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Abstract: In the present study, a numerical bifurcation analysis of a PTC thermistor problem is carried
out, considering a realistic heat dissipation mechanism due to conduction, nonlinear temperature-
dependent natural convection, and radiation. The electric conductivity is modeled as a strongly
nonlinear and smooth function of the temperature between two limiting values, based on measure-
ments. The temperature field has been resolved for both cases were either the current or the voltage
(nonlocal problem) is the controlling parameter. With the aid of an efficient continuation algorithm,
multiple steady-state solutions that do not depend on the external circuit have been identified as a
result of the inherent nonlinearities. The analysis reveals that the conduction–convection parameter
and the type of the imposed boundary conditions have a profound effect on the solution structure
and the temperature profiles. For the case of current control, depending on the boundary conditions,
a complex and interesting multiplicity pattern appears either as a series of nested cusp points or as
enclosed branches emanating from pitchfork bifurcation points. The stability analysis reveals that
when the device edges are insulated, only the uniform solutions are stable, namely, one “cold” and
one “hot”. A key feature of the “hot” state is that the corresponding temperature is proportional to
the input power and its magnitude could be one or even two orders of magnitude higher than the
“cold” one. Therefore, the change over from the “cold” to the “hot” state induces a thermal shock and
could perhaps be the reason for the mechanical failure (delamination fracture) of PTC thermistors.

Keywords: PTC thermistor; delamination fracture; Joule heating; nonlocal problem; bifurcation
analysis; BaTiO3 and titanates

1. Introduction

Thermistors are thermally sensitive resistors and have either a negative (NTC) or
positive (PTC) resistance/temperature coefficient. We will only discuss the latter, albeit
certain similarities and differences, especially for the flash sintering phenomenon, will be
addressed in the appropriate sections. Its characteristic feature is the strongly dependent
electric conductivity. PTCs are manufactured from silicon, barium, lead, and strontium
titanates with the addition of yttrium, manganese, tantalium, and silica [1–5]. PTC ther-
mistors are widely used as current-limiting devices, that is, as non-destructible (resettable)
fuses for electric circuit protection, sensing excessive currents. They can also be encountered
as a micro self-heating thermostat for microelectronic, biomedical, and chemical applica-
tions. Common geometrical configurations are the washer, the disk, and the rod type [1–3].
Although PTCs and in general electroceramics are, in principle, loaded electrically, a sig-
nificant number of mechanical failures are recorded annually. This may be explained on
the basis of the Joule self-heating effect, which causes temperature differences, thermal
strains, and excessive thermo-mechanical stresses that may cause the failure of the device.
As the current technological trends point towards greater device miniaturization while
operating at higher power densities, there is an increasing demand for a thorough analysis
and understanding of the underlying coupled electrothermal phenomena in electroceramic
devices (Dewitte et al. [6], Supancic [7], Danzer et al. [8]).
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The thermistor, as a coupled thermo-electric problem, has attracted significant atten-
tion. An early result (1900) described by Diesselhorst [9] for the steady-state problem shows
that the temperature may be expressed as a function of the electric potential provided
that certain types of boundary conditions are imposed. Cimatti [10] extended the result of
Diesselhorst to obtain existence and uniqueness conditions for the steady-state problem.
Further results on existence and uniqueness were obtained by Cimatti [11], Cimatti and
Prodi [12], Xie and Allegretto [13], and Antontsev and Chipot [14]. Bahadir [15,16] and
Çatal [17] employed finite element numerical techniques to solve the thermistor problem
assuming a step electric conductivity function. Kutluay et al. [18] obtained a heat balance
integral solution of the same problem considering a modified electric conductivity function.
Ammi and Torres [19] numerically solved a nonlocal parabolic equation in time and space
domains resulting from the thermistor problem. Golosnoy and Sykulski [20] compared
various computational techniques for coupled nonlinear thermo-electric problems. The
thermistor problem was used as a test case with an electric conductivity being a nonlinear
function of the temperature and the electric field intensity. Karpov [21] demonstrated the
bistability conditions, the switching autowave properties, and the emergence of dissipa-
tive structures of essentially a thermistor problem under current control. Apart from the
temperature-dependent electric conductivity, convective heat dissipation with a constant
heat transfer coefficient over the lateral surface was assumed. It is worth noting that the
thermistor problem is closely associated with the flash sintering of ceramics [22] such as,
for instance, yttria-stabilized zirconia, magnesia-doped alumina, and strontium titanate,
among others [23]. The essence of the process is that when an operating parameter such as
the furnace temperature exceeds the corresponding limit point, established by the applied
voltage that separates the stable from the unstable steady states—the Joule heating greatly
exceeds the heat dissipation mechanism due to radiation and the temperature increases
significantly. The process controller is then switched from voltage to current control to
maintain the temperature within the specified limits [24,25].

