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Abstract: Reference intervals play an important role in medicine, for instance, for the interpretation
of blood test results. They are defined as the central 95% values of a healthy population and are
often stratified by sex and age. In recent years, so-called indirect methods for the computation and
validation of reference intervals have gained importance. Indirect methods use all values from a
laboratory, including the pathological cases, and try to identify the healthy sub-population in the
mixture of values. This is only possible under certain model assumptions, i.e., that the majority of
the values represent non-pathological values and that the non-pathological values follow a normal
distribution after a suitable transformation, commonly a Box–Cox transformation, rendering the
parameter λ of the Box–Cox transformation as a nuisance parameter for the estimation of the reference
interval. Although indirect methods put high effort on the estimation of λ, they come to very different
estimates for λ, even though the estimated reference intervals are quite coherent. Our theoretical
considerations and Monte-Carlo simulations show that overestimating λ can lead to intolerable
deviations of the reference interval estimates, whereas λ = 0 produces usually acceptable estimates.
For λ close to 1, its estimate has limited influence on the estimate for the reference interval, and with
reasonable sample sizes, the uncertainty for the λ-estimate remains quite high.

Keywords: reference interval; Box–Cox transformation; Monte-Carlo simulation; nuisance parameter;
confidence interval

1. Introduction

Reference intervals are among the most important interpretation aids in laboratory
medicine. By definition, they comprise the central 95 percent of a presumably healthy refer-
ence population [1] and thus indicate the probability of whether an observed laboratory
result is to be classified as “normal” or “pathological”.

In the so-called direct methods for determining a reference interval, one performs
a sufficient number of measurements on a presumably healthy reference collective and
determines the quantiles 0.025 and 0.975 either non-parametrically or parametrically under
the assumption of a certain distribution (e.g., Gaussian). More significant in medical
practice are indirect estimation methods based on routinely collected laboratory results
from laboratory information systems [2]. Since these always represent mixtures of normal
and pathological values, the estimation of the respective quantiles is only possible under
the assumption of an underlying distribution model for the sub-collective of the healthy
reference population contained therein.

For practical reasons, some authors rely on only one or two different distribution
models, e.g., lognormal distribution for all kinds of quantitative results [3] or a choice
between Gaussian for symmetrically distributed and lognormal for right-skewed data [4].
However, in the recent literature there is a trend to assume a continuum of distributions of
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different skewnesses, which can be represented by a normal distribution after the Box–Cox
transformation of the original data using a lambda exponent between 0 and 1 or slightly
beyond these limits [5–9].

The motivation to perform this study results from the observation that the application
of different published algorithms to identical laboratory data [10] provides a very weak
correlation between λ estimates (see Figure 1). Hence, the question arises whether state-of-
the-art procedures are suitable at all to optimise λ values under the specific conditions of
indirect reference interval estimation. Our results seem to indicate that the reliability of
λ estimates is poor even in ideal theoretical distributions and close to pure guesswork in
mixed populations including pathological values as one would find them in real data sets
from laboratory information systems.
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Figure 1. Estimates of the parameter λ for the Box–Cox transformation for 66 reference intervals for
two different algorithms, called TMC (Truncated Minimum Chi-square, see [8]) and TML (Truncated
Maximum Likelihood, see [5]). Each point represents the two λ values estimated by TMC and TML.
In the ideal case, the estimates should be on the diagonal shown as a bold line. The estimated values
have been taken from the supplementary Table 3, published in [10]. It should be noted that more
than one-third of the values are concentrated at the origin of the coordinate system, i.e., for λ = 0 the
methods show a certain coherence.

The Pearson, Spearman and Kendall correlations between the two methods compared
in Figure 1 are 0.60, 0.51 and 0.46, respectively. Comparing other methods yields similar
poor correlations, although the estimated reference intervals are in most cases very similar.
A similar result was observed by Meyer et al. (see Figure 6 in [11]).

