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Abstract: Pick-and-place operations are an integral part of robotic automation and smart manu-
facturing. By utilizing deep learning techniques on resource-constraint embedded devices, the
pick-and-place operations can be made more accurate, efficient, and sustainable, compared to the
high-powered computer solution. In this study, we propose a new technique for object detection on
an embedded system using SSD Mobilenet V2 FPN Lite with the optimisation of the hyperparameter
and image enhancement. By increasing the Red Green Blue (RGB) saturation level of the images, we
gain a 7% increase in mean Average Precision (mAP) when compared to the control group and a 20%
increase in mAP when compared to the COCO 2017 validation dataset. Using a Learning Rate of 0.08
with an Edge Tensor Processing Unit (TPU), we obtain high real-time detection scores of 97%. The
high detection scores are important to the control algorithm, which uses the bounding box to send a
signal to the collaborative robot for pick-and-place operation.

Keywords: Single Shot Detector; MobileNet; object detection; pick-and-place solution; RGB
saturation; hyperparameter

1. Introduction

One of the current trends in advanced manufacturing is to employ Artificial Intelli-
gence (AI) methods, specifically in the pick-and-place process with machine vision. Ad-
vanced manufacturing with AI should be made affordable for Small–Medium Enterprises
(SMEs), so that they can leverage the benefits that come with this technology without being
concerned about allocating a significant financial budget. The fast and smooth integration
of machine vision technology with the current pick-and-place operations of SMEs is an-
other crucial aspect that should be taken into consideration. Moreover, the training and
deployment process of the AI model needs to be fast to reduce the turnkey project time for
the SMEs, as time savings are critical for SME [1].

In this context, any machine vision solution should be developed in a way that the
commissioning and installation can be carried out simply and quickly by the field operators
of SMEs without special skills or a high-powered computer. Therefore, one of the current
trends in advanced manufacturing is to employ object detection using deep learning
methods on embedded systems to improve the pick-and-place process.

Object detection using deep learning has developed greatly within the past few years.
The use of Convolutional Neutral Networks (CNNs) and object detection is becoming
increasingly important in pick-and-place operations. With object detection, the pick-and-
place application is more robust against any varying parameter such as lighting, shadow,
and background noise. Other than this, there is a need for lightweight models in instances
where hardware limitations exist, particularly in a low-cost embedded system such as
Raspberry Pi. The Single Shot Detector (SSD) MobileNet V2 Feature Pyramid Network [2]
is one such algorithm. The reason is that it has low-cost computation with higher detection
speed compared with other algorithms [3,4].
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SSD is a model that balances the detection accuracy of Faster R-CNN [5] and real-
time performance by using multiple feature maps at different scales. This multiscale
approach allows SSD to achieve a higher detection accuracy than You Only Look Once
(YOLO) [6] while maintaining real-time performance. MobileNetV2 [7] is a lightweight
convolutional neural network architecture for mobile devices, making them suitable for
real-time applications and edge device deployment on Raspberry Pi.

In the architecture of SSD MobileNetV2 FPN-Lite, MobileNetV2 is used as a base
network, SSD as a detection network, and FPN-Lite as a feature extractor. Figure 1 shows
that MobileNet V2 has three layers with two kinds of a block. The first block is a residue
block with stride 1 while the second block is a stride 2 layer that is used to reduce the size.
The first layer of MobileNet V2 is a 1 × 1 convolution layer with a Rectified Linear Unit
with an upper cut-off at 6 or ReLU6, the second layer is a depth-wise convolution layer,
and the third layer is a 1 × 1 convolution layer without non-linearity.
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Many studies have already been conducted on object detection utilizing neural net-
work hyperparameter tuning to increase model accuracy. Increasingly, SSD320 Mobilenet
V2 FPNLite is being implemented in various applications such as road damage detection [8],
traffic density [9], vulnerable road users [10], and real-time road-based object detection [11].
For robotic automation, SSD320 Mobilenet V2 FPNLite is used in various industries such
as agriculture [12,13] and hospitality [14,15].

Many machine learning models previously developed had very large datasets that are
not suitable for devices in the edge running real-time applications.

So far, not much research has been conducted on SSD MobileNet V2 FPN320-Lite on
pick-and-place application in Raspberry Pi, especially on the hyperparameter and image
enhancement optimisation, and thus our research aims to fill this gap. In addition, we
investigate the effect of real-time inference of Raspberry Pi with an Edge Tensor Processing
Unit (TPU) and validate with the other state-of-the-art lightweight models. Similar to Chen
et al. [16], we adopt MS COCO 2017 as the primary benchmark for all experiments since
it is more challenging and widely used. For SSD320 Mobilenet V2 FPNLite, the object
detection’s mAP is 22.2%, according to TensorHub [17].

In this paper, we propose a new technique for object detection on an embedded system
using SSD Mobilenet V2 FPN Lite with hyperparameter tuning and enhancing image
properties to improve the mAP and detection scores of the deep learning models. The main
contributions of the paper lie in the following:



Signals 2024, 5 89

• In comparison with the control group, we increase the mean Average Precision by 7%
with an RGB saturation level of 3.5.

• We improve mean Average Precision to 46.63% and detection scores to 97% us-
ing a 416 × 416 aspect ratio, Learning Rate of 0.08, and quantized model for Edge
TPU Standard.

• We achieve a detection rate of nearly 91% using RGB saturation and a robot approach
distance of 45 cm.

