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Abstract: Alcoholic fermentation is a key step in wine production. Indeed, a wide range of compounds,
which strongly affect the sensory properties of wine, is produced during this process. While Saccharomyces
cerevisiae yeast cultures are commonly employed in winemaking to carry on the fermentation process,
some non-Saccharomyces species have recently gained attention due to their ability to produce various
metabolites of oenological interest. The use of different yeasts strains usually results in wines with
different sensory properties, despite being obtained from the same grape variety. In this paper, we tested
the feasibility of using near-infrared spectroscopy (NIR) to discriminate among red wines from three
different grape varieties produced with pure S. cerevisiae or by mixed fermentation with a promising
non-Saccharomyces yeast, namely the Starmeriella bacillaris, which usually yields wines with significant
amounts of glycerol and low levels of ethanol, acetic acid, and acetaldehyde. A principal component
analysis (PCA) performed on the NIR spectra was used to search for differences in the samples. The NIR
results have been compared with both basic wine parameters and sensory analysis data.

Keywords: alcoholic fermentation; Saccharomyces cerevisiae; Starmerella bacillaris; NIR spectroscopy;
Negramaro; Primitivo; Aleatico nero

1. Introduction

In recent years, a steady growth of both wine consumption and trade has been observed worldwide [1].
With wine being a valuable commodity, the wine market is a highly competitive arena, demanding a
challenging search for novel features and improved wine qualities. The composition of a wine resulting
from a spontaneous fermentation of grape juice carried out by indigenous yeasts is difficult to predict since
the interaction of these yeasts belonging to different genera and species during fermentation depends on
several factors. This results in unpredictable changes in the wine quality from one year to another or from
one region to another [2]. Due to the influence of yeast strains on the composition and sensory quality of a
wine, the selection of yeast strains for the alcoholic fermentation step is of paramount importance in any
winemaking. Nowadays, selected pure Saccharomyces cerevisiae starter cultures are commonly employed
to carry out the fermentation process, since they are able to suppress the wild microflora and dominate
the fermentation process [3]. However, a growing number of scientific publications have reported the
use of selected strains of non-Saccharomyces yeasts (pure or in combination), and have analyzed their
influence on the composition and quality of wine on different varieties of grapes, trying to exploit the
relationship between the presence of these strains and the type of wine produced [3,4]. Among the
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non-Saccharomyces yeasts, Starmerella bacillaris has recently received attention since it not only is able to
grow at high concentrations of sugars and low temperatures [5], but also it produces significant amounts
of glycerol and low levels of ethanol, acetic acid, and acetaldehyde [6,7]. Moreover, it has been reported
that this yeast is able to impart novel positive features to the sensory profile of the wine. Indeed, mixed
fermentation has effectively modified the aromatic profiles of wines produced from non-floral grape
varieties like Barbera [8]. Twelve winemakings of well-known red wine grape varieties (i.e., Negramaro,
Primitivo and Aleatico nero) have been performed, employing pure starter cultures of S. cerevisiae and
mixed fermentations with S. bacillaris.

In order to discriminate among wines produced with pure or mixed starter cultures, a number
of chemical analyses are usually needed. Those analyses are time-consuming, require sophisticated
analytical techniques (e.g., HPLC, GC-MS), and are expensive. Near-infrared (NIR) spectroscopy
is a technique already employed in food and beverage analysis to determine several parameters in
a single, rapid, and non-destructive steps. This analytical technique has been successfully applied
to wine analysis for the qualitative and quantitative characterization of its main compounds [9–11].
In this paper, we tested the ability of this technique to discriminate among different wines produced
with pure and mixed fermentation. A large number of organic molecules meet the requirements
for NIR spectroscopic analysis. The vast amount of NIR spectral information often results in very
complex spectra with a large number of overlapping absorption signals. In order to extract information
from those spectra, multivariate techniques are required. Instead of searching for specific compounds
responsible for differences in wine composition in the spectra, we performed a principal component
analysis (PCA) using the NIR spectra as variables. PCA is one of the most popular classification
methods utilized in life sciences. This method is employed to reduce the number of variables (scores)
by capturing variance in the samples. Indeed, significant information from the NIR spectra is retained
in a set of new, orthogonal variables called principal components (PCs), which then are used as novel
axes in the PCA plots [12]. In a PCA plot, it is possible to visualize the most important information
from a given multivariate data set. This analysis allowed us to find sample groupings for samples
from different winemakings, without any a priori knowledge of the differences. The PCA results
have been compared to chemical analysis data of basic wine parameters in order to understand if the
main constituents of wine (e.g., ethanol) were responsible for the differences found in the NIR spectra.
Metabolites responsible for the differentiation were putatively identified using NIR spectra signals,
or regions with high loading onto the PCA axes, attributable to known compounds. The statistical
analysis performed on sensory data confirmed a lack of significant differences for wines which were
not differentiated by NIR analysis.