The aim of this paper is not to provide a new indirect method for the estimation of
reference intervals but to investigate whether it is meaningful to incorporate an arbitrary
Box–Cox transformation involving the estimation of its parameter λ. We do not question
the assumption that the values from the healthy sub-population originate from a Box–Cox
transformed (truncated) normal distribution. This assumption is common to all state-of-
the-art indirect methods for the estimation of reference intervals. It might be advantageous
to replace the (truncated) normal distribution by another family of distributions, e.g., the
Weibull distribution, yielding only positive values, or to replace the Box–Cox transformation
with a Yeo–Johnson transformation [12] that can also handle negative values. We leave
such ideas to further research in the future. Our main aim is to demonstrate that the
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standard indirect methods for reference interval estimation pay a high price in terms of
computational costs to estimate the parameter λ of an arbitrary Box–Cox transformation
without a significant benefit. The estimation of λ alone does not lead to high computational
effort. But the combination of sorting out the pathological values and finding the optimal
value for λ simultaneously requires iterative methods and high computational costs.

In the following, we analyse the influence and uncertainty of the nuisance parameter
λ in the context of reference interval estimation based on theoretical considerations and
simulations. We deliberately restrict our investigations to the ideal context without patho-
logical values. If the estimation of λ incorporates high uncertainty and the influence of
a wrong estimation of λ is also quite limited in this ideal setting, then it is obvious that
estimating λ in the more complex situation including pathological values is an academic
task with little improvement for the results.

Section 2 provides a formal definition of the statistical problem that we consider
here. Section 3 investigates the effect of a wrong estimate for λ on the reference interval
estimate for infinite sample sizes-based Monte-Carlo simulations. Finite sample sizes are
considered to quantify the uncertainty involved in the estimation of λ in Section 4. In the
final discussion, we review our results and conclude that an exact estimation of the nuisance
parameter λ is of limited benefit for reference intervals because it is afflicted with a high
uncertainty, whereas a wrong estimation does not have a strong influence on the estimate
for the reference interval.

2. Problem Formulation

Indirect methods for the estimation of reference intervals in laboratory medicine
aim to estimate the 2.5% and the 97.5% quantiles of the healthy sub-population. It is not
known which of the values belong to the healthy sub-population. Formally speaking,
we have a sample of non-negative values from a mixture of distributions and we want
to estimate the 2.5% and the 97.5% quantiles of one specific distribution in this mixture.
It is obvious that—without further assumptions—this is an ill-defined task. Therefore,
it is usually assumed that the specific distribution of interest represents the majority of
values and follows (approximately) a normal distribution after a Box–Cox transformation.
The challenge is then to estimate the parameter λ and simultaneously the expected value
and the standard deviation of the normal distribution, which corresponds to the subset
of values from the healthy population after the Box–Cox transformation. We argue that a
reliable estimation of λ is more or less impossible in a realistic setting. In order to show
this, we even assume that there are no pathological values, i.e., all values originate from
the healthy population.

In mathematical terms, the problem is defined as follows. A sample is generated from
a normal distribution N(µ, σ2) truncated at 0, representing the healthy population after the
Box–Cox transformation

tλ(x) =

{
xλ−1

λ if λ ̸= 0,
log(x) if λ = 0.

(1)

with parameter λ. The truncation at 0 is necessary because the Box–Cox transformation
can only be applied to positive values. It is assumed that the truncation is more or less
negligible, i.e., the parameters µ and σ of the normal distribution lead to a very small
probability for negative values for the normal distribution. In any case, the 2.5% quantile
must be above 0. In principle, one could use the Yeo–Johnson transformation [12]. But this
does not seem to be a common practice in laboratory medicine.
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Let X ∼ N(µ, σ2, 0, ∞), i.e., X is a random variable following a normal distribution
with expected value µ and variance σ2, which is left-truncated at 0. We observe the random
variable t−1

λ (X) where t−1
λ is the inverse Box–Cox transformation

t−1
λ (x) =

{
(λx + 1)

1
λ if λ ̸= 0,

ex if λ = 0.
(2)

The parameters λ, µ and σ are not known. Our aim is to estimate the 2.5% and the
97.5% quantiles of t−1

λ (X).
It should be emphasised again that we consider the ideal case where we observe

only values from the healthy population without any pathological values, so that we do
not consider the more complex case of a mixture of distributions in which the healthy
sub-population is only one part of the mixture model.