2. Materials and Methods

This study is a continuation of our published works [18,19]. Figure 2 depicts the project
setup for a smart and lean pick-and-place operation. Universal Robot 3 (UR3) is chosen
to carry out the pick-and-place application as it has a payload of 3 kg, which is adequate
for our small objects of cubes and cylinders. Raspberry Pi version 4B is tasked to run the
lightweight deep learning model SSD MobileNet V2 FPN320-Lite to recognize objects in
real-time. Using a webcam mounted on the robotic arm, a python program uses OpenCV
to capture real-time video frames. When an object is detected by the “object detector” in
the program, a bounding box with a detection score is drawn. Based on the predetermined
threshold value of the object detection, the Raspberry Pi’s General Purpose Input Output
(GPIO) pins are activated to control the robot arm to perform a specific pick-and-place
operation. In order to increase the inference speed, we use a hardware USB accelerator
Coral Edge Tensor Processing Unit (TPU).
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The deep learning process flowchart is depicted in Figure 3, with a focus on hyper-
parameter optimisation for model training. The dataset is annotated using online tool
Roboflow [20] and then trained in the cloud using the Google Colab platform [21]. A
converter is then used to change the intermediate SavedModel into “.tflite” format for
use with other models. The FlatBuffer format in which this model was saved allows for
cross-platform serialization without the need for additional software. The Tflite model
is then deployed to Raspberry Pi for robot arm control and inference. For our training
process, we use Google Colab Professional with Tesla T4 GPU, which is based on Turing
architecture. It is a GPU card based on the Turing architecture and targeted at deep learning
model inference acceleration.

The project uses a custom dataset for the pick-and-place process, as shown in Figure 4.
The dataset contains two types of workpieces: the cube and cylinder. The colours of
the cube and cylinder are either red, blue, or yellow. To increase the number of images,
2 augmentation processes are executed, which are flip horizontal and vertical, as well as a
rotation of ±15 degrees.
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Figure 4. Augmentation of dataset with 2 to 16 instances: (a) flip vertical; (b) rotate clockwise
+15 degrees; (c) flip horizontal; (d) rotate −15 degrees; (e) flip horizontal and rotate −15 degrees;
(f) flip vertical and rotate +15 degrees.

In Table 1, we present the total distribution of the classes for the 6 classes. We observe
that the overall distribution is even, as no single class is dominating the dataset. The overall
distribution of all classes is 14 to 19%.
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Table 1. Distribution of classes.

Classes Number of Annotations Distribution (%)

Blue cube 2079 14.10
Blue cylinder 2236 15.16

Red cube 2571 17.44
Red cylinder 2294 15.56
Yellow cube 2701 18.32

Yellow cylinder 2864 19.42

According to Google Developer [22], we have a moderate imbalance dataset if the
minority class is 1 to 20% of the entire dataset. Since all the classes are within the band of
14% to 19% and there is no minority class, our dataset is considered as balanced.

We adopt the hyperparameter settings as shown in Table 2. The aspect ratio can be
any multiple of 32, with a 320 × 320 set as the default aspect ratio. The number of training
steps are set as a multiple of 2500. The maximum number of steps is 10,000. There are
2 Learning Rates used in the training, with a Learning Rate of 0.08 (LR0.08) set as the
default. For optimisation, we use a weight decay of 0.001 and momentum of 0.9, similar
to [2]. The mean Average Precision (mAP) and detection scores are used as metrics to
evaluate performance of this model.

Table 2. Hyperparameter settings.

Parameter Setting

Aspect Ratio 320 (default), 416, 512, 640
Learning Rate 0.08 (default), 0.16

Number of Steps 5000, 10,000
Warmup Learning Rate 0.02666
Momentum Optimiser 0.9

Activation Function Rectified linear unit (ReLU)

For faster inference, we utilize post-training quantization in which the model con-
verts its weights from 32-bit floating-point values to 8-bit integer values. This allows the
quantized model to run faster and occupy less memory without too much reduction in
accuracy [23].

For our object detection, the evaluation criteria are the mean Average Precision (mAP)
and detection scores. According to the COCO 2017 validation dataset, its mAP is the same
as Average Precision in Tensorflow’s object detection.

The mAP metric we are using in this study is mAP_0.5:0.95, which is widely used as a
benchmark to gauge the detector’s effectiveness [24]. mAP_0.5 represents the mAP value
when the intersection over union (IoU) is 0.5 and mAP_0.5:0.95 represents the average mAP
at different IoU thresholds (from 0.5 to 0.95 in steps of 0.05).

For our pick-and-place application, ARmax10 is chosen as the Recall value as we
expect to have a maximum of 10 detections per pick-and-place application.

The formula of the mean Average Precision is given below:

mAP =
1
n∑k=n

k=1 APk (1)

where APk is the Average Precision of class k, and n is the number of classes.
The standard deviation of the AP is calculated as follows:

σ =

√
∑(xi − µ)2

N
(2)
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where σ is the population standard deviation, N is the size of the population, xi is the value
of an AP, and µ is the population mean of all APs.

2.1. Learning Rate

Many studies attempt to use the largest Learning Rate that still allows for convergence,
in order to improve training speed. However, a Learning Rate that is too large can be as
slow as a Learning Rate that is too small, and a Learning Rate that is too large or too small
can require more training time than one that is in an appropriate range [25].

For this reason, we train for just 2500 steps on the image of 640 × 640 pixels in order
to speed up the training and be able to analyse the Learning Rate more quickly. We set the
default Learning Rate as 0.08 (LR0.08) and double that to Learning Rate 0.16 (LR0.16) for
both the non-quantized and quantized models. The overall Average Precision is calculated
by averaging all of the APs from the six classes.

2.2. Aspect Ratio

Table 3 shows the configuration of 4 datasets with different aspect ratios. These
datasets are identical, except for the aspect ratio. They have the same distribution of classes
as listed in Table 1.

Table 3. Datasets with different aspect ratios.