From the literature review above, it appears that the thermistor problem has been
studied with various assumptions and/or restrictions related primarily to the form of
electrical conductivity, the heat dissipation mechanism, and, in certain cases, with the
influence of the external electric circuit. The latter is also associated with the existence of
multiple steady-state solutions, up to three, as determined from the number of intersection
points between the current–voltage characteristic curves of the external (linear) circuit
and the thermistor (Fowler et al. [26], Howison et al. [27], Zhou and Westbrook [28],
Cimatti [29]). The aim of the present study is to provide a reasonable explanation for
the most common reason PTC thermistors fail—namely, delamination fracture due to
excessive thermal loading (shock). To this end, a one-dimensional PTC device model based
on nonlinear electric resistivity combined with a distributed heat dissipation mechanism
due to conduction, nonlinear temperature-dependent natural convection, and radiation
has been developed. The problem formulated in this way admits multiple steady-state
solutions that do not depend on the external circuit. The numerical bifurcation analysis
reveals that the PTC thermistor is a bistable system that can operate between a “cold” and
a “hot” stable state. The changeover from the “cold” to the “hot” state induces a kind of
thermal shock that could be a reason for potential failure, since the “hot” state is associated
with a very high temperature. This hypothesis is further supported by a similar behavior
that is encountered in other bistable systems such as superconductors and boiling wires.
Depending on the boundary conditions, a complex and interesting multiplicity pattern
appears either as a series of nested cusp points or as enclosed branches emanating from
pitchfork bifurcation points.

2. Analysis
2.1. Energy Balance

Consider a horizontal cylindrical segment of a conductor of uniform material density
γ with constant thermal conductivity k. The segment has a diameter D and length L, as
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schematically shown in Figure 1. Heat is being dissipated by conduction through the core
of the device and by natural convection and radiation through the lateral surface area,
in an ambient environment of constant temperature T∞. An energy balance along the
longitudinal direction X yields the following partial differential equation for the device
temperature T:

γC
∂T
∂t

=
∂

∂X

(
k

∂T
∂X

)
− P

A

[
hc(T − T∞) + εσ(T4 − T4

∞)
]
+ EJ. (1)
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Figure 1. Conductor geometry and energy balance.

Here, C is the specific heat capacity, A is the cross-sectional area, P is the perimeter, hc is
the convective heat transfer coefficient, ε is the surface emissivity, σ is the Stefan–Boltzmann
constant, E is the electric field intensity, and J is the current density through the device.
Considering a constant (dc) current flowing through the device, the electric field intensity
is related to the current density through Ohm’s law, E = ρ̂(T)J (Metaxas [30], Lupi [31],
Lupi et al. [32]). Thus, when the current is controlled, Equation (1) reads:

γC
∂T
∂t

=
∂

∂X

(
k

∂T
∂X

)
− P

A

[
hc(T − T∞) + εσ(T4 − T4

∞)
]
+ ρ̂J2. (2)

On the other hand, in many practical applications, the applied voltage across the
device is the controlling parameter. This may be taken into account by introducing the
electric potential Φ, as in [33]:

E = −dΦ
dX

= ρ̂J. (3)

Integrating the above relationship and considering that the current remains constant,
albeit still unknown, yields:

J
∫ L

0
ρ̂(T)dX = −[Φ(L)−Φ(0)] = V, (4)
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where V is the voltage drop across the device, as shown in Figure 1. Substituting the current
density J from Equation (4) into Equation (2), the energy balance for voltage control takes
the form:

γC
∂T
∂t

=
∂

∂X

(
k

∂T
∂X

)
− P

A

[
hc(T − T∞) + εσ(T4 − T4

∞)
]
+

ρ̂V2[∫ L
0 ρ̂(T)dX

]2 . (5)

Compared with the current control problem, this is a nonlocal problem, since the
solution depends on the resistivity integral over the device.