The aim of this paper is to show the following in a realistic setting:

• The estimation of λ will involve very high uncertainty;
• But this uncertainty has limited influence on the estimation of the 2.5% and the

97.5% quantiles.

3. Theoretical Analysis of Wrong Estimation of the Nuisance Parameter λ

We first analyse the influence of a wrong estimation of the parameter λ on the es-
timations of the 2.5% and the 97.5% quantiles. We assume that we observe the random
variable t−1

λ (X) where X ∼ N(µ, σ2, 0, ∞) and we have a possibly wrong estimate λ̂ for
the parameter λ. From this estimate, we assume that the “true” underlying truncated
normal distribution is tλ̂

(
t−1
λ (X)

)
for which we use estimates of the expected value and

the standard deviation to estimate its 2.5% and 97.5% quantiles. These quantiles are then
transformed by the inverse Box–Cox transformation t−1

λ̂
to obtain estimates for the limits of

the reference intervals. Figure 2 illustrates the situation we consider.

Figure 2. Scenario for the analysis of the influence of the wrong estimation of the parameter λ for
infinite sample sizes.

In this section, it is assumed that the estimations for µ and σ are based on a (infinite)
sample from the distribution tλ̂

(
t−1
λ (X)

)
where X ∼ N(µ, σ2, 0, ∞). Because the corre-

sponding integrals have no obvious solutions, we use a sample size of n = 100,000 to
estimate µ and σ by the corresponding mean and sample standard deviation of the sample,
i.e., we generated 100,000 values from a truncated normal distribution with expected value
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µ and standard deviation σ and applied the transformation tλ̂

(
t−1
λ

)
to obtain the theoretical

“wrong” estimates µ̂ and σ̂.
We vary the true value for λ between 0 and 1. Without a loss of generality, we assume

that the lower limit of the reference interval is at 1. This can always be achieved by
changing or scaling the measurement units. The upper limit of the reference interval is
varied between slightly above 1 and up to 50. In order to quantify the error of the estimated
reference interval caused by the wrong estimate λ̂ for λ, we measure the difference in
terms of the zlog value that was introduced in [13]. The zlog value is a transformation
based on a logarithmic transformation and a normalisation such that logarithms of the
reference interval limits are mapped to the 2.5% and the 97.5% quantiles of a standard
normal distribution. Thus, the reference interval is transformed to the range [−1.96, 1.96]:

zlogl,u(x) =
log(x)− log(l)+log(u)

2
log(u)− log(l)

(
Φ−1(0.975)− Φ−1(0.025)

)
(3)

where Φ is the cumulative distribution function of the standard normal distribution.
Figure 3 shows the absolute zlog deviation for the lower (a) and upper (b) limit of the

reference interval depending on λ and the upper limit of the reference interval when the
lower limit is fixed at 1.
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Figure 3. Absolute zlog deviation for the lower (a) and upper (b) limit of the reference interval
depending on λ and the upper limit of the reference interval when the lower limit is fixed at 1.

It can be seen that the effect of the wrong λ estimation to the estimate of the upper
limit of the reference interval is quite limited, never exceeding the value of 0.5. The effect
on the lower limit of the reference interval is high for λ values close to zero and a large
upper limit of the reference interval.

Figure 4 zooms into Figure 3, showing the results only for a maximum upper limit
of the reference interval of 30. It can be seen that for λ > 0.2, a wrong estimate of λ has
very little influence on the estimate of the upper limit of the reference interval and only
when λ < 0.2 there is a non-negligible effect on the estimate for the lower limit of the
reference interval.