Dataset Aspect Ratio Training
Images

Validation
Images

Testing
Images Total Images

1 320 × 320 868 147 74 1089
2 416 × 416 868 147 74 1089
3 512 × 512 868 147 74 1089
4 640 × 640 868 147 74 1089

We use these datasets in order to evaluate which dataset produces the highest mean
Average Precision. The default aspect ratio of 320 × 320 pixels is changed to 416 × 416,
512 × 520, and 640 × 640 by modifying the parameter Fixed Shape Resizer in the training
configuration file.

We do not include the aspect ratio 640 × 640 as the image size is larger and the
processing of large images presents significant computational challenges due to memory
usage and computation requirements [26]. We use a commonly used data split ratio of
80:20 [27] where 868 images or 80% of the data are for training. The remaining 13% of
images are for validation (147 images) and 7% are for testing (74 images).

2.3. Quantization and Edge TPU

Similar to Hsu et al. [28], we use the Edge Tensor Processing Unit (TPU) [29] to improve
the inference speed. Edge TPU is a small Application-Specific Integrated Circuit (ASIC),
designed for low-power devices. There are 2 versions of Edge TPU, namely Edge TPU Max
and Edge TPU Standard. Both Edge versions are designed to enhance the performance of
machine learning at the edge such as Raspberry Pi. It is important to note that both versions
require the model to be quantized and the input must be an 8-bit quantized input tensor.

Edge TPU Max is able to accomplish more complicated and computationally demand-
ing AI tasks than Edge TPU Standard with the overclocking of the processor. This increases
the inferencing speed but also increases power consumption and causes the USB acceler-
ator to become very hot, as the processor is overclocked. Table 4 displays the Edge TPU
specifications that are taken from the datasheet.
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Table 4. Edge TPU versions.

Edge Versions Frequency Power

Edge TPU Standard 4 trillion operations per second 500 mA at 5 V
Edge TPU Max 8 trillion operations per second 900 mA at 5 V

2.4. Image Enhancement

According to Shubham et al. [30], colour spaces such as the RGB model can be used
to demarcate the objects against the background before incorporating them into the CNN
model, thereby improving detection accuracy.

To study the effect of image enhancement using RGB saturation, we use Python
Imaging Library (PIL) to modify the RGB saturation level of the dataset from 5 to 9. As
shown in Table 5, we add 39 enhancement images (less than 5% of total images) of level 1.5,
2.5, and 3.5 to the small dataset of 560 images.

Table 5. Training, Validation, and Test split.

Dataset
Numbering

RGB
Saturation

Enhanced
Images with
RGB Level

Non-Enhanced
Images with
RGB Level

Test
Images

Total
Images

5 1 (control) 39 290 74 560
6 1.5 39 290 74 560
7 2.5 39 290 74 560
8 3.5 39 290 74 560

The 560 images are extracted from Dataset 2, which is listed in Table 3. Dataset 2 is
selected because, in comparison to the other datasets in Table 3, it has a higher mAP value.
Datasets 5 to 8 are identical except for the different RGB saturation levels.

Our objective is to determine whether there is a visible increase in mAP due to RGB
saturation despite the small size of the dataset. This is similar to Charloke [31], who used
CNN on Raspberry Pi to monitor a codling moth population and achieve a high accuracy of
99% with a small dataset of 430 images. In addition, a small dataset allows for fast training
time and practical data preparation [18].

Figure 5 illustrates the effect of the RGB saturation level on the images. The control
group (Enhance 1) is the original image with no saturation added.
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2.5. Approach Distance

In this study, we evaluate the effectiveness of RGB saturation with the variation of
approach distance on the detection scores. As shown in Figure 6, the approach distance
is calculated from the table base to the camera position. Altogether, there are 4 distance
variations of 10 cm, from 35 cm to 65 cm. We use images of an aspect ratio of 416 × 416, as
we have determined that it provides a higher mAP compared to other aspect ratios.
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3. Results
3.1. The Effect of Learning Rate on Mean Average Precision

Table 6 shows the mAP for the model trained with LR0.08 while Table 7 presents the
mAP of the model trained with LR0.16. We observe that the mAP of the model trained
with LR0.08 has a slight drop due to quantization but with a lower standard deviation.
On the other hand, the mAP for LR0.16 has a slight increase due to quantization but with
a higher standard deviation. Therefore, considering both mAP and standard deviation,
we choose LR0.08 for our smart and lean pick-and-place system for better consistent
model performance.

Table 6. Mean Average Precision with Learning Rate of 0.08.

Classes Non-Quantized Model (%) Quantized Model (%)

Blue cube 54.17 54.82
Blue cylinder 62.62 62.44

Red cube 28.13 28.69
Red cylinder 51.19 48.17
Yellow cube 36.33 37.80

Yellow cylinder 54.95 47.67

Overall 47.90 46.63
Standard deviation 11.84 10.96

Table 7. Mean Average Precision with Learning Rate of 0.16.

Classes Non-Quantized Model (%) Quantized Model (%)

Blue cube 44.65 34.16
Blue cylinder 73.39 74.98

Red cube 27.44 33.11
Red cylinder 34.30 45.30
Yellow cube 36.30 32.94

Yellow cylinder 63.71 61.72

Overall 46.63 47.00
Standard deviation 16.52 16.11

Figure 7 shows that the blue cylinder and yellow cylinder have higher mAP. This is
expected for the yellow cylinder as it has more instances than the other classes. On the
other hand, the blue cylinder has the highest mAP despite possessing one of the lowest
number of instances. Strong-coloured objects, such as blue cylinders, have higher mAP due
to their greater contrast to the background, providing more features for machine learning.
This is consistent with our previous study [19].
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3.2. The Effect of Aspect Ratio on Mean Average Precision

The default aspect ratio of 320 × 320 is set as the control dataset while 416 × 416 and
512 × 512 are set as test groups. Table 8 shows the mean Average Precision of the respective
aspect ratio with 5000 steps and Table 9 is with 10,000 steps. The aspect ratio of 416 × 416
is used for the subsequent detection scores test as it has the highest overall mAP for both
5000 steps and 10,000 steps.

