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Abstract: The prediction of the terminal velocity of a single spherical particle is essential to realize
mathematical modeling useful for the design and adjustment of separators used in wastewater
treatment. For non-spherical and non-single particles, terminal velocity can be traced back to that of
single spheres using coefficients and Kynch’s theory, respectively. Because separation processes can
involve small or large particles and can be carried out using gravity, as with clarifiers/thickeners, or
by centrifugation in centrifuges where the acceleration can exceed 10,000× g, the Reynolds number
of the particle can be highly variable, ranging from 0.1 to 200,000. The terminal velocity depends
on the drag coefficient, which depends, in turn, on the Reynolds number containing the terminal
velocity. Because of this, to find the terminal velocity formula, it is preferable to look first for a
relationship between the drag coefficient and the Archimedes number which does not contain the
terminal velocity. Formulas already exist expressing the relationship between the drag coefficient
and the Archimedes number, from which the relationship between the terminal velocity and the
Archimedes number may be derived. To improve the accuracy obtained by these formulas, a new
relationship was developed in this study, using dimensional analysis, which is valid for Reynolds
number values between 0.1 and 200,000. The resulting mean relative difference, compared to the
experimental standard drag curve, was only 1.44%. This formula was developed using the logarithms
of dimensionless numbers, and the unprecedented accuracy obtained with this method suggested
that an equally accurate formula for the drag coefficient could also be obtained with respect to the
Reynolds number. Again, the resulting level of accuracy was unprecedentedly high, with a mean
relative difference of 1.77% for Reynolds number values between 0.1 and 200,000.

Keywords: wastewater treatment; clarifiers; thickeners; flotation devices; design; mathematical
modelling; dimensional analysis; terminal velocity; spherical particles; drag coefficient

1. Introduction

In the management of wastewater, for the purpose of depollution, treatment devices
are used, including clarifiers, thickeners, flotation cells and, sometimes, centrifuges. All
such devices are based on the separation of solid or flocculated particles present in wastew-
ater, by sedimentation or flotation, using gravity or centrifugation. Among these methods,
gravity sedimentation has the advantage of almost negligible energy consumption. For
example, a clarifier with a surface area of 2800 m2 requires an electrical power of just 12 kW,
and it thus represents an excellent example of clean technology.

Designs and simulations of these separation processes are based on mathematical
modeling of the behavior of solid particles in suspension. Research on the behavior of such
particles has been mainly oriented towards the calculation of their terminal velocity, on the
hypothesis that the individual particle is spherical, is not disturbed during its motion by
the presence of other particles (diluted suspensions) and is immersed in a stationary and
infinite fluid.
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A possible lack of sphericity is considered by introducing coefficients into the formula
for the terminal velocity of the spheres [1–4]. For concentrated suspensions, a number
of authors [5–7] have reported that, for mathematical modeling of sedimentation using
Kynch’s theory, it is always necessary to know the value of the terminal velocity of a
single sphere.

It is interesting to note that calculation of particle terminal velocity is a matter of
interest in other sectors of engineering and technology, in addition to clean technologies;
these include the processing sector (drying, freezing, etc.) and transportation using flu-
idized beds [8–12]. Scientific researchers have also investigated the flotation [13] and
sedimentation of particles immersed in non-Newtonian fluids using relative experimental
and/or numerical studies of their terminal velocities [14,15]. For particles of sand and other
mineral aggregates found during sedimentation, terminal velocity was recently measured
and studied by the authors of [16,17]; for larger particles, the recent determination of
terminal velocity by the authors of [18] is also worthy of note. In addition, the calculation
of particle terminal velocity has been of interest to researchers studying soil erosion during
rainfall [19–21], the settling of bioparticles [22] and the dispersion of polluting particles in
the atmosphere [23].

During sedimentation, the spherical particle is subjected to drag resistance, which
depends on the unknown terminal velocity v and on the drag coefficient Cd which, in turn,
depends on the Reynolds number Re, and, therefore, on the unknown velocity v once again,
in a complicated manner. If Re is low, the boundary layer is laminar, and the Stokes formula
can be obtained from the equation of dynamics; using this formula, the terminal velocity
can be determined. If Re has an intermediate value, the boundary layer is transitional and
the drag coefficient has a different relationship with Re; consequently, a different formula
is required for calculating terminal velocity. If the value of Re is high, the motion in the
boundary layer becomes turbulent; in such cases, a third formula for calculating terminal
velocity is required.