In this paper, the potential of NIR spectroscopy as a rapid screening technique to discriminate
wines produced with different yeast strains was investigated. The differences in the metabolic profiles
of wines, which were responsible for NIR differentiation, were putatively identified.

2. Materials and Methods

2.1. Grape Characteristics and Winemaking

A total of twelve micro-fermentations of Negramaro, Primitivo and Aleatico nero varieties have
been performed during the production of the 2018 vintage in the Apulia region (Southern Italy).
About 20 kg of bunches per each winemaking were harvested at technical maturity. Two strains of
S. cerevisiae (E16 and E138) and the non-Saccharomyces yeast S. bacillaris FA18 were used. All the yeasts
were kindly provided by the Institut Universitaire de la Vigne et du Vin, University of Burgundy, Dijon,
France. For each variety, two types of winemaking have been performed: the first by inoculating a 50:50
ratio of two strains of S. cerevisiae, the second through a mixed fermentation, i.e., initial inoculation
of the must with S. bacillaris strain, followed after 2 days by inoculation with a 50:50 ratio of the two
strains of S. cerevisiae. During the fermentation process, three fillings were performed manually every
7–8 h during the first 3/4 of the consumption of sugars, and then two fillings every 10–12 h until
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total consumption of the sugars. The temperature was kept constant at 25 ◦C. Finally, musts were
manually pressed in a wine press and stored at 10 ◦C until bottling (two–three days). Each of the three
winemaking procedures was performed in duplicate (samples labeled with A and B), thus for each
winemaking procedure, two bottles have been analyzed. Data obtained with primary methods for
wine’s basic parameters, alcohol content, pH, volatile, and titratable acidity, are shown in Table 1.

Table 1. Wine basic parameters.

Samples Alcohol (%Vol) Volatile Acidity † (g/L) pH Titratable Acidity ‡ (g/L)

Primitivo

E16A 15.4 0.54 ± 0.01 3.10 ± 0.01 7.71 ± 0.03
E16B 15.6 0.42 ± 0.01 3.14 ± 0.02 7.90 ± 0.02

E138A 14.4 0.41 ± 0.00 3.23 ± 0.02 7.5 ± 0.01
E138B 15.3 0.44 ± 0.00 3.17 ± 0.02 7.75 ± 0.02
FA18A 15.1 0.45 ± 0.00 3.20 ± 0.02 7.60 ± 0.02
FA18B 15.3 0.47 ± 0.00 3.29 ± 0.01 7.73 ± 0.05

Negroamaro

E16A 12.5 0.36 ± 0.00 3.36 ± 0.01 6.10 ± 0.02
E16B 12.1 0.35 ± 0.00 3.43 ± 0.01 6.02 ± 0.03

E138A 12.4 0.33 ± 0.00 3.31 ± 0.01 6.06 ± 0.03
E138B 12.6 0.42 ± 0.01 3.27 ± 0.01 6.12 ± 0.05
FA18A 12.2 0.44 ± 0.01 3.37 ± 0.01 6.62 ± 0.03
FA18B 12.3 0.32 ± 0.00 3.32 ± 0.01 6.19 ± 0.00

Aleatico nero

E16A 12.1 0.35 ± 0.00 3.22 ± 0.01 5.59 ± 0.06
E16B 11.8 0.38 ± 0.01 3.28 ± 0.01 5.61 ± 0.03

E138A 11.9 0.36 ± 0.00 3.31 ± 0.01 5.67 ± 0.05
E138B 11.9 0.35 ± 0.00 3.20 ± 0.00 5.50 ± 0.02
FA18A 11.6 0.39 ± 0.01 3.25 ± 0.01 6.15 ± 0.06
FA18B 11.7 0.47 ± 0.02 3.18 ± 0.02 6.21 ± 0.03

† expressed as acetic acid; ‡ expressed as tartaric acid.