Table 8. Mean Average Precision with different aspect ratios (5000 training steps).

Classes 320 × 320 416 × 416 512 × 512

Blue cube 24.32 25.63 23.36
Blue cylinder 26.21 29.61 26.86

Red cube 46.36 53.62 38.22
Red cylinder 39.42 48.30 39.77
Yellow cube 44.30 54.81 38.93

Yellow cylinder 44.30 34.07 36.62

Overall 37.48 41.01 33.96
Comparison with default - +3.53 −3.52

Table 9. Mean Average Precision with different aspect ratios (10000 training steps).

Classes 320 × 320 416 × 416 512 × 512

Blue cube 29.98 36.91 31.61
Blue cylinder 37.80 30.76 31.00

Red cube 27.90 47.36 47.19
Red cylinder 29.06 31.35 37.95
Yellow cube 44.16 45.57 41.05

Yellow cylinder 40.94 48.73 32.05

Overall 34.97 40.11 36.81
Comparison with default - +5.14 +1.84

As mentioned in [17], the mAP on the COCO 2017 validation set is 22.2%. Because
our overall mAP is higher than 22.2%, we can conclude that our detector has achieved
good performance. In comparison with other works using SSD Mobilenet V2 such as
Narkhede et al. 10 on Nvidia Jetson (another low-powered embedded device), our mAP
for a quantized model with a Learning Rate of 0.08 is 46.63%, whereas theirs is 45%. Islam
et al. [32] conducted a study on Raspberry Pi and their mAP was only 23.4%. Based on this,
our results are better than those of the other two works.
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3.3. The Effect of Quantization and Edge TPU on Detection Scores

The detection scores are obtained and presented in Table 10 for Learning Rate 0.08
(LR0.08) and Table 11 for Learning Rate 0.16 (LR0.16). We observe that the model trained
with LR0.08 has higher detection scores than LR0.16. As mentioned in Zhai et al. [33], when
doubling the default Learning Rate, the training diverges. This leads to training instability
and, consequently, a reduced level of detection. A further analysis is conducted on Edge
TPU Standard and Edge TPU Max for LR0.08, which have similar detection scores. We
chose Edge TPU Standard for our future works, as Edge TPU Max overheats the Raspberry
Pi over time and may result in performance loss.

Table 10. Detection scores with Learning Rate 0.08.

Classes Non-Quantized
(%)

Quantized
(%)

Edge TPU
Standard (%)

Edge TPU Max
(%)

Blue cube 98 94 97 97
Blue cylinder 88 88 91 91

Red cube 93 94 94 93
Red cylinder 93 89 88 88
Yellow cube 93 94 92 94

Yellow cylinder 91 89 91 89

Overall 92.67 94 97 97

Table 11. Detection scores with Learning Rate 0.16.

Classes Non-Quantized
(%)

Quantized
(%)

Edge TPU
Standard (%)

Edge TPU Max
(%)

Blue cube 96 94 94 94
Blue cylinder 96 95 96 96

Red cube 97 96 96 97
Red cylinder 95 95 95 94
Yellow cube 97 97 91 97

Yellow cylinder 91 93 91 94

Overall 95.33 95.00 93.83 95.33

3.4. The Effect of RGB Saturation on Mean Average Precision

The results in Table 12 showed that all the mAPs obtained are higher than the COCO
2017 validation dataset of 22.2% for SSD MobileNet V2. As expected, Enhance 3.5 has the
biggest gain in mAP when compared to the control group of Enhance 1.0, as the features
are more distinguishable. Enhance 3.5 has the highest increase with +7.06% over the control
group and a nearly 20% increase over the COCO 2017 validation dataset.

Table 12. Mean Average Precision with Enhanced Saturation Level.

Classes Enhance 1.0 (%) Enhance 1.5 (%) Enhance 2.5 (%) Enhance 3.5 (%)

Blue cube 29.98 31.71 35.1 34.02
Blue cylinder 37.8 37.33 35.36 27.9

Red cube 27.9 53.7 48.79 54.95
Red cylinder 29.06 36.07 41.79 42.4
Yellow cube 44.16 48.26 52.05 54.39

Yellow cylinder 40.94 42.28 38.27 38.54
Overall 34.97 41.56 41.89 42.03

Comparison over control group - +6.59 +6.92 +7.06
Comparison with COCO2017

validation dataset +12.77 +19.36 +19.69 +19.83
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As shown in Figure 8, all enhanced datasets including the control group have a higher
mAP than the COCO 2017 validation dataset of 22.2% as a benchmark, which indicates
improved object detection for our pick-and-place system.
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3.5. The Effect of Quantization on Inference Speed

The inference speed of LR 0.08 and LR 0.16 is shown as Frame Per Seconds (FPS)
in Table 13. We observe that the quantized model increases the FPS for both LR0.08 and
LR0.16 by 0.1 to 0.19 FPS.

Table 13. Inference speed of Non-Quantized vs. Quantized model.

Learning Rate Non-Quantized
(FPS)

Quantized
(FPS) Comparison of FPS

0.08 0.51 0.70 +0.19
0.16 0.48 0.58 +0.1

As depicted in Table 14, compared to the non-quantized model, Edge TPU quadruples
the FPS for both Learning Rates. In addition, the results show that Edge TPU Max outper-
forms Edge TPU Standard by 0.03 to 0.10 FPS. As Edge TPU Max consumes more power,
we choose Edge TPU Standard of LR 0.08 for our future works.