The choice of which of the three formulas to use therefore depends on Re, which
depends, in turn, on the terminal velocity. In the past, this necessitated a long and tedious
trial-and-error procedure. However, the identification of the dimensionless number of
Archimedes Ar [24–27], obtained by combining the drag coefficient Cd with Re to eliminate
the unknown terminal velocity, has made it possible to speed up the calculation procedure,
because Ar depends only on the physical characteristics of the particle and fluid, as well as
the effects of gravity or centrifugal acceleration. Basically, Ar is previously determined and
is then compared with the limit values which define the typology of the boundary layer.
Consequently, the relative formula is used for calculating the terminal velocity.

In more recent times, formulas have also been proposed for the calculation of the
drag coefficient Cd = f (Ar) and, thus, the terminal velocity v = f (Ar) as a function of
the Archimedes number Ar [28–31]. Some of these are valid for a wide range of Re values,
i.e., for any type of boundary layer, from laminar to turbulent. These formulas enable
algorithms to be constructed which are useful for the design and simulation of the processes
of separation involving Re values which range from less than 1 to above 100,000, because
these processes may involve the use of gravity acceleration, as in clarifiers, thickeners and
flotation cells, or centrifugal acceleration, as in the centrifuges, where the acceleration can
exceed 10,000× g.

In this study, we aimed to develop a formula Cd = f (Ar) which would be valid for
a wide range of Ar or Re values and also, therefore, a formula v = f (Ar), which could
be added to existing examples in the literature. We sought also to reduce the level of
error with respect to the standard experimental data [32]; to this end, a mathematical
modeling was carried out based on a dimensional analysis. Furthermore, and by adopting
the same conceptual procedure as for the formula with respect to the Archimedes number,
Cd = f (Ar), a formula was also developed to express the drag coefficient as a function of
Reynolds number, Cd = f (Re). This was done in order to compare the results obtained
with those of other authors which are more numerous for the Cd = f (Re) relationship.
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By such means, we could highlight any improvement in accuracy compared to formulas
previously reported in the literature.

2. Materials and Methods
2.1. Dimensional Analysis

Table 1 lists the six variables involved in the phenomenon of particle–fluid separation
due to the difference in density. For each variable, the link to the dimensions of the primary
quantities is also given. Because this is a purely mechanical phenomenon, there are only
three primary quantities (length, mass and time); therefore, on the basis of Buckingham’s π
theorem [33], the phenomenon of separation of solid particles present in a suspension can be
described by three dimensionless groups (3 groups = 6 variables—3 primary dimensions).

Table 1. Variables involved in sedimentation.

Variables Symbol Dimension

Diameter of the particle D [m] L
Terminal velocity v [m s−1] L T−1

Acceleration (gravity or centrifugal) a [m s−2] L T−2

Fluid density ρf [kg m−3] M L−3

Particle density—fluid density (ρp − ρf) [kg m−3] M L−3

Viscosity µ [kg m−1 s−1] M L−1 T−1

Each of these dimensionless groups will be of the type

Π = Da · vb · ac · ρd
f ·
(

ρp − ρ f

)e
· µ f (1)

The corresponding dimensional equation is

[Π] = [D]a[v]b[a]c
[
ρ f

]d[
ρp − ρ f

]e
[µ] f (2)

where the variables are described in Table 1.
Expressing the dimensions of the variables through those of the primary quantities

(Table 1), we have
Π = La+b+c−3d−3e− f ·Md+e+ f · T−b−2c− f (3)

Because Π must be dimensionless, the previous expression can be translated into the
following homogeneous linear system:

a + b + c− 3d− 3e− f = 0
d + e + f = 0
−b− 2c− f = 0

(4)

Because the characteristic of the coefficient matrix of this system is three, the three
equations are linearly independent, and the number of unknowns is equal to six, i.e., the
same as the number of variables under consideration. Therefore, the system is indetermi-
nate, and the algebraic theory ensures that there are independent solutions whose number
is equal to that of the unknowns minus the characteristic of the matrix (6 − 3 = 3). Bearing
in mind that the solutions in Equation (4) are the exponents to the second member of
Equation (1), each of these corresponds to a dimensionless group Π.

