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Abstract: Linear models, seasonal autoregressive integrated moving average (SARIMA) models,
and state-space models have been widely adopted to model and forecast economic data. While
modeling using linear models and SARIMA models is well established in the literature, modeling
using state-space models has been extended with the proposal of alternative estimation methods
to the maximum likelihood. However, maximum likelihood estimation assumes, as a rule, that
the errors are normal. This paper suggests implementing the bootstrap methodology, utilizing the
model’s innovation representation, to derive distribution-free estimates—both point and interval—of
the parameters in the time-varying state-space model. Additionally, it aims to estimate the standard
errors of these parameters through the bootstrap methodology. The simulation study demonstrated
that the distribution-free estimation, coupled with the bootstrap methodology, yields point forecasts
with a lower mean-squared error, particularly for small time series or when dealing with smaller
values of the autoregressive parameter in the state equation of state-space models. In this context,
distribution-free estimation with the bootstrap methodology serves as an alternative to maximum
likelihood estimation, eliminating the need for distributional assumptions. The application of this
methodology to real data showed that it performed well when compared to the usual maximum
likelihood estimation and even produced prediction intervals with a similar amplitude for the same
level of confidence without any distributional assumptions about the errors.

Keywords: bootstrap; distribution-free estimation; economic data; forecasting; state-space modeling;
time series analysis

1. Introduction

The analysis and forecasting of time series play a pivotal role in the economic context,
providing valuable tools for understanding and anticipating trends and variations in
economic indicators over time [1,2]. Time series refer to sets of observations ordered
chronologically, such as financial data, industrial production, exchange rates, and various
other economic factors. This statistical approach allows economists and financial analysts to
unravel patterns, seasonality, and underlying behaviors within the data, aiding in informed
decision-making, strategic planning, and the identification of opportunities and risks.

Time series modeling and forecasting using linear models and seasonal autoregres-
sive integrated moving average (SARIMA) models offer distinct advantages in handling
complex temporal data [3]. Linear models provide simplicity and transparency in under-
standing the linear relationships between variables over time. They are well-suited for
capturing trends and straightforward relationships, making them a valuable tool for initial
exploration. Linear models offer interpretability, making it easier to identify how changes
in one variable affect others. However, they may struggle with capturing nonlinear patterns
and seasonality, which are often present in economic and financial data. On the other hand,
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SARIMA models are specifically designed to handle time series data with seasonality and
autocorrelation. SARIMA models combine autoregressive, differencing, and moving aver-
age components, making them adaptable to a wide range of data patterns. This flexibility
allows them to provide more-accurate and -reliable forecasts, making them a preferred
choice in many economic forecasting scenarios. While linear models offer simplicity and
transparency, SARIMA models excel in capturing complex temporal patterns, especially in
economic and financial data. Selecting between these modeling techniques depends on the
specific characteristics of the data and the level of accuracy required for forecasting and
decision-making in the economic context [4].

Preferring state-space models over linear models and SARIMA models offers several
advantages, particularly when dealing with complex and dynamic time series data. State-
space models provide a more-flexible framework that can capture both linear and nonlinear
relationships in the data. They provide a unified way to represent and analyze time
series data, making them suitable for a wide range of applications. State-space models
can handle hidden or unobservable states and capture irregular patterns, making them
versatile in modeling economic and financial data [5,6]. Furthermore, state-space models
are well suited to handling missing or irregularly sampled data, a common issue in real-
world economic and financial datasets. They offer the capability to incorporate exogenous
variables, which can be crucial for improving the accuracy of forecasts and enhancing the
understanding of causal relationships in complex economic systems. State-space models
also facilitate Bayesian inference, allowing for a probabilistic approach to modeling and
forecasting. This probabilistic nature provides not only point estimates, but also uncertainty
quantification, which is valuable for risk assessment and decision-making. State-space
models offer greater flexibility, robustness, and adaptability when dealing with complex
time series data, especially in scenarios where linear models and SARIMA models may not
adequately capture the underlying dynamics.

State-space models have a versatile structure that allows them to model a time series
with the aim of forecasting it. In this context, exponential smoothing methods can be con-
sidered in the state-space formulation [7,8] or even from a data assimilation perspective [9].

Estimating the parameters of state-space models through the maximum likelihood
encounters several significant numerical challenges. This arises from the intrinsic com-
plexity of these models, which often include nonlinear components, noisy observations,
and unobservable latent states. Here are some common numerical challenges associated
with this process. The nonlinearity of the log-likelihood function makes the likelihood
optimization a computationally intensive task. Finding the optimal solution may require
advanced numerical optimization algorithms, such as the Newton–Raphson method or
Monte Carlo algorithms. In some cases, optimization algorithms may not converge on
a viable solution or may get stuck in local minima, resulting in inaccurate or unfeasible
estimates. The convergence of optimization algorithms can be highly sensitive to the initial
parameter values. Finding an appropriate set of initial values is often a crucial step in
successfully estimating the parameters. Real data often contain noise and measurement
errors. This can affect the accuracy of parameter estimation, making it necessary to consider
robust techniques for dealing with imperfect data. In some models, there may be identifia-
bility problems, in which multiple sets of parameters produce similar results. This makes
parameter estimation challenging, since there may not be a single well-defined solution.