2.2. Electric Resistivity

A characteristic feature of a ceramic PTC device is the strongly nonlinear dependence
of its resistivity with respect to temperature. Driven by a transition of the ferroelectric
PTC material, the resistance increases several orders of magnitude in a relatively small
temperature interval—for instance, between 100 ◦C and 200 ◦C. The same smooth curve
with continuous derivatives with respect to temperature for the subsequent numerical
bifurcation analysis has been adopted from Karpov [21], which represents a barium titanate
(BaTiO3)-based device:

ρ̂(T) = ρ̂l +
1

(ρ̂h − ρ̂l)
−1 + exp[−0.12(T − 95)]

, (6)

where ρ̂l = 2 Ωm and ρ̂h = 104 Ωm are the asymptotic resistivity values corresponding to
the low and high operating temperatures, respectively. The temperature of 95 ◦C signifies
the onset of the transition from the low to the high resistivity value as the contribution
of the exponential term in Equation (6) becomes significant. The form of Equation (6)
is supported by a significant volume of measurements, as, for instance, those reported
by Brzozowski and Castro [34], Wang et al. [35], Wang et al. [36], Luo et al. [37], Takeda
et al. [38], and Rowlands and Vaidhyanathan [39].

2.3. Heat Transfer Model

The heat generated in the device due to the current flow (Metaxas [30], Lupi [31],
Lupi et al. [32]) is dissipated to the surrounding environment through natural convection
and radiation exchange. For the circumferential average Nusselt number Nu, the correlation
of Churchill and Chu [40] is employed:

Nu = 0.36 + 0.518
Ra1/4

f (Pr)
, f (Pr) =

[
1 +

(
0.559

Pr

)9/16
]4/9

, (7)

where f (Pr) is a weak function of the Prandtl number Pr. Equation (7) covers a very wide
range of Rayleigh numbers, namely, in the range from 10−6 to 109, while it maintains a
simple and compact mathematical form. Equation (7) is applied locally in the evaluation
of the convective heat transfer coefficient along the device axis (see Figure 1), in a similar
manner as it was utilized by Faghri and Sparrow [41]. Consequently, the local Rayleigh
number, Ra, is evaluated from the local temperature difference as:

Ra = gβD3[T(X)− T∞]/αν, (8)

where g is the acceleration due to gravity, β is the thermal expansivity, D is the device
diameter, α is the thermal diffusivity, and ν is the kinematic viscosity.
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2.4. Boundary Conditions: Problems P1 and P2

As will be described in the next paragraphs, the boundary conditions have a pro-
found effect on the bifurcation structure in general and on the temperature distribution in
particular. Thus, for problem P1, the edges of the device are considered adiabatic:

∂T
∂X

∣∣∣∣
X=0

=
∂T
∂X

∣∣∣∣
X=L

= 0, (9)

whereas for problem P2, the imposed symmetrical boundary conditions are:

T|X=L = Te,
∂T
∂X

∣∣∣∣
X=L/2

= 0 (10)

2.5. Electrothermal Model in Dimensionless Form

Introducing dimensionless variables

x = X/L, τ = αt/L2, Θ = T/T∞, ρ = ρ̂/ρ̂ref, v = V/Vref, (11)

the temperature distribution along the device takes the form of

∂Θ
∂τ

=
∂2Θ
∂x2 − u2

[
Nu(Θ− 1) + Ch(Θ

4 − 1)− j2ρ
]
, (12)

for current control and

∂Θ
∂τ

=
∂2Θ
∂x2 − u2

Nu(Θ− 1) + Ch(Θ
4 − 1)−

(
v

u
∫ 1

0 ρdx

)2

ρ

, (13)

for voltage control. In the above equations, u is the conduction–convection parameter
(CCP), which is extensively used in conjugate heat transfer and electro-thermal problems
associated with superconductors and metallic conductors as well [42–44], and is defined as:

u2 =
hrefL2

k(A/P)
, (14)

where the reference heat transfer coefficient href is conveniently defined through the Nusselt
number:

Nu =
hc

k∞/D
=

hc

href
.