2.2. FT-NIR Instrument and Chemometric Analysis

Fourier Transform Near Infrared (FT-NIR) analyses were performed with a Bruker TANGO
FT-NIR spectrometer, and spectra acquisition range was 12,000–3600 cm−1 (8 cm−1 resolution and
64 scans for both background and sample) at a controlled temperature (25 ± 1 ◦C) and constant
humidity. The OPUS/QUANT software (Bruker Optik GmbH, Ettlingen, Germany) version 2.0 was
used for spectral acquisition and chemometric analysis. A blank was measured prior to the acquisition
of each sample (measured three times). Any water present in the samples dominates spectra of
natural products, and for this reason, quantitative analysis often relies on minor changes in spectra [13].
PCA was applied to spectral data, as an exploratory tool, to differentiate wines based on their metabolic
compositions resulting from the different fermentation processes performed. PCA identifies orthogonal
directions of maximum variance in the original dataset in decreasing order and projects the data onto
a lower-dimensionality space formed by a subset of the highest-variance components. The orthogonal
directions are linear combinations of the original variables, and each component explains part of
the total variance of the data [14]. Before the PCA analysis, a mean centering of all the spectra was
performed, and outliers were identified and removed.

Moreover, a PCA was carried out with R Statistical Software (R Core Team (2013), R Foundation
for Statistical Computing, Vienna, Austria), employing the main wine parameters as variables.
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2.3. Sensory Analysis

The panel test (7 healthy subjects, 2 women and 5 men) was composed of already experienced
tasters chosen among the staff of the CREA-VE of Turi. The tasting session was performed following
the ISO indications [15–17]. Prior to the evaluation, five experienced wine judges selected twelve
sensorial descriptors to characterize the wines. Twelve attributes were selected to describe the wines:
visual characteristics (color intensity), odor descriptors (fresh fruits, mature fruits, floral, herbal
and spicy character), and taste and tactile/textural descriptors (acidity, astringency, body, alcohol,
and persistence), together with an overall rating of each wine. The scoring sheets were anchored
with the respective low perception for score 1 and high perception for score 10, and panelists could
choose only integer values [18,19]. The significance of the sensory analysis was assessed performing
the Kruskal-Wallis non-parametric test, followed by the Dunn test as a post hoc test, using a p-value
< 0.05, considering each judge as a replicate. All statistical analyses were performed with R Statistical
Software (R Core Team (2013), R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Basic Parameters and NIR Analysis

Six samples of wine produced with pure or mixed fermentation from each of the three varieties
were analyzed by NIR. In the unprocessed NIR spectra the main wine compounds, i.e., water and
ethanol, dominate the spectrum and often overshadow minor compounds with similar functional
groups, which show peaks in the same regions. Absorption bands with high absorption units (e.g.,
some water signals) are automatically cut out by the instrument. They should not be used since they
are characterized by very small light intensities, and the resulting signals contain more noise [20]. NIR
spectra of fruits, vegetables, and their juices, with a high percentage of water, show absorption bands
related to water around 6800 cm−1 and at 5000 cm−1 [21]. Water is the main molecule responsible for
those signals, but it is not the only one. Other molecules with O-H groups contribute to the same (or
very close) area of the spectrum, e.g., around 5000 cm−1 of glucose and ethanol also show peaks [22].

The grouping in the PCA plot obtained from the spectra of all the three varieties (Figure 1A)
shows that Primitivo samples are grouped on the left side, while it is not possible to separate samples
from the other two varieties. It is clear that samples are grouped by the variety and not by the
different yeasts employed in the winemaking. The loadings (Figure 1B) of this PCA analysis show
how the wavelengths mainly responsible for the variance in the data set are around 7000 cm−1,
5300 cm−1, and 488–4200 cm−1, which correspond respectively to the first overtones of COH groups,
the first overtones of CH2 and CH3 groups, and COH combination (stretching and bending) vibrations.
In the NIR spectra, there was a strong overlap of signals of functional groups belonging to different
molecules. Thus, a specific attribution is not an easy task. Nevertheless, the strong signal around
700 cm−1 can be mainly attributed to OH vibrations of two of the main compounds found in wine,
which are water and ethanol. In the spectra of pure ethanol, it was observed that the absorbance
changes with the ethanol concentration [9]. Indeed, the three wines showed very different ethanol
contents (similar for Negroamaro and Aleatico and higher for Primitivo) which might explain the
grouping in the PCA plot. Clearly, due to this strong difference in one of the main components of
the samples, ascertaining the differences in terms of other (minor) compounds was not possible.
These hypotheses were confirmed by the groupings found in the PCA performed using chemical
analysis data as variables (Figure 2), in which Primitivo samples were grouped together due to their
acidic composition and higher content of ethanol. Indeed, the signals linked to the main acids found in
wine (tartaric, malic, acetic and lactic acid) in a NIR spectrum are too close to those of ethanol, which
overshadows them with its higher content.
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Figure 1. (A) Principal component analysis (PCA) plots of all the samples: Negroamaro pure (in 
blue) and mixed (in cyan), Primitivo pure (in green) and mixed (in gray), Aleatico nero pure (in 
magenta) and mixed (in orange). (B) Loadings: Score one (y-axis) is in blue while score two (x-axis) 
is in red. 