In this context, the estimation of distribution-free parameters in state-space models
is a valuable approach that does not rely on specific assumptions about the underlying
data distribution. This method, often referred to as nonparametric or distribution-free
estimation, is particularly useful when the true data distribution is unknown or complex.
Reference [10] proposed to combine the Stochastic Expectation–Maximization (SEM) al-
gorithm and Sequential Monte Carlo (SMC) approaches for non-parametric estimation
in state-space models. In distribution-free parameter estimation for state-space models,
the emphasis is on estimating the system’s hidden states and parameters in a way that
does not assume a specific probability distribution for the observations. This flexibility
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is advantageous when dealing with real-world data that may exhibit non-standard or
heavy-tailed behavior. Common techniques for distribution-free parameter estimation in
state-space models include nonparametric methods such as kernel density estimation, local
polynomial regression, or bootstrapping. These methods focus on data-driven approaches
to estimate parameters and states, making them less sensitive to distributional assumptions.

The distribution-free approach is especially valuable when dealing with financial
and economic time series data, where data characteristics can be challenging to model
with traditional parametric assumptions. By allowing for more flexibility and adaptability,
distribution-free estimation methods offer a robust way to capture complex dynamics
and dependencies in time series data, making them a valuable tool in econometrics and
quantitative finance. Distribution-free parameter estimation has been considered in time
series modeling in various contexts (see, for example, [11,12]). Reference [13] proposed that
estimators widen the scope of the application of the generalized method of moments to
some heteroscedastic state-space models, as in the case of state-space models with varying
coefficients. These estimators were extended to multivariate models in [14]. However, no
asymptotic distributions have been determined that allow for standard errors or confidence
intervals to be obtained for the estimates of these estimators.

This study proposes using the bootstrap methodology to obtain both point and interval
estimates and the standard errors of these estimates. Bootstrapping is a technique used in
this type of inference when the distributional assumptions are not guaranteed or the exact
or asymptotic distribution of the estimators is not known [15]. The bootstrap technique
has already been applied in the particular case of estimating the parameters of state-space
models, either considering the normality of the errors [16] or as an approach for state-space
models where the bootstrapping is used as a diagnostic tool [17]. However, this paper
proposes the adoption of the bootstrap methodology to obtain inferential properties of the
distribution-free estimators proposed in [13,14].

The modeling and forecasting will be illustrated using the Manufacturing PMI time
series, which is a monthly economic indicator for the United States released by the Institute
for Supply Management (ISM), a non-governmental and non-profit organization established
in 1915. This index is constructed through surveys of purchasing managers at more than
300 industrial companies. It is a key indicator for assessing and monitoring the development
of the American economy [18].

This study proposes employing distribution-free estimators to estimate the unknown
parameters in the state-space model enhanced by the bootstrap methodology. This approach
enables the derivation of bootstrap point estimates and confidence intervals. The proposed
method outperformed the SARIMA time series modeling and demonstrated favorable
results compared to the maximum likelihood estimation within the state-space framework.
An additional advantage is that distribution-free estimators do not rely on distributional
assumptions for the associated errors.

This paper is organized as follows. Section 2 introduces the materials and methods:
time series modeling via SARIMA and state-space models and the parameter estimation
considering both the maximum likelihood and distribution-free estimation. For estimation
with distribution-free estimators, the bootstrap-based approach to obtaining both point
and interval estimates of the parameters is presented. The final part of this section presents
the design and results of the simulation study. Section 3 describes the database used in
the application to real data, the modeling of real data, and the discussion of the results.
Section 4 presents the main conclusions of this work.

2. Materials and Methods
2.1. SARIMA Modeling

Let Yt be a time series. In seasonal time series, it is expected that the seasonal compo-
nent is related in some way to the non-seasonal components. In other words, if neighboring
observations in a time series, Yt, Yt−1, Yt−2 . . ., are related, there is a probability that obser-
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vations spaced by s time units, Yt, Yt−s, Yt−2s, . . ., are also related. Seasonal differencing is a
technique applied to capture this relationship. Seasonal differencing of order 1 is given by

∇sYt = Yt − Yt−s = (1 − Bs)Yt,

where B is the lag operator. This seasonal differencing subtracts the current observation
from the observation that occurred s time units ago, highlighting seasonal variations in
the series. This technique is particularly useful when the series exhibits repetitive periodic
behavior. Similarly, seasonal differencing can be applied multiple times, leading to the
definition of a seasonal differencing operator of order D:

∇D
s Yt = (1 − Bs)DYt,

where D is an integer greater than or equal to 1. This is useful for dealing with more-
complex seasonal patterns and highlighting higher-order seasonal variations.

A time series process Yt is considered a seasonal autoregressive integrated moving
average (SARIMA) process denoted as SARIMA (p, d, q) (P, D, Q)s when it satisfies the
SARIMA equation:

Φp(B)NP(Bs)∇d∇D
s Yt = Θq(B)HQ(Bs)ϵt,

where Φp(B), NP(Bs), Θq(B), and HQ(Bs) are polynomials associated with the autoregres-
sive and moving average terms and d and D are the orders of differencing for the regular
and seasonal components, respectively.

SARIMA models are best suited to time series with well-defined seasonal behavior [8,19].

2.2. State-Space Modeling

Linear state-space models can be viewed as an extension of multiple linear regression
models, providing a powerful framework for modeling time series data with additional
dynamics and unobservable components.

In a multiple linear regression, we seek to explain the variation in a dependent variable
(the response) as a linear combination of several independent variables (the predictors).
The relationship is expressed as Y = βX + ε, where Y is the response, X represents the
predictors, β is the vector of coefficients, and ε represents the error term.

Linear state-space models take this idea a step further by considering that the observed
data not only depend on observable predictors, but also on unobservable state variables.
These state variables capture hidden dynamics in the data that evolve over time. The
state-space model can be expressed as

Yt = Wtβt + et

βt = µ + Φ(βt−1 − µ) + εt

Here, Yt is the observed data, Wt represents the observed predictors, and βt is the
vector of unobservable state variables. The matrix Φ captures the transition of the state
variables over time. This formulation extends the linear regression framework to account
for temporal dependencies and latent states.