By setting c = e = 0; a = 1; from Equation (4) we obtain: b = 1; d = 1; f = −1; namely, the
well-known Reynolds number Re, as follows:

Π1 =
ρ f vD

µ
= Re (5)
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The second dimensionless group Π2 is obtained by setting d = 0; c = e = 1; from
Equation (4), we then obtain the following solution: a = 2; b = −1; f = −1; that is,

Π2 =

(
ρp − ρ f

)
· a·D2

µ · v = Stk (6)

In the definition of Stokes number [34,35], i.e., Stk = R
Dµv , R is the drag resistance. Ac-

cording to Newton’s law, in conditions of uniform motion, the drag resistance R coincides—
except in the case of a multiplicative constant equal to π/6—with the force of gravity or
centrifugal force, net of the buoyancy force, i.e.,: R =

(
ρp − ρ f

)
· a·D3. Therefore, we find

that Π2 coincides with Stk.
By setting c = d = g = 0; a = 1, Equation (4) gives the following solution: b = −1; e = −1;

f = 1; this corresponds to the third dimensionless number:

Π3 =
ρ f v2(

ρp − ρ f

)
·a·D

=
4

3Cd
(7)

We again recall Newton’s law relating to uniform motion: R = Cd·π4 ·D2·ρ f · v
2

2 =
π
6 ·
(

ρp − ρ f

)
·a·D3. Now, the dimensionless number Π3 becomes equal to 4

3Cd
, where Cd is

the drag coefficient.
The dimensionally correct equation

f
[

D, v, a, ρ f ,
(

ρp − ρ f

)
, µ
]
= 0 (8)

can now be reduced, thanks to the dimensional analysis, to

Π3 =
4

3Cd
= F(Stk, Re) (9)

Both the Stokes number Stk and the Reynolds number Re contain the unknown
terminal velocity v, but with their product, v is eliminated, and we obtain the following:

Stk · Re =
D3
(

ρp − ρ f

)
· ρ f · a

µ2 = Ar (10)

This new dimensionless quantity Stk·Re is already known as Archimedes number Ar;
however, this has been obtained by other authors [24–26], as the product between the drag
coefficient Cd and the square of the Reynolds number (Ar = 3

4 Cd·Re2). Ultimately, the
dimensional analysis suggests looking for a relationship such as this:

4
3Cd

= f (Ar) (11)

2.2. Experimental Data

To make explicit the function f(Ar), experimental data in the form of pairs (Cd, Ar) are
needed. In the current study, the data of Lapple–Shepherd [32] were chosen because these
are average values of historical data from 17 different authors; for this reason, they are
called standard drag curve (SDC) data [3]. These data are in the form of pairs (Cd, Re), but
because the following holds: Ar = 3

4 Cd·Re2, it is easy to transform the pairs (Cd, Re) into
(Cd, Ar) (Table 2).
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Table 2. Standard drag curve (SDC) data [3,32] for the drag coefficient Cd vs. Reynolds number Re.
The column on the right shows the calculated value of the Archimedes number Ar.

Cd Value from Standard
Drag Curve (SDC) Reynolds Number Re Archimedes Number Ar

240 0.1 1.8
80 0.3 5.4

36.5 0.7 13.4
26.5 1 19.9
10.4 3 70.2
5.4 7 198.5
4.1 10 307.5
2.0 30 1350

1.27 70 4667
1.07 100 8025
0.65 300 43,875
0.50 700 183,750
0.46 1000 345,000
0.40 3000 2,700,000
0.39 7000 14,332,500
0.41 10,000 3075 × 104

0.47 30,000 31,725 × 104

0.50 70,000 18,375 × 105

0.48 100,000 36 × 108

0.498 200,000 149.4 × 108

To better identify the function 4
3Cd

= f (Ar), the two dimensionless numbers are

logarithmized: ln
(

4
3Cd

)
= f (ln Ar), highlighting in this case a function which increases

almost monotonically (Figure 1).
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3. Results and Discussion
3.1. Formulas Cd = f (Ar) and v = f (Ar)

The search for the function ln
(

4
3Cd

)
= f (ln Ar) was carried out through a polynomial

regression of the SDC experimental data of Table 2 and, therefore, of Figure 1, from which
the following equation was obtained:

ln
(

4
3Cd

)
= 0.0000013458·F5 − 0.000070578·F4 + 0.0021933·F3 − 0.065988·F2 + 1.13623·F− 5.83958 (12)
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where F = ln(Ar). When R2 = 0.99991, Equation (12) holds for the following Archimedes
range: 1.8 ≤ Ar ≤ 149.4 × 108 (Reynolds range: 0.1 ≤ Re ≤ 200,000).