In order to further analyse the influence of a wrong estimate for λ on the estimate of the
reference interval, we consider the observed distribution t−1

λ (X) where X ∼ N(5, 1, 0, ∞).
Figure 5a shows the estimate of the upper limit for λ = 0 and wrong estimate λ̂ between 0
and 1. The dotted line is the true upper limit of the reference interval. The curve indicates
the estimated upper limit of the reference interval depending on λ̂. Figure 5b shows the
same for λ = 0.1.
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Figure 4. Absolute zlog deviation for the lower (a) and upper (b) limit of the reference interval
depending on λ and the upper limit of the reference interval—here bounded to 30—when the lower
limit is fixed at 1.
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Figure 5. Dotted lines: True upper limit of the reference interval for the distribution t−1
λ (X) where

X ∼ N(5, 1, 0, ∞) for λ = 0 (a) and λ = 0.1 (b). The curves show the estimated upper limit of the
reference interval depending on the wrong estimate λ̂ for λ.

Figure 6b shows the same as Figure 5 for λ ∈ {0.2, 0.3, 0.4, 0.5, 0.7, 1}. Figure 6a shows
the same for the lower limit of the reference interval including the values 0 and 0.1 for λ.

Figures 5 and 6 indicate again that a wrong estimate for the parameter λ will not affect
the estimate for the reference interval drastically unless λ is close to 0, i.e., the Box–Cox
transformation should be close to the logarithmic transformation. For λ close to 1, even a
completely wrong estimate shows little effect on the estimates for the reference intervals.
For smaller values of λ, an overestimation of λ implies high errors for the reference interval
estimate. Figures 5 and 6 might even suggest that always choosing λ ≈ 0 leads to small
errors with respect to the reference interval.
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Figure 6. Dotted lines: True lower (a) and upper (b) limit of the reference interval for the distribution
t−1
λ (X) where X ∼ N(5, 1, 0, ∞) for different values of λ. The curves show the estimated lower (a)

and upper (b) limit of the reference interval depending on the wrong estimate λ̂ for λ.

The observation is supported by investigating critical values of λ more closely where
the logarithmic transformation could lead to unacceptable results for the reference interval.
In [14], an equivalence test was proposed to check whether the deviation of an estimated
reference interval from a given reference interval can be considered to be relevant in
medical terms.

Figure 7 zooms into Figure 6 for λ = 0.4 and shows the ranges for which the equiva-
lence test according to [14] would not reject the corresponding estimated reference limits as
black lines. For both limits of the reference interval, the logarithmic transformation yields
acceptable deviations in terms of the equivalence test, although the upper reference limit is
almost at the boundary of the acceptance range. However, if λ is overestimated, i.e., for
λ > 0.7, the lower limit of the reference interval can no longer be accepted.

Not shown here are the similar results that λ = 0.5 yields.
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Figure 7. Blue dotted lines: True lower (a) and upper (b) limit of the reference interval for the
distribution t−1

0.4 (X) where X ∼ N(5, 1, 0, ∞). The curves show the estimated lower (a) and upper (b)
limit of the reference interval depending on the wrong estimate λ̂ for λ = 0.4. The black lines indicate
the ranges for which the tolerance test according to [14] would not reject the corresponding estimated
reference limits.
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4. Influence of the Sample Size

After having shown in the previous section that a correct estimation of λ is only
important for the estimate of the reference interval when λ is close to 0, this section
investigates the uncertainty of the λ estimate depending on the sample size.

We use the same observed distribution as in the previous section, i.e., t−1
λ (X) where

X ∼ N(5, 1, 0, ∞) for λ ∈ {0, 0.25, 0.5, 0.75, 1}. The sample sizes are varied between 100 and
1000. For each λ value and each sample size, we executed 10,000 Monte-Carlo simulations
to obtain estimates for λ and the reference interval. For estimating λ, three methods
were used: the probability plot correlation coefficient (PPCC), the Shapiro–Wilk test and
a maximum likelihood estimator (log-likelihood). Based on the estimated λ, the data
are Box–Cox transformed, the mean µ̂ and standard deviation σ̂ of the transformed data
are computed and the 2.5% and the 97.5% quantiles of the normal distribution N(µ̂, σ̂2)
are determined. The estimates for the reference interval are obtained by applying the
corresponding inverse Box–Cox transformation to the quantiles. In addition, the reference
interval is also estimated directly based on the sample’s corresponding quantiles.