In essence, linear state-space models encompass the concept of multiple linear regres-
sion by considering it as a special case where there are no unobservable state variables βt
and the relationship between Yt and X is purely linear. However, they go beyond simple
regression by allowing for time-evolving relationships, dynamics, and noise, making them
suitable for modeling complex time series data, including financial markets, economics, and
more. By incorporating latent state variables, these models can capture hidden patterns and
dynamics, enhancing our ability to understand and forecast time-dependent phenomena.

The state-space model has the following assumptions:

• Wt is a p × m matrix;
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• et is a p × 1 vector of independent and identically distributed errors following, in
general, a multivariate normal distribution with a zero mean and a variance-covariance
matrix H, et ∼ Np(0, H);

• Φ is an m × m matrix known as the autoregressive matrix;
• εt is an m × 1 vector of independent and identically distributed errors following, in

general, a multivariate normal distribution with a zero mean and a covariance matrix
Q, εt ∼ Np(0, Q).

The mixed-effects models defined by the observation and state equations allow for
the establishment of various models to handle missing or omitted data. They also enable
the definition of models with fixed or random effects (which can be time-invariant or
time-varying).

2.2.1. Predicting and Forecasting with the Kalman Filter

The Kalman filter (KF) is a recursive algorithm used in MEE to obtain optimal estimates
and predictions for the unobserved state vector βt. The KF equations form a system that
obtains linear projections at each time instant t. In this way, linear estimators with the
lowest mean-squared error are calculated. The KF also provides 1-step predictions for the
vectors of the observed variables.

Let βt|t−1 be the estimator of βt with the smallest mean-squared error based on the
information available up to time t − 1, representing the vector of observations Ỹt−1 =

(Y1, Y2, . . . , Yt−1), i.e., βt|t−1 = E
[

βt|Ỹt−1

]
with Pt|t−1 being an m × m matrix (covariance

matrix) representing the mean-squared error:

Pt|t−1 = E[(βt − βt|t−1)(βt − βt|t−1)
′].

Consider that βt|t = E[βt|Ỹt] and Pt|t = E[(βt − βt|t)(βt − βt|t)
′|Ỹt]. The prediction of

Yt, updated up to time t − 1, known as the prediction equation, is given by

Yt|t−1 = E[Yt|Ỹt−1] = Wtβt|t−1.

At the moment when the observation Yt is obtained at time t, the mean-squared error
and the respective update of the prediction of the state vector βt can be expressed as

βt|t = βt|t−1 + Kt(Yt − Yt|t−1)

with the mean-squared error given by Pt|t = [I − KtWt]Pt|t−1. Let Kt be the Kalman gain; it
is an m × p matrix, and I is an identity matrix of order m, defined as

Kt = Pt|t−1W ′
t [WtPt|t−1W ′

t + H]−1; t = 1, . . . , n.

It is possible to obtain a prediction for the state vector at time t + 1 based on all the
available information up to time t + 1. The prediction can be expressed as

βt+1|t = µ + Φ(βt|t − µ),

with mean-squared error Pt+1|t = ΦPt|tΦ′ + Q.
However, it is necessary to define β1|0 and P1|0 to initiate the recursive process.

Knowing that the vector βt is a stationary process with mean µ and a covariance ma-
trix Σ = E([βt − µ)(βt − µ)′], the process begins with the prediction of β1. In the absence of
any information, the mean value is β1|0 = µ, and the matrix P1|0 is equal to the covariance
matrix of the state vector βt, P1|0 = Σ.

2.2.2. Confidence Intervals for 1-Step Forecasts

In some cases, point estimation is not sufficient to quantify uncertainty regarding a
prediction. Confidence intervals provide a solution to this uncertainty, as the future is
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indeed unknown, and the predictions are also uncertain. Therefore, interval estimation
allows quantifying the uncertainty associated with point predictions. Based on the co-
variance matrix of the prediction error, Σt|t−1 = WtPt|t−1W ′

t + H, it allows estimating the
one-step-ahead prediction error. To justify the interval estimation of univariate prediction,
it is necessary for the fitted model to describe a time series, and its assumptions must
be valid.

The statistic used to compute a univariate prediction confidence interval is as follows:

Yt − Yt|t−1√
Σt|t−1

∼ N(0, 1).

In a confidence interval, z corresponds to a quantile of the standard normal distri-
bution, and 1 − α corresponds to the confidence level of the interval. The interval is
obtained as

P

−z1− α
2
<

Yt − Yt|t−1√
Σt|t−1

< z1− α
2

 = 1 − α

so that
I(1−α)100% =

[
Yt|t−1 − z1− α

2

√
Σt|t−1, Yt|t−1 + z1− α

2

√
Σt|t−1

]
.

2.3. Parameters Estimation

The parameters in state-space models, including transition matrices, covariances, and
observation matrices, govern the behavior and structure of the underlying system, and the
KF may not produce the optimum predictions [20]. Without precise parameter estimates,
the model may not reflect the true dynamics of the system, leading to unreliable forecasts
and inferences. Therefore, parameter estimation plays a fundamental role in ensuring that
state-space models provide valuable insights and predictions for real-world applications.

2.3.1. Gaussian Likelihood Estimation

For the Gaussian maximum likelihood (MLE), the goal is to maximize the log-likelihood
based on observations Y1, Y2, . . . , Yn considering that the initial state β1 follows a normal
distribution. In state-space models, the MLE is performed based on the conditional prob-
abilities by innovations ηt|t−1 = Yt − Wtβt|t−1, t = 1, . . . , n, considering Θ the vector of
unknown parameters, that is

L(Θ; Ỹn) =
n

∏
t=1

p(Yt|Ỹt−1).