Table 14. Inference speed of Edge TPU Standard vs. Edge TPU Max.

Learning Rate Edge TPU Standard
(FPS)

Edge TPU Max
(FPS) Comparison of FPS

0.08 2.20 2.23 +0.03
0.16 2.16 2.26 +0.10

To compare the FPS, we present inference speed in Figure 9, which shows that Edge
TPU (Standard or Max) has higher inference speed than the normal quantized model.
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3.6. The Effect of Approach Distance on Detection Scores

Table 15 shows the result of real-time detection scores based on the distance variation
of 10 cm from 35 cm to 65 cm for images with aspect ratio 416 × 416 with Enhance
3.5. The results showed that the system could still detect all the workpieces at a 45 cm
approach distance. However, when the distance is at 65 cm, two thirds of the workpieces
are undetected and unrecognized, marked as “-”.

Table 15. Detection scores with variation of approach distance.

Enhancement Level Classes 35 cm (%) 45 cm (%) 55 cm (%) 65 cm (%)

1.5

Blue-cube 94 98 96 81
Blue-cyl 97 97 93 56

Red-cube 95 96 78 -
Red-cyl 93 97 93 90

Yellow-cube 58 93 90 93
Yellow-cyl 99 93 89 97

2.5

Blue-cube 98 97 95 80
Blue-cyl 93 98 78 -

Red-cube 95 91 86 -
Red-cyl 85 92 75 51

Yellow-cube 64 97 50 51
Yellow-cyl 94 76 78 65

3.5

Blue-cube 96 96 88 70
Blue-cyl 89 94 95 -

Red-cube 96 89 88 -
Red-cyl 94 96 93 71

Yellow-cube 76 84 90 79
Yellow-cyl 97 86 91 85

Average detection scores 89.61 92.78 85.89 74.54

Standard deviation 11.43 5.68 10.78 14.84

Figure 10 shows a boxplot summarizing the enhanced dataset. The detection scores
for a distance of 45 cm have the smallest variation while those of a distance of 65 cm have
the largest variation with the undetected workpiece. The figure also shows that distances
of 35 cm and 55 cm have few outliers. Therefore, an approach distance of 45 cm is the most
suitable approach distance for the robot to obtain the best detection scores.
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To enhance our results, we have added signal processing for the detection scores of an
approach distance of 45 cm, as shown in Table 16. We used the Savgol filter [34] to remove
the outliers to the detection scores. According to F. Arzberger et. al. [35], the Savgol filter
removes the effect of the outliers but preserves the signal tendency.

Table 16. Detection scores with optimum approach distance of 45 cm.

Enhancement
Level Classes Original Data Scores

with Outliers (%)
Processed Data Using

Savgol Filter (%)

1.5

Blue-cube 98 97.63
Blue-cyl 97 97.49

Red-cube 96 96.77
Red-cyl 97 95.63

Yellow-cube 93 93.77
Yellow-cyl 93 93.6

2.5

Blue-cube 97 96.83
Blue-cyl 98 96.2

Red-cube 91 92.71
Red-cyl 92 94.23

Yellow-cube 97 88.69
Yellow-cyl 76 87.14

3.5

Blue-cube 96 88.97
Blue-cyl 94 94.34

Red-cube 89 92.94
Red-cyl 96 90.51

Yellow-cube 84 88.06
Yellow-cyl 86 84.89

We use the basic Savgol filter with a window of 5 and a polynomial degree of 2 from
the python SciPy library [36], which is a Python library used for scientific computing and
technical computing. As shown in Figure 11, the graph has become smoother after we
removed the outliers such as the low detection scores of RGB enhanced level 2.



Signals 2024, 5 100

Signals 2024, 5, FOR PEER REVIEW  13 
 

 

To enhance our results, we have added signal processing for the detection scores of 
an approach distance of 45 cm, as shown in Table 16. We used the Savgol filter [34] to 
remove the outliers to the detection scores. According to F. Arzberger et. al. [35], the Sav-
gol filter removes the effect of the outliers but preserves the signal tendency. 

We use the basic Savgol filter with a window of 5 and a polynomial degree of 2 from 
the python SciPy library [36], which is a Python library used for scientific computing and 
technical computing. As shown in Figure 11, the graph has become smoother after we 
removed the outliers such as the low detection scores of RGB enhanced level 2. 

Table 16. Detection scores with optimum approach distance of 45 cm. 

Enhance-
ment Level 

Classes Original Data Scores with 
Outliers (%) 

Processed Data Using Savgol 
Filter (%) 

1.5 

Blue-cube  98 97.63 
Blue-cyl  97 97.49 

Red-cube 96 96.77 
Red-cyl 97 95.63 

Yellow-cube 93 93.77 
Yellow-cyl 93 93.6 

2.5 

Blue-cube  97 96.83 
Blue-cyl  98 96.2 

Red-cube 91 92.71 
Red-cyl 92 94.23 

Yellow-cube 97 88.69 
Yellow-cyl 76 87.14 

3.5 

Blue-cube  96 88.97 
Blue-cyl  94 94.34 

Red-cube 89 92.94 
Red-cyl 96 90.51 

Yellow-cube 84 88.06 
Yellow-cyl 86 84.89 

 
Figure 11. Signal processing of detection scores at approach distance of 45cm. 