Figure 8 shows the results for λ = 0 for the lower (a) and upper (b) limit of the
reference interval. The sample size is indicated on the x-axis, and the values for the limit of
the reference interval are on the y-axis. The grey line indicates the true limit of the reference
interval. The coloured curves show the 95% confidence interval for the estimate of the limit
of the reference interval based on 10,000 Monte-Carlo simulations for the above-mentioned
estimation methods. The black curve represents the 95% confidence interval when the
limit of the reference interval is estimated directly by the corresponding sample quantile.
The three different methods for λ estimation—the coloured lines—lead to almost exactly
the same confidence intervals for the reference interval. The confidence intervals based on
the sample quantiles are broader, which is no surprise because they do not make use of
the fact that the data originate from a normal distribution to which an inverse Box–Cox
transformation was applied.
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Figure 8. For each sample size, 10,000 samples from the distribution t−1
0 (X) where X ∼ N(5, 1, 0, ∞)

were taken to compute the 95% Monte-Carlo confidence intervals for the lower (a) and upper (b)
limit of the reference interval depending on the sample size. The grey line indicates the true limit
of the reference interval. The coloured lines use estimations for the reference intervals based on an
estimate of λ. The black line is the 95% confidence interval when the 2.5% and the 97.5% sample
quantiles are directly used for the reference interval.

Figures 9 and 10 show the same results as in Figure 8 for the values λ = 0.5 and λ = 1,
respectively. Comparing the confidence intervals in Figures 8–10 to the errors caused by a
wrong estimation of λ in Figures 5 and 6, one can see that they are in a similar range.
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Figure 9. The same as in Figure 8 (a) and (b), except that λ = 0.5 is chosen.
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Figure 10. The same as in Figure 8 (a) and (b), except that λ = 1 is chosen.

Figure 11 shows the 95% confidence intervals for the parameter λ ∈ {0, 0.25, 0.5, 0.75, 1}
depending on the sample size. For λ ∈ {0.5, 0.75, 1}, the confidence intervals cover almost
the full interval [0, 1] for the small samples sizes and make it impossible to obtain a reliable
estimate for λ in these cases. The maximum likelihood method was used here for estimating
λ. But the other mentioned methods yield very similar results.

Finally, we also apply one of the established indirect methods for reference interval
estimation to the ideal simulated data to demonstrate that the estimation of λ is a daunting
task when λ is close to 1. For each of the sample sizes n ∈ {100, 200, . . . , 900, 1000}, we
have carried out 100 simulations, i.e., generated data 100 times from a truncated normal
distribution X ∼ N(5, 1, 0, ∞) with a Box–Cox transformation with λ = 1. Figure 12 shows
the box plots for the 100 estimates for each of the simulated sample sizes. The estimates
were computed using the indirect method RefineR [9].

It is obvious that the methods are close to random guessing for λ estimation in the
case of smaller sample sizes, and even for larger sample sizes, the estimates for λ carry
a high uncertainty. It also obvious that the methods seems to have a bias, systematically
underestimating λ. Although this is not a desirable property in terms of statistics, it seems
to be beneficial for the estimation of the reference intervals because we have seen that over-
estimating λ can lead to quite wrong reference interval estimates, whereas underestimating
λ still produces reasonable reference interval estimates.
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Figure 11. Dotted lines correspond to the mean of the estimates for λ ∈ {0, 0.25, 0.5, 0.75, 1} based on
10,000 Monte-Carlo simulations. The shaded areas and the lines are based on the 95% confidence
intervals for λ.
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Figure 12. Box plots for the estimates λ̂ of the indirect method RefineR for 100 simulations for
different samples n from the distribution X ∼ N(5, 1, 0, ∞) with a Box–Cox transformation with
λ = 1 (blue line).
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Figure 13a,b show the corresponding box plots for the estimates of the lower and
upper limit of the reference interval, respectively. The method seems to have a bias tending
to too narrow reference intervals. The bias decreases with increasing sample size.
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Figure 13. Box plots for the estimates of lower (a) and upper (b) reference interval limit of the indirect
method RefineR for 100 simulations for different samples n from the distribution X ∼ N(5, 1, 0, ∞)