From Equation (12), by collecting the term F = ln(Ar), we now obtain

ln
(

4
3Cd

)
+ 5.83958 =

{
0.0000013458·F4 − 0.000070578·F3 + 0.0021933·F2 − 0.065988·F + 1.13623

}
· ln(Ar)

= ln
(

Ar0.0000013458·F4−0.000070578·F3+0.0021933·F2−0.065988·F+1.13623
) (13)

Therefore,

4
3Cd

= e−5.83958·Ar0.0000013458·F4−0.000070578·F3+0.0021933·F2−0.065988·F+1.13623 (14)

Finally, the formula that provides the drag coefficient Cd can be stated thus:

Cd = 458.18·Ar−(0.0000013458·F4−0.000070578·F3+0.0021933·F2−0.065988·F+1.13623) (15)

In Table 3, the Cd values obtained from Equation (15) are compared with the reference
experimental values of the SDC (standard drag curve) [32]. To evaluate the accuracy of
the formula, the criterion of “relative difference” (RD) is used [3]. This is expressed as a
percentage defined as “100 · (|estimated value—reference data|)/reference data”. The
evaluation is then completed by determining the average of these RD values, thus obtaining
the mean relative difference (MRD).

Table 3. Drag coefficient Cd estimates calculated with Equation (15) in comparison with standard
drag curve (SDC) data [3,32]. The third column shows values of relative difference (RD); among
these, the highest value (HRD) is bold and underlined.

Cd Value from
Equation (15)

Cd Value from
Standard Drag
Curve (SDC)

Relative
Difference (RD)

(%)

Reynolds
Number Re

Archimedes
Number Ar

240.27 240 0.11 0.1 1.8
80.55 80 0.68 0.3 5.4
36.12 36.5 −1.05 0.7 13.4
26.23 26.5 −1.01 1 19.9
10.40 10.4 0.03 3 70.2
5.41 5.4 0.15 7 198.5
4.22 4.1 2.86 10 307.5
2.03 2.0 1.57 30 1350
1.24 1.27 −2.18 70 4667
1.03 1.07 −3.31 100 8025
0.655 0.65 0.72 300 43,875
0.504 0.50 0.85 700 183,750
0.464 0.46 0.96 1000 345,000
0.401 0.40 0.14 3000 2,700,000
0.397 0.39 1.88 7000 14,332,500
0.406 0.41 −1.03 10,000 3075 × 104

0.456 0.47 −3.03 30,000 31,725 × 104

0.495 0.50 −1.02 70,000 18,375 × 105

0.502 0.48 4.68 100,000 36 × 108

0.490 0.498 −1.58 200,000 149.4 × 108

The previously reported formulas [28–31] with which it is possible to obtain the
Reynolds number as a function of the Archimedes number, Re = f (Ar), were taken from
Table 3 of Kalman [36] and are re-presented here in Table 4. From the Archimedes number
definition, Ar = 3

4 Cd·Re2, we derived the following formulas: Cd = 4
3

Ar
Re2 = 4

3
Ar

[ f (Ar)]2
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Table 4. Formulas from the literature describing the drag coefficient Cd vs. Archimedes number Ar.

Authors Year Formula Ar Range

Khan–Richardson [28] 1987 Cd = 4
3 Ar·

[
2.33·Ar0.018 − 1.53·Ar0.016]−2·13.3 1.8 ÷ 353,250

Haider–Levenspiel [29] 1989 Cd = 4
3 Ar·

[
18
Ar +

2.412
4·Ar0.5

]−2 1.8 ÷ 149.4·108

Nguyen et al. [30] 1997 Cd = 4
3 Ar·

[
Ar
18 ·

1
1+ Ar

96 ·(1+0.079·Ar0.749)
−0.755

]−2
1.8 ÷ 353,250

Brown–Lawler,
their Equation (37) in [31] 2003 Cd = 4

3 Ar·
[

Ar·(22.5+Ar0.682)
0.0258·Ar1.349+2.81·Ar1.015+18·Ar0.682+405

]−2
1.8 ÷ 27·105

By comparing the results of the formulas of Table 4 with the experimental data of the
standard drag curve (SDC), the mean relative difference (MRD) and standard deviation
(SD) were obtained; these are shown in Table 5. The values of the MR and SD of Equation
(15) are also shown in the last three lines. In fact, for the Equation (15) the calculation of
MRD and SD was carried out in three different ranges of Reynolds numbers, with upper
bounds of 1000, 4000 and 200,000, respectively, to make the comparison to other formulas
homogeneous. For example, the MRD = 1.44% in the last line is useful for comparison with
the MRD = 12.34% of the Haider–Levenspiel formula [29] because the Re range is the same.