4. Statistical Analysis 
As we observed in Table 15 above, the detection scores of 45 cm and 55 cm are similar. 

Therefore, a statistical analysis is conducted to see whether there is a significant difference 
between the two groups of values. We utilize the Mann–Whitney U [37] method as it is 

60
70
80
90

100

Bl
ue

-c
ub

e

Bl
ue

-c
yl

Re
d-

cu
be

Re
d-

cy
l

Ye
llo

w
-c

ub
e

Ye
llo

w
-c

yl

Bl
ue

-c
ub

e

Bl
ue

-c
yl

Re
d-

cu
be

Re
d-

cy
l

Ye
llo

w
-c

ub
e

Ye
llo

w
-c

yl

Bl
ue

-c
ub

e

Bl
ue

-c
yl

Re
d-

cu
be

Re
d-

cy
l

Ye
llo

w
-c

ub
e

Ye
llo

w
-c

yl

RGB Enhanced level 1.5 RGB Enhanced level 2.5 RGB Enhanced level 3.5

Signal Processing of Detection Score at Approach 
Distance of 45 cm

Original data with Outliers Data using Savgol Filter

Figure 11. Signal processing of detection scores at approach distance of 45cm.

4. Statistical Analysis

As we observed in Table 15 above, the detection scores of 45 cm and 55 cm are similar.
Therefore, a statistical analysis is conducted to see whether there is a significant difference
between the two groups of values. We utilize the Mann–Whitney U [37] method as it is
one of the most commonly used non-parametric statistical tests. Developed by Mann and
Whitney in 1947, this non-parametric test is frequently used for small samples of data that
are not normally distributed.

In the Mann–Whitney U test, the null hypothesis states that the medians of the two
respective groups are not different. An alternative hypothesis states that one median is
larger than the other or that the two medians differ. If the null hypothesis is not rejected, it
means that the median of each group of observations is similar. If the null hypothesis is
rejected, it means the two medians differ.

We apply the Mann–Whitney U test to our 45 cm and 55 cm as the number of samples
are small, less than 30, and the detection scores are not normally distributed. Our null
hypothesis (H0) and alternative hypothesis (H1) are as follows:

H0 . The median of APs is equal between 45 cm and 55 cm detection scores.

H1 . The median of APs is not equal between 45 cm and 55 cm detection scores.

Using the SciPy function for the Mann–Whitney U test, we obtain a p-value of
0.787. Since the p-value (0.787) is above the 0.05 significance level, we fail to reject the
null hypothesis.

We conclude that there is not enough evidence to suggest a significant difference
in medians between the two datasets. As the standard deviation differs by 2.23, we
recommend using 55 cm instead of 45 cm for more accurate inference.

5. Validation

For validation, we use dataset Enhance 3.5 and compare the mAP with two other state-
of-the-art (SOTA) models. The SOTA models that used constrained object detection applica-
tions are EfficientDet-Lite0, which is the lightweight version of the EfficientDet family [38],
and the Mobilenet Single Shot Multibox Detector or Mobilenet-SSD [39]. Mobilenet-SSD is
the simpler version of SSD Mobilenet without the Feature Pyramid Network.
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Table 17 shows that the SSD Mobilenet V2 FPNLite model has much higher mAP
compared to the other two detectors. This demonstrates that our detector is able to perform
in accordance with the required specifications as well as meet the project objectives as a
smart and lean pick-and-place system.

Table 17. Mean Average Precision of lightweight detectors.

Classes SSD Mobilenet V2
FPNLite (%) EfficientDet-Lite0 (%) Mobilenet-SSD (%)

Blue cube 34.02 22.85 8.12
Blue cylinder 27.9 6.83 18.81

Red cube 54.95 13.27 28.52
Red cylinder 42.4 36.48 36.63
Yellow cube 54.39 4.70 22.64

Yellow cylinder 38.54 23.66 29.41
Overall mAP 42.03 17.96 24.02

Comparison Nil −24.07 −18.01

6. Discussion

Our project aims to develop a smart and lean pick-and-place system for a lightweight
embedded microcontroller such as Raspberry Pi. The improvement in the Average Precision
and detection scores depends on many factors and features; this study focused on the
Learning Rate, model quantization, and use of a hardware accelerator to improve the
mAP and inference speed. With the release of Raspberry Pi version 5 with faster inference
speed, we should be able to use it to improve the inference speed. This is important for the
pick-and-place operation in that the robot should react fast enough to pick up the objects.

Although our deep learning-based object detection model has demonstrated its ability
to detect objects accurately, the computational requirements and real-time performance
capabilities vary depending on the actual number of steps and other hyperparameter settings.

In addition, the results of the detection score are subject to ambient lighting and noise,
which may vary significantly if the workplace is located in a poorly illuminated area or
dusty area such as logistics and a warehouse. This is due to the fact that dust will obstruct
the camera sensor, making it impossible for the model to accurately detect the features of
the objects.

Our smart and lean pick-and-place robot can be deployed in agriculture and used to
identify ripe fruit for harvesting. However, the colour characteristics of fruits change greatly
under different lighting conditions and different growth stages. The shape characteristics
are also impacted by different shooting angles of the camera. Therefore, the method of
detecting fruits based on colour and shape features has certain limitations.

Furthermore, we should take note of the robot approach distance depending on the
type of robot. For example, Universal Robot 3 has the arm reach of 50 cm and if the
approach distance from the arm to the table base is bigger than 50 cm, the robot arm is
not long enough to reach the objects. This would also affect the detection scores as our
control algorithm utilizes high and consistent detection scores to establish the location of
the workpiece and control the arm movement.

Our application can be extended to an edge computing environment as the Raspberry
Pi is a low-power and low-computation computer that is close to a sensor. The smart-and-
lean robot solution can be used for multi-object tracking for city surveillance in an edge
computing environment with a flying robot or drone. In addition, our application can be
used by a domestic autonomous robot as an IoT edge signal processing sensor, monitoring
the condition of patients in a healthcare facility.