In terms of the dimensionless variables defined above, the local Rayleigh number
becomes:

Ra = Ra∞(Θ− 1), Ra∞ =
gβD3T∞

αν
.

The current density parameter is related to the current density as below:

j2 =
J2(A/P)

T∞

(
ρ̂

h

)
ref

, (15)

and Ch is the ratio of the radiative heat transfer coefficient to the reference heat transfer co-
efficient

Ch =
εσT3

∞
href

=
hr

href
. (16)
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Under steady-state conditions, the partial differential Equation (12) reduces to a two-
point boundary value problem for current control:

Θ′′ − u2
[
Nu(Θ− 1) + Ch(Θ

4 − 1)− j2ρ
]
= 0 0 < x < 1, (17)

and, similarly, Equation (13) for the voltage control:

Θ′′ − u2

[
Nu(Θ− 1) + Ch(Θ

4 − 1)−
(

v
uρ

)2
ρ

]
= 0 0 < x < 1, (18)

where

ρ =
∫ 1

0
ρdx.

The voltage–current relationship becomes

uj
∫ 1

0
ρ(Θ)dx− v = 0, (19)

and the boundary conditions are

Θ′(x = 0) = Θ′(x = 1) = 0, (20)

for problem P1 and
Θ(x = 1) = Θe, Θ′(x = 0.5) = 0 (21)

for problem P2. Convenient reference values have been adopted for the electric resistivity
ρ̂ref = ρ̂h and the applied voltage V2

ref = kT∞ρ̂ref

2.6. Stability

The stability of a certain steady-state Θs(x) to small perturbations ϑ(x) i.e.,

Θ(x, τ) = Θs(x) + ϑ(x)eλτ , (22)

is determined by the eigenvalues λ of the corresponding Sturm–Liouville problem, after
substituting Equation (22) into the original partial differential equation, Equation (12):

ϑ′′ −
[
u2∆QΘ + λ

]
ϑ = 0, 0 < x < 1, (23)

where
∆QΘ =

∂

∂Θ

[
Nu(Θ− 1) + Ch(Θ

4 − 1)− j2ρ(Θ)
]

Θ=Θs
.

The corresponding boundary conditions for problem P1 are ϑ′(0) = ϑ′(1) = 0 and for
problem P2 are ϑ′(0.5) = ϑ(1) = 0. During branch tracing, for every steady state that has
been calculated from Equation (12), the associated eigenvalue problem, Equation (23), is
subsequently numerically solved and a sufficient number of eigenvalues is determined. Sta-
ble solutions are characterized by negative eigenvalues, whereas positive ones correspond
to unstable temperature distributions.

3. Results and Discussion

The second-order, two-point boundary value problem described by Equation (17) for
current control and Equation (18) for voltage control are transformed into a system of
first-order equations through the transformation Θ1 = Θ, Θ2 = Θ′ and solved numerically.
In order to ensure an accurate and reliable numerical solution, two different methods have
been employed, resulting in identical results under the strict tolerances imposed. The first
one utilizes a multi-shooting Runge–Kutta formula pair of order 8(7) (Hairer et al. [45])
and the second one uses a spline collocation method described by Ascher et al. [46].
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Continuation along the various branches has been carried out along the lines suggested by
Seydel [47]. For the computation of the singular points, an extended problem is formed
from the partial derivatives of Equations (17) and (18) with respect to the parameters,
according to Witmer et al. [48].

Before we analyze the complete numerical solution, it is instructive to first discuss
the uniform solutions of Equation (17), which reduces to an algebraic one for a constant
temperature profile:

Nu(Θ− 1) + Ch(Θ
4 − 1)− j2ρ(Θ) = 0. (24)