Figure 1. (A) Principal component analysis (PCA) plots of all the samples: Negroamaro pure (in blue)
and mixed (in cyan), Primitivo pure (in green) and mixed (in gray), Aleatico nero pure (in magenta)
and mixed (in orange). (B) Loadings: Score one (y-axis) is in blue while score two (x-axis) is in red.
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Figure 2. PCA plot of all the samples (N—Negroamaro, A—Aleatico and P—Primitivo) with basic 
parameters used as variables: pH, volatile acidity (VA), titratable acidity (TA), and alcohol (EtOH). 
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on its own. The NIR analysis of the Negroamaro samples, with close attention to ethanol content, 
was able to discriminate between the wines obtained with S. cerevisiae and those obtained with non-
Saccharomyces (Figure 3A). The difference between the NIR and chemical PCAs of Negroamaro 
suggest that the variables employed to build the chemical data PCA (Figure 4) were not responsible 
for the grouping found in the NIR PCA. Negroamaro samples have similar ethanol content, thus, 
even if the loadings of NIR PCA are in similar regions of the spectra (Figure 3B), compared to those 
of NIR PCA of all the samples together, the loadings in the regions 6500–7000 cm−1 and 4500–4300 
cm−1 can be attributable to compounds other than ethanol. We attempted an interpretation based on 
the known NIR absorbance signals of metabolites commonly present in wine, focusing only on the 
NIR spectral regions responsible for wine differentiation (the regions with high loadings on PCA 
axes). It has been previously reported that wines from non-Saccharomyces produce different 
metabolites (e.g., are found to be more fruity) or produce them in different concentration (e.g., 
glycerol) [23]. Indeed, in the NIR PCA loadings, important spectral regions are those related to 
glycerol (4400, 5300, 7200 cm−1) [22]. This led us to hypothesize that glycerol content might be one of 
the factors responsible for the differentiation found between pure and mixed fermentation samples.  

Figure 2. PCA plot of all the samples (N—Negroamaro, A—Aleatico and P—Primitivo) with basic
parameters used as variables: pH, volatile acidity (VA), titratable acidity (TA), and alcohol (EtOH).

In order to minimize the influence of ethanol and water, we decided to investigate each variety
on its own. The NIR analysis of the Negroamaro samples, with close attention to ethanol content,
was able to discriminate between the wines obtained with S. cerevisiae and those obtained with
non-Saccharomyces (Figure 3A). The difference between the NIR and chemical PCAs of Negroamaro
suggest that the variables employed to build the chemical data PCA (Figure 4) were not responsible for
the grouping found in the NIR PCA. Negroamaro samples have similar ethanol content, thus, even if
the loadings of NIR PCA are in similar regions of the spectra (Figure 3B), compared to those of NIR
PCA of all the samples together, the loadings in the regions 6500–7000 cm−1 and 4500–4300 cm−1 can
be attributable to compounds other than ethanol. We attempted an interpretation based on the known
NIR absorbance signals of metabolites commonly present in wine, focusing only on the NIR spectral
regions responsible for wine differentiation (the regions with high loadings on PCA axes). It has been
previously reported that wines from non-Saccharomyces produce different metabolites (e.g., are found to
be more fruity) or produce them in different concentration (e.g., glycerol) [23]. Indeed, in the NIR PCA
loadings, important spectral regions are those related to glycerol (4400, 5300, 7200 cm−1) [22]. This led
us to hypothesize that glycerol content might be one of the factors responsible for the differentiation
found between pure and mixed fermentation samples.
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Figure 3. Mono varietal PCA plot of Negroamaro samples from near-infrared spectroscopy (NIR) data;
(A) pure (in blue) and mixed (in cyan) fermentation; (B) PCA loadings.
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For Aleatico nero wines, there is not a clear separation between pure and mixed fermentation 
samples in the PCA plot obtained with NIR data (Figure 5), while in the PCA plot built with 
chemical data, the pure and mixed fermentation samples are clearly separated (Figure 6). Here, 
ethanol content is again not the main variable responsible for sample differentiation. Despite the 
specific nature of compounds responsible for differences among wines, it was not possible to 
discriminate between pure and mixed fermentation wines with NIR spectroscopy. 