Here, Ỹn = (Y1, Y2, . . . , Yn), and p(Yt|Ỹt−1) corresponds to the density of Yt given Ỹt−1;
the log-likelihood function is given by

log L(Θ; Ỹn) = −n
2

ln(2π)− 1
2

n

∑
t=1

log |Σt|t−1(Θ)| − 1
2

n

∑
t=1

ηt|t−1(Θ)′Σ−1
t|t−1(Θ)ηt|t−1(Θ).

It is important to emphasize that, in the function above, the dependence of the in-
novations ηt|t−1(Θ) and their respective covariance matrix Σt|t−1(Θ) on the parameter
vector Θ to be estimated should be considered. In some applications where the process
βt, t = 1, . . . , n is not stationary, the initial values of the KF, β1|0 and P1|0, may be attributed
to Θ and are estimated based on the sample [21].

2.3.2. Distribution-Free Estimators

An alternative to maximum likelihood estimation is distribution-free or non-parametric
estimators. These comprise a class of statistical estimators that do not make specific as-
sumptions about the underlying data distribution. In other words, these estimators do not
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require the data to follow a particular distribution, such as the normal distribution. They are
often used in situations where there is not enough information about the data distribution
or when the data have distributions that are too complex to be adequately modeled by a
parametric distribution. Distribution-free estimators provide a flexible and robust approach
to estimating parameters and making statistical inferences when the data’s distributional
assumptions are uncertain or not well defined. Reference [13] proposed distribution-free
estimators based on the generalized method of moments, whose consistency conditions
were established even for heteroscedastic models. However, although point estimates can
be obtained, neither the sampling distributions nor the asymptotic distributions are known.

Considering the linear univariate SSM, Reference [13] proposed to estimate the state
mean µ by

µ̂ = n−1
n

∑
t=1

YtW−1
t .

The autoregressive parameter ϕ is estimated based on the covariance structure of
process {YtW−1

t } based on its sample autocovariance function, γ̂(k), defined as

γ̂(k) =
1
n

n−k

∑
t=1

(
Yt+k
Wt+k

− µ̂

)(
Yt

Wt
− µ̂

)
through the estimator

ϕ̂ =
ℓ

∑
k=1

γ̂(k + 1)γ̂(k)

(
ℓ

∑
k=1

γ̂2(k)

)−1

.

The choice of ℓ was discussed in the original work [13], and it depends on the time
series size. To estimate σ2

ϵ and σ2
ϵ , the distribution-free estimators are considered:

σ̂2
ϵ =

1 − ϕ̂2

ϕ̂
γ̂(1) and σ̂2

e =

(
n

∑
t=1

W−2
t

)−1[ n

∑
t=1

(
Yt

Wt
− µ̂

)2
− nσ̂2

ϵ

1 − ϕ̂2

]
.

These estimators are consistent under simple regularity conditions based on the Wt
sequence, which must be limited.

2.3.3. Point and Interval Distribution-Free Estimation of Parameters via Bootstrapping

The distribution-free estimators produce point estimates of the parameters based on
the time series, but neither their distribution nor their asymptotic distribution is known.
It is, therefore, proposed to boost these estimates to obtain the bootstrap point estimates,
their standard errors, and their confidence intervals via bootstrapping.

Bootstrapping state-space models is a resampling technique used to assess the uncer-
tainty of parameter estimates in time series modeling when the underlying data distribution
might not be well understood or when we have limited data. This method involves simulat-
ing new datasets by resampling from the standardized innovations, enabling the generation
of multiple parameter estimates and intervals. By repeatedly applying the bootstrap pro-
cedure, we can construct a distribution of parameter estimates, which provides insights
into the robustness and variability of the model. This technique has already been used in
state-space models; in particular, Reference [16] considered it for assessing the precision
of Gaussian maximum likelihood estimates of the parameters of linear state-space mod-
els. Reference [22] proposed a bootstrap procedure for constructing prediction intervals
directly for the observations, which does not need the backward representation of the
model. Reference [23] proposed parametric and nonparametric bootstrap methods for
estimating the prediction mean-squared error of state vector predictors that use estimated
model parameters.
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In this work, it is proposed to consider the innovation form of the representation [24]:

βt+1|t = µ + ϕ(βt|t−1 − µ) + ϕKtηt|t−1

Yt = Wtβt|t−1 + ηt|t−1.

The basic steps of the nonparametric bootstrap are as follows:

1. Construct the standardized innovations’ function: calculate the standardized innova-
tions for each observation: ηt(Θ̂) = Σ−1/2

t (Θ̂)ηt(Θ̂);
2. Generate a bootstrap sample: create a new dataset by sampling, with replacement,

from the set of standardized innovations η1(Θ̂), . . . , ηn(Θ̂) to obtain η∗
1 (Θ̂), . . . , η∗

n(Θ̂);
3. Construct a bootstrap time series: create a time series Y∗

1 , . . . , Y∗
n based on the resample

standardized innovations by solving the following equation:

ξt = Atξt−1 + Ctηt,

where ξt = [βt+1|t|Yt]′ and

At =

[
ϕ 0

Wt 0

]
, Ct =

[
ϕKtΣ−1/2

t
Σ−1/2

t

]
,

considering η∗
1 (Θ̂), t = 1, ..., n, in place of η1(Θ̂), t = 1, ..., n, with the initial conditions

of the Kalman filter remaining fixed at their given values while the parameter Θ is
held fixed at Θ̂;

4. Calculate the bootstrap distribution-free estimates—using the bootstrap time series
{Y∗

t }t=1,...,n—to compute the distribution-free estimators Θ̂∗;
5. Repeat the procedure: repeat steps 2 to 5 B times to obtain a set of bootstrap parameter

estimates [Θ̂∗
b , b = 1, . . . , B].