Table 5. Mean relative difference (MRD) and standard deviation (SD) of the Cd values obtained using
Equation (15), compared with the values obtained using the previously published formulas presented
in Table 4.

Authors Year
Mean Relative

Difference
(MRD) (%)

Standard
Deviation
(SD) (%)

Ar Range Re Range

Khan–Richardson [28] 1987 2.24 1.90 1.8 ≤ Ar ≤ 353,250 0.1 ≤ Re ≤ 1000
Haider–Levenspiel [29] 1989 12.34 8.08 1.8 ≤ Ar ≤ 149.4·108 0.1 ≤ Re ≤ 200,000

Nguyen et al. [30] 1997 4.19 2.49 1.8 ≤ Ar ≤ 353,250 0.1 ≤ Re ≤ 1000
Brown–Lawler, their
Equation (37) in [31] 2003 3.57 2.97 1.8 ≤ Ar ≤ 27·105 0.1 ≤ Re ≤ 4000

Present work, Equation (15) 2023 1.22 1.16 1.8 ≤ Ar ≤ 353,250 0.1 ≤ Re ≤ 1000
Present work, Equation (15) 2023 1.17 1.13 1.8 ≤ Ar ≤ 27·105 0.1 ≤ Re ≤ 4000
Present work, Equation (15) 2023 1.44 1.23 1.8 ≤ Ar ≤ 149.4·108 0.1 ≤ Re ≤ 200,000

In all cases, the proposed Equation (15) results in the best fitting of the standard drag
curve SDC.

Using Equation (15), and recalling the definition of the third dimensionless number of

Equation (7), from which we obtain this expression: Cd = 4
3
(ρp−ρ f )a·D

ρ f v2 , it is easy to derive

the formula for the terminal velocity v:

v =


(

ρp − ρ f

)
a·D

ρ f
0.00291·Ar(0.0000013458·F4−0.000070578·F3+0.0021933·F2−0.065988·F+1.13623)

1/2

(16)

3.2. Formula Cd = f (Re)
Given the usefulness of also having a formula for the drag coefficient vs. the Reynolds

number Cd = f (Re), we used the same regression procedure implemented for Equation (15),
Cd = f (Ar), and starting from the SDC data in the first and second columns of Table 2,
obtained the following result:

ln
(

1
Cd

)
= 0.000037447·G5 − 0.00066989·G4 + 0.0016779·G3 − 0.033243·G2 + 0.86961·G− 3.27 (17)
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where G = ln(Re). When R2 = 0.99990, Equation (17) holds for the following Reynolds
number range: 0.1 ≤ Re ≤ 200,000.

From Equation (17), collecting the term G = ln(Re), and proceeding as we did when
obtaining Equation (15), but without reporting the intermediate steps, we then obtain

Cd = 26.31 ·Re−(0.000037447·G4−0.00066989·G3+0.0016779·G2−0.033243·G+0.86961) (18)

Recalling Stokes’ law [37], i.e., Drag Resistence = R = 3·π·D·µ·v = Cd·πD2/4·ρ·v2/2
→ Cd = 24/Re, which is valid for Re ≤ 0.5, the term Cd = 24/Re can be highlighted in
Equation (18):

Cd =
24
Re
·1.0963Re−(0.000037447·G4−0.00066989·G3+0.0016779·G2−0.033243·G−0.13039) (19)

Equation (19) therefore takes the form of Stokes’ law Cd = 24/Re, multiplied by a
correction factor, similarly to the formulas of some authors in the literature. In Table 6, the
Cd values obtained from Equation (19) are reported in the first column and are compared
with the experimental values of the standard drag curve (SDC) in the second column. The
relative differences (RDs) between the Cd values obtained from Equation (19) and those of
the SDC data are presented in the third column.

