each source
and capture technology (where enough data existed).

The extracted data were sorted according to source type for non-power related sources
(metal industry, fluid catalytic cracking (FCC), combined stack, cement industry, hydrogen,
ammonia, ethylene oxide production and synthetic fuel) and power-related sources (pul-
verised coal (PC), integrated gasification combined cycle (IGCC), supercritical pulverised
coal (SCPC), ultra-supercritical pulverised coal (USCPC), natural gas combined cycle
(NGCC), gas-fired furnaces, combined heating and power station (CHP), fluidised bed
combustion (CFB)). To develop a model for each case, it was required to have at least 10 data
points, which at the same time cover a reasonable range of flowrates (at least 2 MtCO2 /yr).
The cost data from each source were also sorted according to the classification of capture
technologies per separation principle, chemical absorption, physical absorption, oxyfuel
combustion, chemical adsorption, chemical looping, cryogenics, inorganic membranes and
hydrate crystallization). The criteria used to be able to develop a model were the same
with the sorting per source. Therefore, it was not possible to develop models for chemical
adsorption, chemical looping, cryogenics, inorganic membranes and hydrate crystallization
CO2 capture technologies because there are less than 10 pieces of data for each of them that
cover a very small range of flows.

3. Results

Numerous regression analyses were performed and assessed to develop a model that
best describes the investment cost and O&M cost based on the amount of CO2 captured.
Power regression analysis was chosen to develop a model that predicts the total capital
requirement (TCR) and annual operating and maintenance cost (O&MC) (dependent
variables) based on the annual amount of CO2 captured (independent variable). The
proposed models are presented in the following sections.

3.1. Capture Costs Based on the Separation Principle

Data were split based on the separation principle used in each case into three cat-
egories; chemical absorption, physical absorption and oxyfuel combustion. Regarding
chemical absorption, many data points covered a decent range of flowrates between
0–6.7 MtCO2 /yr. This data group includes data from various CO2 sources. The analysis
showed that the curve which best described the data has the form of y = axb where a and b
are constants calculated from regression (Figures 1 and 2).
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Figure 1. Estimation of TCR based on the amount of CO2 captured for chemical absorption.
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Figure 2. Estimation of O&M cost based on the amount of CO2 captured for chemical absorption.

For physical absorption, the data points covered a decent range of flowrates between
0–6.4 MtCO2 /yr and included data from various non-power related CO2 sources like the
metal industry, cement industry, chemical and petrochemical industry and only IGCC from
power-related sources. The analysis showed a curve of the shape of y = axb where a and b
are constants calculated from regression (Figures 3 and 4).
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Figure 4. Estimation of O&M cost based on the amount of CO2 captured for physical absorption.

For the oxy-fuel combustion capture technology, there were fewer data points, still
covering a decent range of flowrates between 0–6 MtCO2 /yr. This data group includes data
from sources that include combustion like SCPC, USCPC, CFB, PC&NGCC and chemical
and petrochemical industry and cement industry. The power model that was proposed by
the regression analysis is presented in Figures 5 and 6.
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3.2. Capture Costs Based on the Source Type

It was also decided to categorise the data points based on the type of the source and,
for those sources who had an appropriate number of data points, specify the model that
best described their profile.

3.2.1. Metal Industry

The different CO2 sources of the metal industry, including blast furnace, top gas
recycling blast furnace (TGRBF), smelting reduction iron and raw material production,
were all grouped under the metal industry because there were not enough data to develop
a model for each one individually. There were 20 points of data that covered a range of
flowrates between 0–6.4 MtCO2 /yr. Some data points are stacked, because the authors of the
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references cited, wanted to compare different capture technologies applied on the same CO2
source. This data group includes various capture technologies like chemical absorption,
physical absorption, inorganic porous membranes, physical adsorption, calcium looping
and cryogenics. The power model that was proposed by the regression analysis is presented
in Figures 7 and 8.
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Figure 7. Estimation of TCR based on the amount of CO2 captured for metal industry.
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3.2.2. Cement Industry

For the cement industry, data from the pre-calciner and the entire cement plant were
grouped together, because there were not enough data to develop a model for each one
individually. There were 13 points of data that covered flowrates between 0–1.4 MtCO2 /y
although some data points are stacked. This data group includes various capture technolo-
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gies like oxy-fuel combustion, chemical looping, chemical absorption, physical absorption
and cryogenics. The power model that was proposed by the regression analysis is presented
in Figures 9 and 10
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Figure 9. Estimation of TCR based on the amount of CO2 captured for the cement industry.
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3.2.3. Fluid Catalytic Cracking (FCC)

There were 18 points of data for FCC that covered flowrates between 0–1 MtCO2 /y.
The range is relatively small, but representative of the size of the source, when compared
to power related ones. The power model that was proposed by the regression analysis is
presented in Figures 11 and 12.
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Figure 11. Estimation of TCR based on the amount of CO2 captured for FCC.