In this study, we considered B = 1000 replicates. Thus, at the end of this procedure,
we have 1000 estimates, Θ∗, of the vector of unknown parameters Θ, i.e., of each of the
parameters. These bootstrap estimates make it possible to obtain a bootstrap distribution
to construct a bootstrap confidence interval at the 1 − α level by the empirical quantiles of
this distribution utilized, of order α/2 and 1 − α/2. In this context, the bootstrap estimate
of the θi parameter is considered to be the average of the 1000 bootstrap estimates obtained
in the previous procedure.

The main advantage of this approach is that it does not require the assumption of
normality or the implementation of optimization methods, as in the case of the maximum
likelihood, which in some cases, may not converge or may converge to a local maximum.
On the other hand, even if normality is verified, the distribution-free approach can provide
initial estimates for the iterative log-likelihood optimization procedure.

2.4. Simulation Study

To analyze the performance of the proposed methodology in comparison with the
maximum likelihood estimation, a simulation study was designed with various scenarios.
These scenarios were based on a time-invariant state-space model defined by

Yt = βt + et

βt = ϕβt−1 + εt

where the state process {βt} is a stationary AR(1) process with zero mean. This study was
designed under the optimum conditions for maximum likelihood estimation, since errors
with a normal distribution were considered, so we compared the proposed methodology in
the best scenario in favor of Gaussian maximum likelihood estimation. Thus, the time series
were obtained by simulating errors with the distributions et ∼ N(0, σ2

e ) and εt ∼ N(0, σ2
ε ),
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considering time series of dimension n = 50, 500, autoregressive parameter values of 0.5
and 0.9, and two pairs of variances (σ2

e , σ2
ε ).

In the scenario of large time series (n = 500) (Tables 1 and 2), which is the most-
favorable scenario for maximum likelihood estimation because it enhances the convergence
of the optimization method, it can be seen that distribution-free estimation associated with
the bootstrap methodology had a very similar parameter estimation performance to the
maximum likelihood estimation. On the one hand, the GML method performed better,
particularly in terms of the confidence interval coverage rates for the highest value of the
autoregressive parameter, ϕ = 0.9, but on the other hand, it had lower coverage rates at
the 95% confidence level. On the other hand, DFb maintained higher coverage rates in
both cases close to 100%, which means that the DFb method is conservative. In short, the
proposed DFb method is more advantageous in the case of large time series when the
correlation structure, translated by the ϕ parameter, is weaker (ϕ closer to zero). This is also
evident from the analysis of the average amplitudes of the confidence intervals, which are
smaller in this scenario, without a reduction in their coverage rate.

Table 1. Simulation study results for time series of dimension n = 500: convergence/success rate
(CR) (the rate of the estimates within the parameter space), Gaussian maximum likelihood (GML),
distribution-free estimation with bootstrapping (DFb).

Parameters Method of RMSE
CR

ϕ σ2
ε σ2

e Estimation ϕ σε σe

0.50
0.05 0.01 GML 0.0720 0.0242 0.0517 95%

DFb 0.1007 0.0372 0.0439 98%

1.00 0.50 GML 0.0921 0.1564 0.2633 99%
DFb 0.0940 0.1520 0.1465 99%

0.90
0.05 0.01 GML 0.0226 0.0147 0.0207 100%

DFb 0.0241 0.0251 0.0279 99%

1.00 0.50 GML 0.0251 0.0783 0.0758 100%
DFb 0.0260 0.1098 0.0901 100%

Table 2. Simulation study results for time series of dimension n = 500: coverage rate of confi-
dence intervals at 95% (CVR), average amplitude (AvgA), Gaussian maximum likelihood (GML),
distribution-free estimation with bootstrapping (DFb).

Parameters Method of CVR AvgA

ϕ σ2
ε σ2

e Estimation ϕ σε σe ϕ σε σe

0.50
0.05 0.01 GML 91% 83% 92% 0.3160 0.1065 0.3347

DFb 100% 99% 100% 0.2866 0.0920 0.1193

1.00 0.50 GML 89% 88% 92% 0.3834 0.6322 1.2232
DFb 100% 100% 100% 0.3325 0.5021 0.5568

0.90
0.05 0.01 GML 97% 94% 96% 0.0898 0.0587 0.0810

DFb 100% 100% 100% 0.1001 0.0851 0.1023

1.00 0.50 GML 94% 94% 96% 0.0943 0.3009 0.2913
DFb 100% 100% 100% 0.1038 0.4102 0.3441

Tables 3 and 4 show the results of the simulation study for small time series, in this
case with n = 50, for the various combinations of the parameters ϕ and variances. For series
of this size, both estimation methods lowered their rate of valid estimates, i.e., within the
parameter space. However, it can be seen that the distribution-free method associated with
the bootstrapping performed best in this respect, while the Gaussian maximum likelihood
estimation had the lowest success rates, especially for ϕ = 0.5. From the point of view of
the accuracy of the estimates, from the RMSE perspective, the distribution-free method
with the bootstrap had the best performance overall. This better performance also occurred
in the analysis of the coverage rates of the confidence intervals, as well as in the analysis of
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their average amplitude, with this method producing confidence intervals with smaller
amplitudes without compromising the coverage rate (which is still higher, as a rule, than
the confidence level considered).

Table 3. Simulation study results for time series of dimension n = 50: convergence/success rate
(CR) (the rate of the estimates within the parameter space), Gaussian maximum likelihood (GML),
distribution-free estimation with bootstrapping (DFb).