A geometrical (graphical) solution is depicted in Figure 2, where the heat generation
and the heat dissipation curves are plotted for a variety of current parameters j2 and
reference Rayleigh numbers Ra∞ (Figure 2a). In Figure 2b, the effect of radiation through
Ch on the heat rejection rate is demonstrated. Depending on the combination of j2, Ra∞
and Ch, up to three solutions of Equation (24) may be obtained from the number of the
intersection points between the heat generation and the heat dissipation curves, as shown
in Figure 3. Three uniform solutions exist: two are stable, namely, the “cold” and the “hot”,
whereas the third one at an intermediate temperature is unstable. From this simplified
analysis, a few important observations may be pointed out. The “cold” temperature
remains practically constant and very close to the ambient temperature for a wide range of
current densities. On the other hand, the “hot” temperature appears proportional to the
input power (i.e., ∼ j2), since at this temperature range, the electric resistivity approaches
its maximum value, i.e., ρ ∼ 1. Consequently, the “hot” temperature can increase one and
even two orders of magnitude compared to the “cold” one. Thus, when a current instability
or disturbance gradually propagates through the circuit and the limit point to right is
exceeded, as schematically shown in Figure 3, then the “hot” state prevails, and depending
on the operating conditions, a significantly higher temperature will be established even if
the radiation contribution is significant. This is also known as a hysteresis loop, and under
these circumstances, it closely resembles thermal shock. However, this is not a thermal
runaway, as is the case during flash sintering, since the temperature could be excessive,
but it is still bounded. Therefore, it is reasonable to assume that the bistability (“hot”–
“cold”) and the associated hysteresis loop could be a potential reason for the mechanical
failure (i.e., delamination fracture; Dewitte et al. [6], Supancic [7], Danzer et al. [8]) of PTC
thermistors. In practice, however, the conditions prevailing could worsen either due to the
dense packing of the electronic devices or because of poor cooling. This inevitably will
shift the “hot” temperature even higher.
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3.1. Current Control Problem P1

Interestingly, when the conduction term and the associated conduction–convection
parameter u is taken into consideration, a far more complicated solution structure and
multiplicity pattern emerges, as shown in Figure 4, where the edge temperature Θe = Θ(0)
is plotted against j2. For lower values of the conduction–convection parameter (u = 0.5),
the three uniform solutions of Equation (24) are recovered (Figure 4a). As u increases, the
number of solutions increases as well. Five solutions exist for u = 2 in Figure 4b, seven
solutions for u = 3 in Figure 4c, and eleven for u = 5 in Figure 4d. The corresponding
temperature profiles are shown in Figure 5a–d. In every case, the solution structure consists
of the three uniform solutions: one stable “cold”, one stable “hot”, and one unstable at an
intermediate temperature. Additional unstable solutions emerge in the form of standing
waves as u gradually increases. It is worth pointing out that the solution obtained by
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imposing the boundary conditions in Equation (20) have two salient features. The first
one is that as long as the nonuniform solutions are unstable, only the uniform ones are
physically encountered, with the “cold” one being far more preferable from the operating
point of view, since it results in the reduced thermal stresses and thermal loading (reduced
fracture probability) of the device, as already explained in the previous paragraph. The
second feature is a direct consequence of the first one, since the stable temperature profiles
may be obtained from the solution of the much simpler algebraic problem in Equation (24)
instead of solving the complete boundary value problem of Equation (17). Hence, the results
concerning the bistability and the magnitude of the “hot” temperature previously obtained
from the lumped (zero-dimensional) model are verified from the one-dimensional model as
well. The hypothesis put forward of the induced thermal shock during the changeover from
the “cold” to the “hot” state is further supported from the similar behavior encountered in
other bistable systems, as in, for example, superconductors, when, for instance, a current
lead feeding a superconductor magnet made from a high temperature superconductor
switches from the superconducting (“cold”) state to the normal one (“hot”), say because
of a loss of coolant flow accident, and then the temperature level could be in excess of
3000 K (see Krikkis [44] for a numerical calculation and Dresner [49] in paragraphs 10.3 to
10.8 for an analytical one under certain simplifying assumptions). The reason for such a
similarity is the form of the electric resistivity, where, within a short temperature range,
the resistivity changes by several orders of magnitude. The same bistability and hysteresis
loops occur in boiling systems through the nonlinear and nonmonotonic boiling curve
describing the three boiling modes, the stable nucleate and film, and the unstable transition
one. When the wall temperature exceeds the critical heat flux, the system experiences a
jump-like behavior, as shown in Figure 3, from the nucleate (“cold”) regime to the film
(“hot”) regime and vice versa. The latter entails a significantly higher temperature (Zhukov
and Barelko [50], Krikkis [51]). This nonlinear behavior is well understood and documented
both theoretically and experimentally.
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3.2. Problem P2