Figure 4. Mono varietal PCA plot of Negroamaro (N) wines from chemical analyses.

For Aleatico nero wines, there is not a clear separation between pure and mixed fermentation
samples in the PCA plot obtained with NIR data (Figure 5), while in the PCA plot built with chemical
data, the pure and mixed fermentation samples are clearly separated (Figure 6). Here, ethanol content
is again not the main variable responsible for sample differentiation. Despite the specific nature of
compounds responsible for differences among wines, it was not possible to discriminate between pure
and mixed fermentation wines with NIR spectroscopy.
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Figure 5. Mono varietal PCA plot of Aleatico nero samples from NIR data (A) pure (in magenta) 
and mixed (in orange); (B) PCA loadings. 

Figure 5. Mono varietal PCA plot of Aleatico nero samples from NIR data (A) pure (in magenta) and
mixed (in orange); (B) PCA loadings.
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In both the PCAs of the Primitivo samples, there is not a clear separation between pure and 
mixed fermentation (Figures 7 and 8). Indeed, even considering only the chemical data, there is not 
a net difference among all the monovarietal Primitivo wines. The numerosity of samples is a key 
point in NIR analysis. As for Aleatico nero wine, a larger number of samples could have improved 
the separation among wines and helped to identify differences. In order to understand if these 
results were due to a lack of discriminant capacity of the method employed or rather due to a lack 
of significant differences in wines composition, we investigated the perceived difference among 
pure and mixed fermentation wines by performing a sensory analysis. 

Figure 6. Mono varietal PCA plot of Aleatico nero (A) wines from chemical analyses.

In both the PCAs of the Primitivo samples, there is not a clear separation between pure and mixed
fermentation (Figures 7 and 8). Indeed, even considering only the chemical data, there is not a net
difference among all the monovarietal Primitivo wines. The numerosity of samples is a key point
in NIR analysis. As for Aleatico nero wine, a larger number of samples could have improved the
separation among wines and helped to identify differences. In order to understand if these results were
due to a lack of discriminant capacity of the method employed or rather due to a lack of significant
differences in wines composition, we investigated the perceived difference among pure and mixed
fermentation wines by performing a sensory analysis.
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Figure 7. Mono varietal PCA plot of Primitivo samples from NIR data; (A) pure (in magenta) and 
mixed (in orange); (B) PCA loadings. 

Figure 7. Mono varietal PCA plot of Primitivo samples from NIR data; (A) pure (in magenta) and
mixed (in orange); (B) PCA loadings.
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terms of sensory attributes, therefore this lack of significant differences found by testers could 
explain the small or non-existent differentiation found with NIR analysis for those wines. 
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are not significantly different from each other (Kruskal-Wallis test p ≤ 0.05 and Dunn’s post-hoc 
test). 

Figure 8. Mono varietal PCA plot of Primitivo (P) wines from chemical analyses.

3.2. Sensory Analysis

The sensory analysis performed (Table 2) showed significant differences only for fruity fresh, fruity
mature, and appreciation descriptors. These results show how the sensory profiles of Aleatico nero
wines obtained with pure or mixed fermentations do not differ substantially. A possible explanation
for this lack of appreciable differences in the sensory profiles could be ascribed to the small or subtle
influence of the S. bacillaris in the fermentation process, which was probably lead by the S. cerevisiae
strains. Wines with different chemical compositions should differ significantly in terms of sensory
attributes, therefore this lack of significant differences found by testers could explain the small or
non-existent differentiation found with NIR analysis for those wines.