Table 6. Estimates of drag coefficient Cd calculated with Equation (19), compared with standard drag
curve (SDC) data from [3,32]. The third column shows the relative differences (RDs); among these,
the highest value (HRD) is bold and underlined.

Cd Value
from Equation

(19)

Cd Value from
Standard Drag
Curve (SDC)

Relative
Difference (RD)

(%)

Reynolds
Number Re

Archimedes
Number Ar

242.34 240 0.98 0.1 1.8
79.01 80 −1.23 0.3 5.4
36.03 36.5 −1.27 0.7 13.4
26.31 26.5 −0.71 1 19.9
10.52 10.4 1.17 3 70.2
5.47 5.4 1.36 7 198.5
4.22 4.1 2.93 10 307.5
2.02 2.0 1.03 30 1350
1.24 1.27 −2.55 70 4667
1.03 1.07 −3.68 100 8025
0.646 0.65 −0.62 300 43,875
0.502 0.50 0.32 700 183,750
0.464 0.46 0.90 1000 345,000
0.406 0.40 1.44 3000 2,700,000
0.403 0.39 3.32 7000 14,332,500
0.410 0.41 0.0 10,000 3075 × 104

0.452 0.47 −3.85 30,000 31,725 × 104

0.488 0.50 −2.49 70,000 18,375 × 105

0.496 0.48 3.34 100,000 36 × 108

0.487 0.498 −2.19 200,000 149.4 × 108

In the literature, numerous relationships have been reported between the drag coeffi-
cient and the Reynolds number, for values of the latter up to 200,000; formulas expressing
these relationships are shown in Table 7.

Figure 2 shows the standard drag curve (SDC), together with the drag curve of
Equation (19) and the drag curves obtained with the formulas from the literature shown in
Table 7, all of which are valid for Reynolds number values from 0.1 to 200,000.
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Table 7. Formulas from the literature describing the drag coefficient Cd vs. Reynolds number Re. All
formulas are valid in the Reynolds number range from 0.1 to 200,000.

Authors Year Formula

El Hasadi–Padding, their Equation (11) [4] 2022 Cd = 3.286 + 24.205
Re − 0.818·G + 0.064· G2 − 0.000107 ·G4, where:

G = ln Re

Hongli et al.their Equation (25) in [38] 2015
Cd = 24

Re ·
(

1 + 3
16 Re

)0.635
+ 0.468· sin2 α

where: α =
[
1− exp(−3.24x2 + 8x4 − 6.5x5]π

2 and
x = 0.1· ln(1 + Re)

Clift–Gauvin [39] 1970 Cd = 24
Re ·
(
1 + 0.15·Re0.687)+ 0.42

1+ 42,500
Re1.16

Brown–Lawler, their Equation (19) in [31] 2003 Cd = 24
Re ·
(
1 + 0.15·Re0.681)+ 0.407

1+ 8710
Re

Cheng [40] 2009 Cd = 24
Re ·(1 + 0.27·Re)0.43 + 0.47·

[
1− exp

(
−0.04·Re0.38)]

Terfous et al. [41] 2013 Cd = 2.6689 + 21.683
Re + 0.31

Re2 − 10.616
Re0.1 + 12.216

Re0.2

Turton–Levenspiel [42] 1986 Cd = 24
Re ·
(
1 + 0.173·Re0.657)+ 0.413

1+ 16,300
Re1.09

Haider–Levenspiel [29] 1989 Cd = 24
Re ·
(
1 + 0.1806·Re0.6459)+ 0.4251

1+ 6880.95
Re

Kahn–Richardson [28] 1987 Cd =
(
2.25·Re−0.31 + 0.36·Re0.06)3.45

Kaskas [43] 1970 Cd = 24
Re +

4
Re0.5 + 0.4

Ganser [44] 1993 Cd = 24
Re ·
(
1 + 0.1118·Re0.6567)+ 0.4305

1+ 3305
Re

Brauer [45] 1973 Cd = 24
Re +

3.73
Re0.5 − 4830·Re0.5

1−300,000·Re1.5 + 0.49

Barati et al., their Equation (22) in [46] 2014

Cd = 5.4856·109·tan h
(

4.3779·109

Re

)
+ 0.0709·tan h

(
700.6574

Re

)
+

0.3894·tan h
(

70.1539
Re

)
− 0.1198·tan h

(
7429.0843

Re

)
+

1.7174·tan h
(

9.9851
Re+2.3384

)
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Terfous et al. [41] 2013 3.92 4.93 20.52 200,000 