with a Box–Cox transformation with λ = 1. The red and blue lines indicate the true lower (blue line)
and true upper limit (red line) of the reference interval.

Figure 10 shows much better results than RefineR in Figure 13. This is, however,
an unfair comparison because RefineR was designed to deal with mixed populations
including pathological values, whereas the methods in Figure 10 only work under the ideal
assumption of an exclusively healthy population.

It is notable that a wrong estimate for λ does not show a high correlation with wrong
estimates for the reference limits as Figure 14 indicates, where the absolute errors for the λ
estimates are shown on the x-axis and the absolute errors for the estimates of the reference
interval limits are shown on the y-axes.
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Figure 14. RefineR’s absolute errors of the λ estimate and the lower (a) and upper (b) reference
interval limit for sample size n = 300.

Other indirect methods yield similar results as RefineR for the simulated ideal data.
The results are therefore not shown here.
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5. Discussion and Conclusions

The advantage of indirect methods for reference interval estimation and verification is
that they do not require a careful selection and examination of a healthy sub-population
and they avoid ethical considerations, i.e., they rely on measurements of blood samples that
were needed and taken for other reasons [2]. This is especially important when reference
intervals for young children are considered where ethical reasons make it difficult to collect
larger amounts of blood samples just for reference interval validation. The price that needs
to be paid is that additional distributional assumptions cannot be avoided in order to at
least roughly identify the healthy sub-population among a mixed sample from healthy and
pathological cases. The usual assumptions are that the healthy sub-population contributes
the majority of values and follows a normal distribution after a “suitable” transformation.
The overlap of the healthy sub-population with “pathological distributions” should also
be limited [15]. It is generally agreed that some kind of Box–Cox transformation should
be applied to the data. The crucial question that was discussed in this paper is whether
the full range of the parameter λ for the Box–Cox transformation should be considered
or whether it might be sufficient to restrict the choice between λ = 0 and λ = 1, meaning
that the values of the healthy sub-population follow a lognormal or a normal distribution.
The advantage of this restriction would also be the avoidance of the otherwise required
truncation for arbitrary Box–Cox transformations.

In order to keep our analysis simple, we have restricted our investigations to the
idealised case where we only deal with the healthy sub-population. If arbitrary Box–Cox
transformations turn out to be of limited benefit even in this ideal case, the advantage
of arbitrary Box–Cox transformation in the much more complicated setting of mixed
populations might be questionable. Similar weak correlations between lambda values
estimated with different methods on identical data sets have also been observed by [11].
More general transformations, e.g., Box–Cox transformations with an additional shift
parameter as mentioned in [10], make the situation even more difficult and lead to less
interpretable results.

Our analyses have shown that a wrong estimate for λ has very limited influence on
the resulting estimate for the reference interval when λ is greater than 0.6. For smaller
λ values, it is important to not overestimate λ. Otherwise, the upper reference limit will
be too low. An underestimation of λ by λ̂ = 0 leads to tolerable errors for the reference
interval in terms of an equivalence test described in [14].

Another result of our analyses is that at least for sample sizes clearly below 1000,
the uncertainty for the estimation of λ remains relatively high so that a reliable estimate
cannot be expected. A minimal sample size of 1000 has also been mentioned in [16].

Taking these results together, it might be sufficient to just consider the two options
λ = 0 and λ = 1. This would also lead to a significant speed-up of the often very
slow algorithms for indirect reference interval estimation because these algorithm try to
estimate λ, the healthy sub-population and its parameters at the same time, involving long
iterative procedures.
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