Table 2. Sensory analysis results (cv. Aleatico nero).

Attributes FA18A E138B E16B E16A E138A FA18B Significance

Colour Intensity 6 7 6 4 6 6 n.s.
Fruity (Fresh) 1b 4ab 4ab 6ab 4ab 0b **

Fruity (Mature) 1ab 3ab 2a 3ab 3a 0b *
Floral 1 2 2 2 1 0 n.s.
Herbal 1 2 1 2 1 0 n.s.
Spicy 1 4 3 2 2 0 n.s.

Acidity 7 7 7 6 6 7 n.s.
Astringency 7 5 4 4 5 3 n.s.

Body 4 4 4 5 5 2 n.s.
Alcohol 6 6 6 6 7 4 n.s.

Persistency 4 5 4 5 4 4 n.s.
Appreciation 2bc 5a 4ab 6a 4a 0c ***

n.s.: not significant; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. Values bearing the same letter in the same row are not
significantly different from each other (Kruskal-Wallis test p ≤ 0.05 and Dunn’s post-hoc test).
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4. Discussion

The need to accurately predict the results of the fermentation process has led to the progressive
abandonment of spontaneous fermentations in favor of the use of selected S. cervisiae strains.
This choice has led to a flattening of the taste of wines over time. This problem can be overcome by using
selected non-Saccharomyces yeast strains that are able to give particular aromas to the wine. Among
non-Saccharomyces yeasts, the S. bacillaris, which has been isolated from grapes, winery environments,
and during spontaneous fermentations in different countries in the world, looks like a very promising
candidate. Indeed, it shows many positive characteristics, such as low ethanol and high glycerol
production and fructophily (i.e., ability to utilize fructose preferentially when fructose and glucose are
available in the environment). Therefore, its use together with selected S. cerevisiae in mixed culture
fermentations has been proposed to increase wine characteristics appreciated by consumers [24].
In the present work twelve winemakings of well-known wine grape varieties, namely Negramaro,
Primitivo, and Aleatico nero, have been performed with starter cultures of S. cerevisiae, both pure or
in combination with S. bacillaris yeast. The wines produced have been analyzed for basic chemical
parameters and by NIR spectroscopy. The comparison of these analyses showed how the difference
among wines is strongly influenced by compounds with higher concentrations, such as ethanol. NIR
spectroscopy was able to detect differences in the metabolomic profile of wines with similar ethanol
content, which could be attributed to the different winemaking methods used (i.e., pure or mixed
fermentation). A direct investigation of the NIR spectra regions responsible for the differentiation of
wines, with close ethanol content, allowed for the attribution of the differentiation to compounds such
as glycerol.

It was found that NIR analysis did not effectively discriminate between wines obtained with
pure or mixed fermentations for all the varieties tested. In order to understand if this was due to
a lack of discriminant capacity of the NIR analysis or to a lack of significant differences in wine
composition, a sensory analysis was performed. Sensory analysis is commonly employed to check
for differences in wine composition. With this type of analysis, it is possible to evaluate similarities
and differences among wines which are actually linked to the actual chemical composition of each
sample [25,26]. We found that when NIR technique was not able to discriminate among wines obtained
with different fermentation procedures, the sensory analysis performed on the same set of wines
confirmed that those samples were not perceived as different. The lack of significant differences
in terms of compounds responsible for the perceived sensory attributes tested confirms the small
differentiation found with NIR analysis for those wines. The alcoholic fermentation of grape musts
is a rather complex process that involves the sequential development of microorganisms and their
interaction. In the mixed fermentation winemaking, the fermentation process was probably led by
S. cerevisiae, with small or no appreciable influence of the non-Saccharomyces yeast.

Instead of performing a quantitative analysis, which requires a large number of samples to be
analyzed by primary techniques and several steps of optimization which are necessary to build a
calibration curve, in this work we tested the ability of NIR technique to discriminate among samples
without any a priori knowledge of their composition. Samples which did not differ by NIR analysis
also did not show differences by sensory analysis. The preliminary results obtained from this study
show how it is possible, with a fast and economic procedure, to check if there are differences in the final
products obtained with different winemaking procedures. If the results of a preliminary NIR analysis
step are not positive, the efforts (and costs) related to further analyses can be saved. This is especially
useful when dealing with a large number of samples since it avoids the need for more detailed analysis,
saving both money and time.
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