7. Conclusions

We presented a systematic method to determine the optimum aspect ratio and showed
that an aspect ratio of 416 × 416 has higher mAP for both 5000 and 10,000 steps. By
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increasing the RGB saturation level of the images, we gain a 7% increase in mean Average
Precision (mAP) when compared to the control group and a 20% increase in mAP when
compared to the COCO2017 validation dataset of 22.2%. We showed that Learning Rate
0.08 with Edge TPU Standard provided a high detection score of 97%, as compared to
Learning Rate 0.16 with Edge TPU Max. By combining the enhancement level and variation
of distance, we proved that the optimum approach distance of 45 cm was able to obtain the
maximum detection scores. The results are validated by comparing the performance with
other SOTA embedded controllers—EfficientDet-Lite0 and Mobilenet-SSD.

Furthermore, our mAP for SSD Mobilenet V2 is 46.63%, whereas the mAPs of previous
studies such as Narkhede et al. [10] and Islam et al. [32] are 45% and 23.4%, respectively.
This demonstrates how our research has led to improved object detectors.

In the future, we plan to continue to develop a machine learning model with practical
data preparation for embedded devices. Our goal is to further improve the inference time
and Average Precision so that it can be used in applications such as the tightening of bolts
and holes and the alignment of shipping containers. The use of machine learning models
for pick-and-place applications on Raspberry Pi using SSD MobileNet V2 FPN320-Lite is
relatively new and will provide useful insights toward developing vision systems that can
perform reliably on real-world images.

Author Contributions: Conceptualization, E.K. and J.J.C.; methodology, E.K., Z.J.C. and M.L.; valida-
tion, E.K., Z.J.C. and M.L.; formal analysis, E.K., Z.J.C. and M.L.; investigation, E.K.; writing—original
draft preparation, E.K.; writing—review and editing, E.K. and J.J.C.; supervision, Z.J.C.; funding
acquisition, J.J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data that support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Singapore Busineess Review. Available online: https://sbr.com.sg/information-technology/news/time-saving-top-benefit-ai-

singaporean-businesses-zoom (accessed on 3 January 2024).
2. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017.
3. Aamir, S.M.; Ma, H.; Khan MA, A.; Aaqib, M. Real-Time Object Detection in Occluded Environment with Background Cluttering

Effects Using Deep Learning. arXiv 2024, arXiv:2401.00986.
4. Nurfirdausi, A.F.; Soekirno, S.; Aminah, S. Implementation of Single Shot Detector (SSD) MobileNet V2 on Disabled Patient’s

Hand Gesture Recognition as a Notification System. In Proceedings of the 2021 International Conference on Advanced Computer
Science and Information Systems (ICACSIS), Depok, Indonesia, 23–25 October 2021; pp. 1–6. [CrossRef]

5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. Available online:
http://pjreddie.com/yolo/ (accessed on 20 January 2023).

7. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

8. Aqsa, A.C.; Mahmudah, H.; Sudibyo, R.W. Detection and Classification of Road Damage Using CNN with Hyperparameter
Optimization. In Proceedings of the 2022 6th International Conference on Informatics and Computational Sciences (ICICoS),
Semarang, Indonesia, 28–29 September 2022.

9. Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An automatic traffic density estimation using Single Shot Detection (SSD)
and MobileNet-SSD. Phys. Chem. Earth Parts A/B/C 2019, 110, 176–184. [CrossRef]

10. Narkhede, M.; Chopade, N. Real-Time Detection of Vulnerable Road Users Using a Lightweight Object Detection Model. Int. J.
Intell. Syst. Appl. Eng. 2024, 12, 129–135.

11. Kumar, S.; Kumar, R. Real-Time Detection of Road-Based Objects using SSD MobileNet-v2 FPNlite with a new Benchmark
Dataset. In Proceedings of the 2023 4th International Conference on Computing, Mathematics and Engineering Technologies
(iCoMET), Sukkur, Pakistan, 17–18 March 2023; pp. 1–5.

https://sbr.com.sg/information-technology/news/time-saving-top-benefit-ai-singaporean-businesses-zoom
https://sbr.com.sg/information-technology/news/time-saving-top-benefit-ai-singaporean-businesses-zoom
https://doi.org/10.1109/ICACSIS53237.2021.9631333
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
http://pjreddie.com/yolo/
https://doi.org/10.1016/j.pce.2018.12.001


Signals 2024, 5 103

12. Yuan, T.; Lv, L.; Zhang, F.; Fu, J.; Gao, J.; Zhang, J.; Li, W.; Zhang, C.; Zhang, W. Robust Cherry Tomatoes Detection Algorithm in
Greenhouse Scene Based on SSD. Agriculture 2020, 10, 160. [CrossRef]

13. Magalhães, S.A.; Castro, L.; Moreira, G.; dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox
Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [CrossRef]
[PubMed]

14. Ramalingam, B.; Elara Mohan, R.; Balakrishnan, S.; Elangovan, K.; Félix Gómez, B.; Pathmakumar, T.; Devarassu, M.; Mohan
Rayaguru, M.; Baskar, C. sTetro-Deep Learning Powered Staircase Cleaning and Maintenance Reconfigurable Robot. Sensors 2021,
21, 6279. [CrossRef] [PubMed]

15. Teng, T.W.; Veerajagadheswar, P.; Ramalingam, B.; Yin, J.; Elara Mohan, R.; Gómez, B.F. Vision Based Wall Following Framework:
A Case Study With HSR Robot for Cleaning Application. Sensors 2020, 20, 3298. [CrossRef] [PubMed]

16. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection
toolbox and benchmark. arXiv 2019, arXiv:1906.07155.