For the case where the edge temperature is fixed, the bifurcation analysis reveals
a rich and interesting pattern, as shown in Figure 6. Selecting the center temperature
Θc = Θ(0.5) as the bifurcation parameter, the projection of the limit points on the (Θc, j2)
plane forms a pattern of nested cusp points (C1C2C3 . . .) in Figure 6a, where the regions
with unique, three, five, and seven (and so on) solutions are designated accordingly. For
a better understanding of the complexity of the solution structure and the clarity of the
exposition, a geometrical perspective of the nested cusps is depicted in Figure 7. Again,
the CCP has a profound effect on the solution structure, since the number of steady states
calculated depends on its magnitude. Indeed, starting from u = 0.5 and a unique solution
in Figure 6b, three solutions emerge for u = 1 in Figure 6c, five for u = 1.5 in Figure 6d, and
seven in Figure 6e for u = 2. The temperature profiles for problem P2 are symmetrical with
respect to the center of the device. For the unique solution calculated in Figure 8a, the center
is maintained at a lower temperature, while the temperature increases towards the edge
(Θc < Θe). When the CCP increases and three solutions are present, as in Figure 8b, for the
same edge temperature Θe, two stable solutions exist: one “cold” (Θc < Θe) and one “hot”
(Θc > Θe). In contrast to the “cold” solution described earlier, the peak temperature for the
“hot” one now appears around the center and gradually decreases to Θe. As CCP further
increases, more solutions emerge: five in Figure 8c for u = 1.5 and seven in Figure 8d when
u = 2. The stable ones remain as the “cold” and “hot” set described earlier, whereas the
ones appearing as standing waves are unstable. In other words, the bistability is retained
as the CCP increases and several additional solutions emerge. Furthermore, as u increases,
a temperature plateau around the center is formed and the temperature gradient along the
device, although it cannot be entirely eliminated as was the case in problem P1, is definitely
reduced. It is worth pointing out that a multiplicity structure consisting of nested cusps
is not a unique feature of this particular electrothermal problem. Aris [52] was the first to
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publish imbedded cusps in the study of first-order reactions in a spherical pellet. The same
solution structure emerged in the analysis of another chemical reacting system, namely, an
isothermal Langmuir–Hinshelwood reaction in a cylindrical or spherical pellet (Witmer
et al. [53]). Another example of similar multiplicity behavior is encountered when the three
boiling modes (nucleate, transition, and film) are excited by a uniform heat-generating
source along a non-isothermal extended surface immersed in a boiling liquid (Krikkis [51]).
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Figure 6. Current control problem P2. (a) Projection of the singular points on the (j2, Θc) plane.
(b) One solution, u = 0.5, (c) three solutions, u = 1.0, (d) five solutions, u = 1.5, and (e) seven
solutions, u = 2.0.

3.3. Voltage Control Problems P1 and P2

For the range of parameters considered when the voltage is the controlling parameter,
the nonlocal problem in Equation (18) admits up to three solutions, as shown from the
multiplicity pattern on the (v, Θe) plane in Figure 9 and from current–voltage characteristic
in Figure 10 for problem P1. Two singular points exist and the temperature remains
bounded for both problems P1 and P2. Clearly, this a key feature of PTC resistivity. In
comparison, the multiplicity pattern for an NTC resistivity characteristic is simpler as it
is restricted to a single limit point, but it is associated with an unbounded temperature
(thermal runaway) once the voltage exceeds this limit point, leading to the so-called flash
sintering phenomenon. Moreover, from a practical point of view, Figure 10 demonstrates
the device potential for use as a current limiter, since the current density decreases with
the applied voltage both in the regions with a unique solution and within the multiplicity
region. When the heat transfer from the device edges (problem P2) is taken into account,
again, up to three solutions exist, but the solution structure is qualitatively different. A
bifurcation diagram on the (j, Θe) plane with the applied voltage v as a parameter is
depicted in Figure 11. Along a line of constant voltage, the edge temperature shows only a
weak dependence on the applied current, and in effect, the temperature is mostly affected
by the voltage. Projecting the limit points of Figure 11 onto the (v, j), plane we obtain
the multiplicity region of the voltage–current characteristic shown in Figure 12. For this
case, the multiplicity domain is confined between two cusp points, C1 and C2, respectively.
For a better understanding of the solution structure, a geometrical representation of the
associated cusp point is shown in Figure 13.
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4. Conclusions and Future Work