Turton-Levenspiel [42] 1986 3.93 1.97 7.84 0.3 
Haider-Levenspiel [29] 1989 4.06 2.17 8.30 0.3 
Kahn-Richardson [28] 1987 4.88 4.97 −17.39 70,000 

Kaskas [43] 1970 9.70 6.43 20.26 3000 

Figure 2. Comparison between the drag coefficients predicted by Equation (19) and by the formulas
from the literature described in Table 7: Brown-Lawler [31], Tourton et al. [42], Kahn-Richardson [27],
Brauer [45], El Hasadi-Padding [4], Clift-Gauvin [39], Terfous et al. [41], Kaskas [43], Barati et al. [46],
Hongli et al. [38], Cheng [40], Haider-Levenspiel [29], Ganser [44]. Blue point symbols indicate the
experimental values of the standard drag curve (SDC).
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By comparing the results obtained using Equation (19) and the formulas in Table 7
with the data of the standard drag curve (SDC), the mean relative differences (MRDs) and
standard deviations (SDs) were obtained; these values are shown in Table 8. Note that
Equation (19) produces the highest level of accuracy, with an MRD of 1.77% and an SD
of 1.17%.

Table 8. Mean relative difference (MRD), standard deviation (SD) and highest relative difference
(HRD) of the Cd values versus the standard drag curve (SDC), obtained with the Equation (19) and
with the literature formulas described in Table 7. Equations are valid in the Reynolds number range
from 0.1 to 200,000.

Authors Year Mean Relative
Difference (MRD) (%) Stand. Deviat. (SD) (%) Highest Relative

Difference (HRD) (%)
Reynolds Number Re

at the HRD

SDC data [3,32] 1940
Present work, Equation (19) 2023 1.77 1.17 −3.85 30,000

El Hasadi-Padding their Equation (11) [4] 2022 2.24 1.99 −7.30 200,000
Hongli et al. their Equation (25) [38] 2015 2.51 2.27 −7.13 70,000
Barati et al. their Equation (22) [46] 2014 2.67 2.25 −7.31 70,000

Clift-Gauvin [39] 1970 2.68 1.70 6.56 0.3
Brown-Lawler their Equation (19) [31] 2003 2.76 2.30 −7.04 70,000

Cheng [40] 2009 2.98 2.01 −7.13 70,000
Terfous et al. [41] 2013 3.92 4.93 20.52 200,000

Turton-Levenspiel [42] 1986 3.93 1.97 7.84 0.3
Haider-Levenspiel [29] 1989 4.06 2.17 8.30 0.3
Kahn-Richardson [28] 1987 4.88 4.97 −17.39 70,000

Kaskas [43] 1970 9.70 6.43 20.26 3000
Ganser [44] 1993 10.22 8.35 −24.79 100
Brauer [45] 1973 12.63 14.66 41.53 3000

The formula of Barati et al. [46], described in Table 7, presents the greatest complexity,
with a total of 12 numerical coefficients. This is because the equation was obtained to
represent the values of the drag coefficient Cd for Re values between 0.002 and 200.000. El
Hasadi–Padding’s formula [4] can also be used for Re values of less than 0.1, as low as
Re = 0.002.

Therefore, for a more homogeneous comparison between Barati’s Equation (22) [46],
El Hasadi-Padding’s Equation (11) [4], and our Equation (19), the latter was re-obtained
with the regression, including also the experimental values of the Cd-Re pairs, found
in [46], with Re values between 0.002 and 0.1 included. By such means, Equation (19), for
0.002 ≤ Re ≤ 200,000, becomes

Cd =
24
Re
·1.12706·Re−(0.000011813·G4−0.000038857·G3−0.0028857·G2−0.027371·G−0.10251) (20)

By comparing the results of Equation (20), Barati’s Equation (22) [46] and El Hasadi–
Padding’s Equation (11) [4] described in Table 7 with the data of the standard drag curve
(SDC), the mean relative differences (MRDs) and standard deviations (SDs) were obtained;
these values are shown in Table 9.