17. Tensorflow Hub. Available online: https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_320x320/1 (accessed on 6 Jan-
uary 2024).

18. Kee, E.; Chong, J.J.; Choong, Z.J.; Lau, M. A Comparative Analysis of Cross-Validation Techniques for a Smart and Lean
Pick-and-Place Solution with Deep Learning. Electronics 2023, 12, 2371. [CrossRef]

19. Kee, E.; Chong, J.J.; Choong, Z.J.; Lau, M. Development of Smart and Lean Pick-and-Place System Using EfficientDet-Lite for
Custom Dataset. Appl. Sci. 2023, 13, 11131. [CrossRef]

20. Roboflow. Available online: https://roboflow.com/ (accessed on 2 January 2024).
21. Google Colab. Available online: https://colab.research.google.com/ (accessed on 2 January 2024).
22. Google Developer. Available online: https://developers.google.com/machine-learning/data-prep/construct/sampling-

splitting/imbalanced-data (accessed on 27 January 2024).
23. Quantization. Available online: https://www.tensorflow.org/lite/performance/post_training_quantization (accessed on 26

December 2023).
24. Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a

Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]
25. Wilson, D.; Martinez, T. The need for small learning rates on large problems. In Proceedings of the IJCNN’01. International

Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), Washington, DC, USA, 15–19 July 2001; Volume 1,
pp. 115–119.

26. Toma, A.C.; Panica, S.; Zaharie, D.; Petcu, D. Computational challenges in processing large hyperspectral images. In Proceedings
of the 2012 5th Romania Tier 2 Federation Grid, Cloud & High Performance Computing Science (RQLCG), Cluj-Napoca, Romania,
25–27 October 2012.

27. Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022, 15, 531–538. [CrossRef]
28. Hsu, K.C.; Tseng, H.W. Accelerating applications using edge tensor processing units. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MO, USA, 14–19 November 2021.
29. Edge TPU. Available online: https://coral.ai/docs/ (accessed on 2 January 2024).
30. Nain, S.; Mittal, N.; Hanmandlu, M. CNN-based plant disease recognition using colour space models. Int. J. Image Data Fusion

2024, 1–14. [CrossRef]
31. Chakole, S.; Ukani, N. Low-Cost Vision System for Pick and Place application using camera and ABB Industrial Robot. In

Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020.

32. Bin Islam, R.; Akhter, S.; Iqbal, F.; Rahman, S.U.; Khan, R. Deep learning based object detection and surrounding environment
description for visually impaired people. Heliyon 2023, 9, e16924. [CrossRef] [PubMed]

33. Zhai, S.; Likhomanenko, T.; Littwin, E.; Busbridge, D.; Ramapuram, J.; Zhang, Y.; Gu, J.; Susskind, J.M. Stabilizing transformer
training by preventing attention entropy collapse. In Proceedings of the International Conference on Machine Learning, PMLR,
Honolulu, HI, USA, 23–29 July 2023.

34. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

35. Arzberger, F.; Wiecha, F.; Zevering, J.; Rothe, J.; Borrmann, D.; Montenegro, S.; Nüchter, A. Delta Filter-Robust Visual-Inertial Pose
Estimation in Real-Time: A Multi-Trajectory Filter on a Spherical Mobile Mapping System. In Proceedings of the 2023 European
Conference on Mobile Robots (ECMR), Coimbra, Portugal, 4–7 September 2023.

36. Scipy Library. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html (accessed
on 6 February 2024).

37. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.
Stat. 1947, 18, 50–60. [CrossRef]

https://doi.org/10.3390/agriculture10050160
https://doi.org/10.3390/s21103569
https://www.ncbi.nlm.nih.gov/pubmed/34065568
https://doi.org/10.3390/s21186279
https://www.ncbi.nlm.nih.gov/pubmed/34577486
https://doi.org/10.3390/s20113298
https://www.ncbi.nlm.nih.gov/pubmed/32531960
https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_320x320/1
https://doi.org/10.3390/electronics12112371
https://doi.org/10.3390/app132011131
https://roboflow.com/
https://colab.research.google.com/
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://www.tensorflow.org/lite/performance/post_training_quantization
https://doi.org/10.3390/electronics10030279
https://doi.org/10.1002/sam.11583
https://coral.ai/docs/
https://doi.org/10.1080/19479832.2023.2300335
https://doi.org/10.1016/j.heliyon.2023.e16924
https://www.ncbi.nlm.nih.gov/pubmed/37484219
https://doi.org/10.1021/ac60214a047
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://doi.org/10.1214/aoms/1177730491


Signals 2024, 5 104

38. Kamath, V.; Renuka, A. Performance Analysis of the Pretrained EfficientDet for Real-time Object Detection on Raspberry Pi. In
Proceedings of the 2021 International Conference on Circuits, Controls and Communications (CCUBE), Bangalore, India, 23–24
December 2021; pp. 1–6. [CrossRef]

39. Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a Surface Defect Detection Algorithm Based on MobileNet-SSD. Appl. Sci.
2018, 8, 1678. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CCUBE53681.2021.9702741
https://doi.org/10.3390/app8091678

	Introduction 
	Materials and Methods 
	Learning Rate 
	Aspect Ratio 
	Quantization and Edge TPU 
	Image Enhancement 
	Approach Distance 

	Results 
	The Effect of Learning Rate on Mean Average Precision 
	The Effect of Aspect Ratio on Mean Average Precision 
	The Effect of Quantization and Edge TPU on Detection Scores 
	The Effect of RGB Saturation on Mean Average Precision 
	The Effect of Quantization on Inference Speed 
	The Effect of Approach Distance on Detection Scores 

	Statistical Analysis 
	Validation 
	Discussion 
	Conclusions 
	References