Parameters Method of RMSE
CR

ϕ σ2
ε σ2

e Estimation ϕ σε σe

0.50
0.05 0.01 GML 0.1946 0.0637 0.0802 78%

DFb 0.1649 0.0655 0.0560 88%

1.00 0.50 GML 0.2297 0.3066 0.4391 88%
DFb 0.1843 0.2790 0.2128 88%

0.90
0.05 0.01 GML 0.1066 0.0420 0.0552 86%

DFb 0.1047 0.0505 0.0448 89%

1.00 0.50 GML 0.1225 0.2285 0.2793 92%
DFb 0.1329 0.2076 0.1936 98%

Table 4. Simulation study results for time series of dimension n = 50: coverage rate of confi-
dence intervals at 95% (CVR), average amplitude (AvgA), Gaussian maximum likelihood (GML),
distribution-free estimation with bootstrapping (DFb).

Parameters Method of CVR AvgA

ϕ σ2
ε σ2

e Estimation ϕ σε σe ϕ σε σe

0.50
0.05 0.01 GML 85% 87% 86% 0.7715 0.2340 0.8432

DFb 100% 80% 100% 0.5982 0.1401 0.1524

1.00 0.50 GML 82% 81% 93% 0.9043 1.7546 4.6511
DFb 100% 95% 100% 0.6788 0.7327 0.7945

0.90
0.05 0.01 GML 94% 93% 97% 0.3499 0.1782 0.3716

DFb 100% 94% 100% 0.2975 0.1434 0.1426

1.00 0.50 GML 93% 92% 97% 0.3790 0.9682 1.4738
DFb 100% 99% 100% 0.3576 0.7044 0.7054

3. Application to Economic Data

In this section, we implement the proposed methodology on real economic data
and juxtapose it with the Gaussian maximum likelihood estimation, considering both the
parameter estimation and forecast quality.

3.1. Dataset

The ISM index chosen to illustrate an application to real data is the Manufacturing PMI,
which is a monthly economic indicator of the United States of America. It is constructed
through surveys conducted with purchasing managers in over 300 industrial companies.
This index is a fundamental indicator for assessing and monitoring the development of the
American economy. It was created by the “Institute for Supply Management”, from which
the designation ISM derives. This non-governmental, non-profit organization organization
was established in 1915 and provides reports on development, education, and research to
both individuals and companies or financial institutions with the purpose of creating value
and enabling them to gain competitive advantages, as this information supports many
decision-making processes in management.

The Manufacturing PMI index allows the analysis of changes in production levels
between months. The reports are released on the first business day of a given month,
making it one of the first economic indicators available to managers and investors. It
is composed of five other subindicators with equal weight, as described by [25]. These
subindicators are:



Forecasting 2024, 6 46

1. New Orders, reflecting the number of customer orders placed with companies;
2. Production, evaluating whether a company’s production has changed compared to a

previous period (days, weeks, and months);
3. Employment, measuring changes in employment, whether it has increased or decreased;
4. Deliveries, revealing whether the delivery times between suppliers and the company

have increased or decreased compared to a previous period;
5. Inventories, indicating how much a company’s inventories have increased or decreased.

The companies were categorized into 18 different sectors, including food and bever-
ages, chemicals, machinery, and transportation equipment, among others. In summary, the
data from the ISM Manufacturing Index, especially the PMI, allows for a comprehensive
assessment of the performance of the U.S. manufacturing industry. The database, named
“ISM”, considered in this work comprises 569 observations, including monthly ISM values
and their respective dates. The time series analyzed included values from January 1975
up to May 2022. The data are reported on a monthly basis. For the purposes of modeling
and estimating the models, a training time series up to December 2020 was considered
(Figure 1), leaving the last observations for the model testing and evaluation series.

Figure 1. Representation of the ISM index time series from January 1974 to May 2022. The red line
represents the average value 52.90 over the period.

Figure 1 shows that the series may not be stationary in terms of variance. There were
several oscillations throughout the series, most notably in the 1980s, between 2007 and
2010, as well as between 2019 and 2022. The minimum value of 29.40 in April 1980 reflects
a period in which the economy was already in recession; in that decade, the unemployment
rate was around 7.5%. Both the 1980 recession and the 1981–82 recessions were triggered
by a restrictive monetary policy in an attempt to combat rising inflation. During the 1960s
and 1970s, economists and policymakers believed that they could reduce unemployment
through higher inflation, in a trade-off known as the Philips curve. This strategy severely
affected U.S. industrial companies [26]. The maximum observed value of 69.90 was obtained
after the recovery from the aforementioned recession.
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3.2. Modeling with Regression Linear Models

To identify possible components in the ISM index time series, it was broken down into
the usual level, trend, seasonality, and noise components (Figure 2). The breakdown of the
time series indicated a possible trend and a seasonal component, with a 12-month period,
if any, and low amplitude (of around −2 to 3 points). Based on this exploratory analysis
of the time series, a linear model and a state-space model will be adjusted and analyzed,
whose performance will be evaluated.

Figure 2. Decomposition of the ISM time series.

By examining Figure 2, it can be observed that the seasonal component was extremely
small. To assess the significance of the seasonal component and trend, a model was
fit with a set of explanatory variables, including indicators for 11 months, the intercept
term, the independent variable time (since we already confirmed the presence of a trend),
and the response variable, the ISM series. The indicator variables were also considered
dummy variables. The multiple linear regression model included the intercept term α0,
the coefficient α1 associated with the time variable t = 1, 2, . . . , n, dummy variables di,t,
where i = 1, . . . , 11, representing indicator variables di,t, which assumes 1 when month t is
January (i = 1), ..., November (i = 11), and the random error ϵt, that is

Yt = α0 + tα1 +
11

∑
i=1

βidi,t + ϵt.
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Table 5 represents the estimates and their corresponding p-values for the estimated
parameters of the multiple linear regression model. At a significance level of 5%, only the
intercept, α0, and the coefficient associated with the time variable, α1, had p-values below
0.05, which means that the seasonal coefficients were not statistically significant when
considering the annual seasonality. Thus, the linear trend component will be the only one
considered in the linear modeling.