An electrothermal model for a barium titanate-based PTC thermistor has been set up,
featuring a nonlinear heat rejection mechanism consisting of natural convection combined
with radiation through the device’s lateral surface. A smooth and strongly temperature-
dependent electric conductivity function based on experimental data has been adopted.
The temperature field has been resolved for both cases, where either the current or the
voltage (nonlocal problem) is the controlling parameter. With the aid of an efficient contin-
uation algorithm, multiple steady-state solutions that do not depend on the external circuit
have been identified as a result of the inherent nonlinearities. Important findings are the
profound effect of the conduction–convection parameter and of the boundary conditions
on the multiplicity structure.

For the current control case, regardless of the type of boundary conditions imposed, the
number of multiple steady states depends on the magnitude of the conduction–convection
parameter, as, for instance, up to eleven solutions have been calculated when the edges
of the device are insulated (problem P1) and up to seven when the edge temperature
is being fixed (problem P2). The stability analysis reveals that for problem P1, only the
uniform solutions are stable, namely, one “cold” and one “hot”. A key feature of this
bistability is that the “cold” solution remains constant and close to the ambient temperature
for a wide range of applied currents, but on the other hand, the “hot” steady state is
proportional to the input power and the temperature is substantially higher. Therefore, a
change in the operating point from the “cold” to the “hot” state closely resembles thermal
shock, and could perhaps be a reason for the mechanical failure (delamination fracture)
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of PTC thermistors. Therefore, the control and effective reduction of the heat transmitted
through the edges results in the reduced thermal loading of the device both in the steady-
state operation and during transients, since the temperature gradient across the device
vanishes. On the other hand, when the voltage is controlled, the multiple solutions are
reduced to three, while the maximum temperature appears lower compared with the
current controlled case.

As for future work, it would be interesting to extend the analysis to 2D/3D geome-
tries and include alternating voltage and current as the controlling parameters. Another
research direction could be the potential multiplicity features of ceramic devices with
more complicated electrical resistivity functions resembling a combination of positive–
negative temperature coefficients, as, for instance, those reported by Takeda et al. [38] and
Fang et al. [54]. This particular form of the resistivity admits self-sustained oscillations
(Hopf bifurcation), introducing a challenging dynamic behavior, as shown by Elmer [55].
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Nomenclature

A Cross-sectional area (m2)
C specific heat capacity (J/(kgK))
D device diameter (m)
E electric field intensity (V/m)
f function of Prandtl number in Equation (7) (-)
g acceleration due to gravity (-)
hc convective heat transfer coefficient (W/(m2K))
hr (εσT3

∞) radiative heat transfer coefficient (W/(m2K))
j current density parameter (-)
J current density (A/m2)
k thermal conductivity (W/(mK))
L device length (m)
Nu Nusselt number, Equation (7) (-)
P perimetry (m)
Pr Prandtl number, Equation (7) (-)
Ra Rayleigh number, Equation (8) (-)
t time (s)
T temperature (K)
u conduction–convection parameter (-)
v (V/Vref) dimensionless voltage drop (-)
V voltage drop (V)
x (X/L) dimensionless distance (-)
X longitudinal distance along device (m)

Greek Symbols

α thermal diffusivity (m2/s)
β thermal expansivity (K−1)
γ material density (kg/m3)
ε emissivity (-)
Θ (T/T∞) dimensionless temperature (-)
λ eigenvalue (-)
ν kinematic viscosity (m2/s)
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ρ (ρ̂/ρ̂ref) reduced electric resistivity (-)
ρ̂ electric resistivity (Ω m)
σ Stefan–Boltzmann constant (Wm−2K−4)
τ (αt/L2) dimensionless time (-)
Φ electric potential (V)

Subscripts

b position at x = 1
c position at x = 0.5
e position at x = 0
ref reference value
s steady state
∞ ambient environment

Superscripts

(′) derivative with respect to x

Abbreviations

CCP conduction–convection parameter
NTC negative temperature coefficient
PTC positive temperature coefficient
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