Clean Technol. 2021, 3, FOR PEER REVIEW  11 
 

 

 
Figure 11. Estimation of TCR based on the amount of CO2 captured for FCC. 

 
Figure 12. Estimation of O&M cost based on the amount of CO2 captured for FCC. 

3.2.4. Power Related Sources 
The power-related sources were the category with the most available data. There 

were 57 data points for IGCC, 65 for SCPC, 23 points of data for NGCC and 16 for USCPC. 
All of them covered a range greater than 4.5 MtCO2 (from 0-4.5 MtCO2 to 0–6.7 MtCO2). 
For IGCC, the data set includes only physical absorption capture technology, mainly 
(selexol), whereas for SCPC includes chemical absorption, oxy-fuel combustion and gas 
separation membranes capture technologies. For NGCC the data set include only chemi-
cal absorption (mostly MEA) and for USCPC it combines chemical absorption and oxy-
fuel combustion capture technologies. The power model that was proposed by the regres-
sion analysis is presented in Figures 13–20. 

0
100
200
300
400
500
600
700
800
900

1000

0 0.2 0.4 0.6 0.8 1 1.2

TC
R 

(M
$)

CO2 Captured (MtCO2/y)

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2

O&
M

 C
os

t (
M

$/
y)

CO2 Captured (MtCO2/y)

Figure 12. Estimation of O&M cost based on the amount of CO2 captured for FCC.

3.2.4. Power Related Sources

The power-related sources were the category with the most available data. There were
57 data points for IGCC, 65 for SCPC, 23 points of data for NGCC and 16 for USCPC. All
of them covered a range greater than 4.5 MtCO2 (from 0–4.5 MtCO2 to 0–6.7 MtCO2 ). For
IGCC, the data set includes only physical absorption capture technology, mainly (selexol),
whereas for SCPC includes chemical absorption, oxy-fuel combustion and gas separation
membranes capture technologies. For NGCC the data set include only chemical absorption
(mostly MEA) and for USCPC it combines chemical absorption and oxy-fuel combustion
capture technologies. The power model that was proposed by the regression analysis is
presented in Figures 13–20.
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Figure 13. Estimation of TCR based on the amount of CO2 captured for IGCC.
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Figure 14. Estimation of O&M cost based on the amount of CO2 captured for IGCC.
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Figure 16. Estimation of O&M cost based on the amount of CO2 captured for SCPC.
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Figure 17. Estimation of TCR based on the amount of CO2 captured for NGCC.
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Figure 18. Estimation of O&M cost based on the amount of CO2 captured for NGCC.
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Figure 19. Estimation of TCR based on the amount of CO2 captured for USCPC.
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Figure 20. Estimation of O&M cost based on the amount of CO2 captured for USCPC.

3.3. Model Validation

The regression analysis in all cases was forced to go through (0,0) because the cost to
capture zero amount of CO2 is zero. Since some of the models are not valid for (0,0), the
data point (0.1, 0.1) was used instead. The model that best fitted the data in all cases was
a power model, y = axb, where a and b are constants calculated from regression. Further
analysis was carried out to the obtained model to determine its statistical characteristics
like R2 value and the p-value. The R2 value which indicates the accuracy of the model is
high in all cases with the lowest being 0.415 and the highest 0.908 and shows that most of
the models would produce accurate predictions. The p-value, which signifies the statistical
significance of the model, is significantly small in all cases and allows to demonstrate that
the model is statistically significant by rejecting the null hypothesis.

The last characteristic “trend” indicated if the model follows economies of scale or
reverse economies of scale. Economies of scale is a term that relates the cost of production
to the amount produced. If economies of scale are followed, then a product would cost less
if the production was increased. However, economies of scale are only observed up to a
certain point. When that point is passed, reverse economies of scale describe the process.
In the carbon capture case, if the amount of CO2 captured is doubled and the cost less than
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doubles, then economies of scale are observed. In any other case, reverse economies of
scale are followed. All data are summarised in Tables 2 and 3.