Table 5. Estimates , standard errors, t-values, and p-values of the multiple linear regression model
with seasonal coefficients and the time variable.

Estimates Standard Error t-Value p-Value

α0 50.6512 0.9782 51.78 2.00 × 10−16

α1 0.0064 0.0015 4.18 3.45 × 10−5

β1 −0.5033 1.2290 −0.41 0.6823
β2 −0.0347 1.2290 −0.03 0.9775
β3 −0.3598 1.2290 −0.29 0.7698
β4 −0.5662 1.2290 −0.46 0.6452
β5 −0.5434 1.2290 −0.44 0.6585
β6 −0.0894 1.2354 −0.07 0.9424
β7 −0.0511 1.2354 −0.04 0.9670
β8 0.2808 1.2354 0.23 0.8203
β9 0.1213 1.2354 0.10 0.9218
β10 0.1362 1.2354 0.11 0.9123
β11 0.0234 1.2354 0.02 0.9849

In Table 6 is presented the summary of the simple linear regression model with
the time variable, since the coefficients associated with the seasonal variables were not
statistically significant.

Table 6. Summary of the simple linear regression model with the time variable.

Estimates Standard Error p-Value

α0 50.8679 0.5053 2.00 × 10−16

α1 0.0045 0.0016 0.0046

σ2 5.98

The histogram in Figure 3 shows that the residuals did not behave like a white noise
process. The Shapiro–Wilk and the Kolmogorov–Smirnov normality tests rejected the null
hypothesis that the residuals were normal. The analysis of the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) graphs showed that the residuals
also had a temporal correlation structure.

Figure 3. Analysis of the residuals from the adjustment of the simple linear regression model; the
blue dashed line represents the limits of the 95% confidence intervals.
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3.3. SARIMA Modeling

In order to have a model that can incorporate a temporal correlation structure, several
SARIMA models were fit to the ISM index time series. From this analysis, the best-
performing model was SARIMA(2, 1, 0)(2, 0, 0)[12], with the following formulation:

(1 − 0.0539B − 0.1108B2)(1 + 0.1345B12 + 0.1478B24)(1 − B)Yt = εt

and whose summary is shown in Table 7.

Table 7. Summary of the SARIMA model.

Parameter Estimates Standard Error

ϕ1 0.0539 0.0437
ϕ2 0.1108 0.0429
Φ1 −0.1345 0.0456
Φ2 −0.1478 0.0450

σ2 Log L AIC
4.431 −1168.54 2347

The analysis of the SARIMA model’s residuals showed that the normality of their dis-
tribution was rejected (Figure 4). However, the Ljung–Box test did not reject the hypothesis
that there was no correlation in the series of residuals, considering lags up to 24.

Figure 4. Histogram, QQ−plot, ACF, and PACF of the residuals from the adjustment of the SARIMA
model; the blue dashed line represents the limits of the 95% confidence intervals.

3.4. State-Space Modeling

In order to be able to integrate the temporal correlation structure already identified,
either by adjusting the simple linear regression model or by the SARIMA model, we also
considered a state-space model in which the known values Wt were the predicted values
resulting from adjusting the simple linear regression model. In this way, we considered a
state-space model with the following observation equation:

Yt = Wtβt + et

where Wt = 50.8679 + 0.0045t, with t = 1, ..., n and the state process {βt} is an autoregres-
sive process:

βt = µ + ϕ(βt−1 − µ) + εt.

This state-space model can be understood as a calibration model in which the linear
trend with the base structure is considered, which is calibrated, at each moment t, by a
stochastic factor βt. This model makes it possible to incorporate a temporal correction
structure, in this case through the state process, and a dynamic adjustment over time.
We would expect the average µ of the calibration factor process to be close to 1, with
each calibration factor corresponding to a correction factor that either increases the value
expected by the trend, βt > 1, or decreases it, βt < 1.
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This model was adjusted and its unknown parameters, Θ = (µ, ϕ, σ2
e , σ2

ε ), estimated
by both the maximum likelihood method with the assumption of normality of the errors
et and εt and the distribution-free estimators proposed in [13]. The standard errors and
confidence intervals of the latter were obtained via bootstrapping. The results of the
parameter estimation and the respective confidence intervals at 95% are shown in Table 8.
In both estimation methods, the estimation of the observation error variance was zero. This
implies that, in practice, the response variable—in this case, the ISM index—is explained
by the calibration of the linear trend, Wt, through the autoregressive order -one state
process without additional noise. However, it should be noted that the resulting model
is heteroscedastic, as the variance of the response variable, Yt, is given by var(Yt) =
W2

t σ2
ε (1 − ϕ2)−1, given that the state process, {βt}, is stationary (|ϕ̂| < 1). From the

analysis of the results, it can be concluded that both estimation methods provide very
similar point estimates of the parameters. However, the most-significant difference lies in
σ̂2

ε , with the maximum likelihood estimation estimating this variance at about 15-times the
value of the non-parametric estimate.

Table 8. Estimates, confidence intervals at 95%, and standard errors for both the Gaussian maximum
likelihood and distribution-free estimation with bootstrapping.

Gaussian Maximum Likelihood Distribution-Free with Bootstrapping
Parameters Estimates S.E. Lower l. Upper l. Estimates Q2.5% Q97.5% S.E.