Table 9. Mean relative difference (MRD), standard deviation (SD) and highest relative difference
(HRD) of the Cd values versus the standard drag curve (SDC), obtained with Equation (20), with
Barati’s Equation (22) [46] and with El Hasadi–Padding’s Equation (11) [4] described in Table 7.
Equations are valid in the Reynolds number range from 0.002 to 200,000.

Authors Year
Mean Relative

Difference
(MRD) (%)

Stand. Deviat.
(SD) (%)

Highest Relative
Difference
(HRD) (%)

Reynolds Number
Re

at the HRD

SDC data [3,46] 1940
Present work,
Equation (20) 2023 2.20 1.53 −6.36 30,000

Barati et al., their
Equation (22) [46] 2014 2.12 2.22 −7.31 70,000

El Hasadi–Padding,
their Equation (11) [4] 2022 2.34 1.77 −7.30 200,000
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Note that the three formulas produce similar levels of accuracy, with a slightly better
MRD value for Barati’s formula (2.12% versus 2.20% and 2.34%) and a slightly better SD
value for Equation (20) of the current study (1.53% versus 2.22% and 1.77%). However,
Equation (20) involves only six coefficients, i.e., half the number of Barati’s formula.

4. Conclusions

Because solid/liquid separation, especially when using gravity, involves negligible
energy consumption and can therefore be regarded as an excellent clean technology, the
availability of formulas for calculating terminal velocity for a single spherical particle is es-
sential for realizing mathematical modeling useful for the design and control of wastewater
separators as clarifiers, thickeners, flotation devices and centrifuges; in fact, the velocities
of spherical and non-spherical particles can easily be connected through coefficients, and
the co-presence of other particles can be described by Kynch’s theory, which in any case
makes use of the value of the terminal velocity of a single sphere.

Therefore, a precise prediction of the terminal velocity of spherical solid particles
in wastewater as suspensions is indispensable for any mathematical description of the
separation processes. Because the separation processes can be performed using gravity
acceleration, as with clarifiers and/or thickeners and/or flotation devices; or centrifugal
acceleration, as with continuous decanter centrifuges and/or disk centrifuges where the
acceleration can exceed 10,000× g, the Reynolds numbers of particles can be low, as happens
with small particles and with gravity acceleration, or high (or very high) with large particles
and/or centrifugal acceleration.

Because the drag resistance of the sphere immersed in the liquid depends on the
terminal velocity v and on the drag coefficient Cd, which depends, in turn, on the Reynolds
number Re, and therefore again on the unknown velocity v, the use of classical relations
between the drag coefficient and the Reynolds number makes calculating the terminal
velocity awkward. It is preferable to have a relationship between the drag coefficient and
the Archimedes number Ar which does not contain the terminal velocity.

There are already formulas in the literature for calculating the drag coefficient as a
function of Archimedes number, i.e., Cd = f (Ar), with which the formula for calculating
the terminal speed, i.e., v = f (Ar) can easily be written. Unfortunately, such formulas
are few in number and only one is valid for a wide range of Ar which corresponds to the
desired range of 0.1 ≤ Re ≤ 200,000. Furthermore, this particular formula does not offer
accurate results.

A new formula, Cd = f (Ar) (Equation (15)), was therefore developed through di-
mensional analysis. The formula is valid from a minimum Reynolds number value of 0.1
to a maximum value of 200,000. Using this formula, the mean relative difference MRD
compared to the standard drag curve (SDC) data is only 1.44%. In comparison, the best
previous formula that is valid always for 0.1 ≤ Re ≤ 200,000 gives an MRD of 12.34%.

The development of Equation (15), with its use of dimensionless numbers in the form
of logarithms, and the high accuracy obtained with this method, led us to think that an
equally accurate formula for the drag coefficient could also be obtained with respect to a
Reynolds number, i.e., Cd = f (Re) (Equation (19)). Using this formula, the results were
again encouraging in terms of accuracy, with an MRD of 1.77%, that is, a value lower than
that of all the formulas in the literature, again for a Reynolds range of 0.1 ≤ Re ≤ 200,000.

The result obtained with Equation (15), and the consequent Equation (16) for the
calculation of the terminal velocity, allows us to continue our research to apply this formula
within Kynch’s theory [5] and thereby obtain a new mathematical model [47] for the design
of clarifiers, thickeners, flotation devices and centrifuges, within an overall orientation
towards energy saving [48].
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