Table 2. Statistical analysis of TCR and O&M costs models per separation principle.

Type Cost Model R2 p-Value Trend

Chemical Absorption TCR y = 270.3x0.668 0.531 <0.001 Less than doubles
O&M y = 14.089x0.690 0.669 <0.001 Less than doubles

Physical Absorption TCR y = 206.2x0.731 0.415 <0.001 Less than doubles
O&M y = 10.698x0.781 0.584 <0.001 Less than doubles

Oxyfuel Combustion TCR y = 101.9x1.533 0.652 <0.001 More than doubles
O&M y = 9.503x1.014 0.650 <0.001 More than doubles

Table 3. Statistical analysis of TCR and O&M costs models per source type.

Type Cost Model R2 p-Value Trend

Metal Industry TCR y = 61.629x1.550 0.777 <0.001 More than doubles
O&M y = 5.464x1.151 0.817 <0.001 More than doubles

Cement Industry TCR y = 543.5x2.538 0.637 <0.001 More than doubles
O&M y = 25.382x1.913 0.637 <0.001 More than doubles

FCC TCR y = 908.8x2.875 0.711 <0.001 More than doubles
O&M y = 26.265x1.754 0.668 <0.001 More than doubles

IGCC TCR y = 32.931x1.990 0.696 <0.001 More than doubles
O&M y = 3.889x1.412 0.557 <0.001 More than doubles

SCPC TCR y = 39.333x2.060 0.774 <0.001 More than doubles
O&M y = 5.152x1.475 0.745 <0.001 More than doubles

NGCC TCR y = 137.4x2.165 0.644 <0.001 More than doubles
O&M y = 9.276x1.419 0.517 <0.001 More than doubles

USCPC TCR y = 27.436x2.263 0.908 <0.001 More than doubles
O&M y = 3.488x1.407 0.800 <0.001 More than doubles

4. Discussion

All models have been analysed for the type of economies they follow in the long term,
by observing the effect on costs when the amount of CO2 captured is doubled. If costs
exactly double, then a linear relationship is observed, if the costs are more than double then
reverse economies of scale are observed and if the costs are less than double then economies
of scale are observed [33]. All models show to follow reverse economies of scale except
for the models of chemical absorption and physical absorption, where economies of scale
are observed. This is sensible because, when more CO2 needs to be captured, then bigger
capture equipment would be required to accommodate that flow. On first thought, this
would justify only the reverse economies of scale for capital costs for the larger equipment
and larger quantities of solvents, but it also justifies the O&M cost models following reverse
economies of scale too because more energy would be required to regenerate the additional
amount of solvent that is now required.

The required data used for the development of the models introduced some limitations
to the models in the sense that the data used were gathered from various sources and
standardised to process and use them. Capital costs were reported in different currencies
and sometimes these were not expressed using the same metric. The reported capital costs
did not always include the same cost components. Additionally, CO2 compression is most
of the time, but not always, included. Costs were reported in various currencies and base
years. O&M costs were not always reported in the amount of money per year and had
to be converted using assumptions. In other cases, they were not directly reported but
instead reported as estimates using percentages of capital cost. The annual amount of CO2
captured was not always reported and sometimes had to be estimated from plant capacity
and annual working hours.

Nevertheless, the developed models are valid equations that only require one parame-
ter (the annual amount of CO2 to be captured) to estimate the capital cost of capture and
the annual O&M cost of capture. In that sense, they can be used by industries, to estimate
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the total cost of carbon capture plants, having in mind the limitations. In terms of data
validation, the models have been applied in real industrial cases as part of a pre-feasibility
assessment of a potential carbon capture investment. The major observations from the
application are that the models might not provide an accurate estimate in the boundary
regions. Moreover, in some cases/categories the sources analysed have varying purities,
thus requiring a different level of purification before being captured, which affects the
overall capture costs, and thus the accuracy of the models.

Although the extracted data differed slightly and were standardised to allow for the
development of the models, the models can provide robust, accurate estimations, with
statistical significance. This allows for the cost estimation for any CO2 source or any one of
the most widely used capture technologies.
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