µ 1.0017 0.0251 0.9525 1.0509 1.0000 0.9505 1.0572 0.0278
ϕ 0.9300 0.0159 0.8989 0.9612 0.8943 0.8105 0.9698 0.0418
σ2

ε 0.0407 0.0012 0.0383 0.0431 0.0019 0.0012 0.0027 0.0004
σ2

e 0

With regard to the maximum likelihood estimation, the standardized innovations must
be analyzed to see if they behave like white noise. From the analysis of the standardized
innovations, Table 9, and the tests for normality and correlation, we rejected the normality
and the hypothesis of no correlation, indicating that the assumptions of the model and
normality do not hold.

Table 9. Test values for normality and correlation tests on the series of standardized innovations in
the Gaussian maximum likelihood estimation.

Test p-Values

Shapiro–Wilk 3.052 × 10−9

Kolmogorov–Smirnov 0.02283
Ljung–Box 5.303 × 10−6

The standard errors and bootstrap confidence intervals were obtained from the empir-
ical bootstrap distributions obtained from the 1000 replicates obtained for each parameter;
see Figure 5. The descriptive statistics of the bootstrap distributions are shown in Table 10.
The maximum likelihood estimation, although dependent on the assumptions about the
distribution of errors, still provided interesting results from a modeling perspective, and the
differences compared to non-parametric estimation were not significant. This suggests that,
despite the challenges observed in the assumptions of the maximum likelihood estimation,
this method remains a robust tool for the analysis of state-space models, at least in the
specific application of this study. On the other hand, the non-parametric approach allowed
overcoming the limitations associated with the normality assumption.
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Table 10. Descriptive statistics of the distributions of the bootstrap estimates of the parameters of the
1000 replicates.

Min. Q25% Median Mean Q75% Max Variance

µ̂ 0.8850 0.9887 1.0008 1.0013 1.0137 1.1204 0.0004
ϕ̂ 0.7255 0.8790 0.9038 0.8998 0.9293 0.9789 0.0016
σ̂2

ε 0.0009 0.0016 0.0019 0.0019 0.0021 0.0036 1.414 × 10−7

Figure 5. Empirical distributions of the 1000 bootstrap distribution-free estimates of µ, ϕ, and σ2
ε (top

left µ; top right ϕ; below σ2
ε ).

3.5. Forecasting

In this section, we present the forecasting procedure in a statistical modeling context,
focusing on the three fitted models. The period for which one-step-ahead forecasts are
desired corresponds to the test series, that is it extends from January 2021 to May 2022,
comprising a total of 17 observations. Forecasts will be obtained through three different
models: the simple linear regression model (SLRM), the SARIMA model (SARIMA), and the
state-space model, whose parameters were estimated using both the Gaussian maximum
likelihood (SSM-GML) and the distribution-free estimators associated with the use of
bootstrapping to estimate the standard errors and confidence intervals (SSM-DFb).

Table 11, complemented by the analysis of the graphs in Figure 6, allows us to con-
clude that the state-space models performed best in terms of the accuracy of the one-step
predictions in the test series. These values were used to fit the two state-space models.
The lowest MSE was obtained when considering the state-space model with the Gaussian
maximum likelihood parameter estimation; however, the SSM-DFb model had a very
similar RMSE, with no significant statistical difference (the p-value of the Diebold–Mariano
test was 0.3981 [27]). The SARIMA model forecasts, on the other hand, had a higher
root-mean-squared error.
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Table 11. Root-mean-squared error (RMSE) of the forecasts from the 4 models.

SLRM SARIMA SSM-ML SSM-DFb

RMSE 6.56 2.12 1.76 1.77

Figure 6. One-step-ahead forecasts by the state-space model with both models: top—SARIMA
model; Gaussian likelihood estimation (SSM-ML); distribution-free estimators associated with the
bootstrapping (SSM-DFb).

When we analyzed the confidence intervals of the 17 one-step-ahead forecasts based
on the maximum likelihood estimation and distribution-free bootstrap estimators, it can be
seen that the latter produced bootstrap confidence intervals with an average semi-range
of 4.56, while the Gaussian maximum likelihood estimation produced a value of 4.26.
In addition, in both methods, only one of the observations did not match the respective
prediction intervals, corresponding to 5.9%, a value close to the significance level considered.
In this particular case, the SARIMA model produced confidence intervals with average
semi-amplitudes of 4.17, i.e., slightly lower than with the other models, and as already
mentioned, from the point of view of point forecasting, it performed worse in terms of the
root-mean-squared error of the point forecasts for these 17 forecast instants.

4. Conclusions

The results showed that modeling time series using state-space models is a good
approach for obtaining both point and interval forecasts. In addition to the widely used
linear regression models and SARIMA models, which have their advantages—in the case
of the former, their easy implementation and interpretation, and in the case of the latter,
their wide application, particularly in economic data series—state-space models are an
alternative that provides good results in terms of their predictive quality. In addition,
state-space models are also popular due to their flexibility and easy interpretation. The
distribution-free estimators linked to the bootstrap methodology present an alternative
to maximum likelihood estimation. One notable advantage is that they do not require an
optimization process and demonstrate superior performance, particularly in achieving a
lower mean-squared error for estimates and narrower amplitudes in the corresponding
confidence intervals. This advantage is particularly pronounced in the case of smaller time
series. These parameters can also be considered as initial values in iterative processes to
obtain maximum likelihood estimates. A contribution of this work was the incorporation
of the bootstrap methodology in obtaining estimates, standard errors, and confidence
intervals for the parameters. This is relevant, since the distribution of distribution-free
estimators is not known, nor is their an asymptotic distribution.
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