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Abstract: Dynamic mode decomposition (DMD) is a powerful tool for separating the background
and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD
modes, to facilitate the extraction of the near-zero mode, which represents the stationary background.
Simultaneously, it captures the evolving motion in the remaining modes, which correspond to the
moving foreground components. However, when applied to noisy video, this separation leads to
degradation of the background and foreground components, primarily due to the noise-induced
degradation of the DMD mode. This paper introduces a novel noise removal method for the DMD
mode in noisy videos. Specifically, we formulate a minimization problem that reduces the noise in
the DMD mode and the reconstructed video. The proposed problem is solved using an algorithm
based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). We applied the
proposed method to several video datasets with different levels of artificially added Gaussian noise
in the experiment. Our method consistently yielded superior results in quantitative evaluations using
peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to naive noise removal
methods. In addition, qualitative comparisons confirmed that our method can restore higher-quality
videos than the naive methods.

Keywords: dynamic mode decomposition; noise removal; plug-and-play; alternating direction
method of multipliers; total variation; BM3D

1. Introduction
1.1. Background

Video processing is critical in surveillance and in-vehicle systems and specifically
includes essential tasks such as noise removal, foreground/background separation, and
object detection. The foreground/background separation process helps detect, identify,
track, and recognize objects within a video sequence.

Dynamic mode decomposition (DMD) is useful for separating background and fore-
ground components in various applications [1–9]. Initially applied in fluid dynamics,
DMD has evolved into a powerful tool for analyzing the dynamics of nonlinear systems,
as shown in research such as [10–12]. In background/foreground separation, the DMD
method identifies a static background by performing a spatiotemporal decomposition of
video frames. It effectively distinguishes between static modes and the remaining dynamic
modes, separating a static background from a dynamic foreground.

In low-light conditions and using high-sensitivity settings, the captured video ex-
hibits noticeable noise levels due to amplified sensor noise. This amplification occurs
because camera sensors operating at high sensitivity are more susceptible to capturing
and amplifying random electrical signals. However, sensor noise often deteriorates the
DMD mode when attempting to separate foreground and background components from
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noisy videos using the DMD algorithm. This issue has also been mentioned in the field of
fluid analysis, where sensor noise can introduce bias errors and reduce the accuracy of the
analysis of fluids.

To address this limitation, some researchers have proposed the total-least-squares
DMD (tlsDMD) algorithm to mitigate bias errors due to sensor noise [13,14]. However,
tlsDMD-based methods are ineffective at removing spatial noise to separate a noisy
video into foreground and background because they lack prior knowledge that promotes
image smoothness.

1.2. Related Work

In [10], Schmid introduced the basic DMD algorithm and explained its relevance
to standard methods used in fluid analysis for atmospheric or oceanographic data. The
potential of the DMD algorithm was demonstrated through several scenarios, including
a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible
membrane, and a jet passing between two cylinders. The demonstrations showed the
ability of this algorithm to analyze fluid flows and identify critical physical mechanisms
that govern them, highlighting its power and versatility.

In [13,14], the vulnerability of the DMD algorithm to sensor noise was mentioned. The
basic DMD algorithm does not take sensor noise into account. When decomposing snap-
shots degraded by sensor noise, the estimated eigenvalues deviate from the ideal values
due to noise bias. Hemati et al. proposed the tlsDMD algorithm, which estimates the bias
due to sensor noise in forward and backward DMD mode estimation of snapshots [14]. This
algorithm calculates DMD modes and their eigenvalues while excluding the estimated bias.
As a result, the bias caused by sensor noise can be removed, and simulation experiments
showed that the estimated eigenvalues are close to those calculated for snapshots without
sensor noise. Dawson et al. analytically derived a formula that explicitly shows how DMD
is affected by noise, assuming that sensor noise is uncorrelated with system dynamics [13].
They complemented the derivation of the tlsDMD algorithm. However, this algorithm
aims to remove the sensor noise bias, and the noise removal accuracy of the DMD mode
is insufficient. In addition, they do not consider the reconstruction error of snapshots.
Therefore, when applied to videos for foreground/background separation applications, it
is impossible to remove sensor noise from reconstructed video frames sufficiently and their
DMD modes.

Various noise removal methods have been proposed for images and videos, including
optimization-based approaches such as total variation (TV) regularization [15–21] and
filter-based noise removal methods such as block matching 3D (BM3D) [22–25]. The TV is
designed to represent the total magnitude of the vertical and horizontal discrete gradients
of an image and promotes the local smoothness property in optimization [15–19]. In the
case of noise removal, the TV effectively reduces noise by emphasizing spatial smoothness
while preserving edges and structures. Although BM3D was proposed over a decade ago,
it remains one of the most advanced methods for denoising images and videos [22,23].
It works by partitioning the image into blocks, searching for similar blocks, and then
thresholding their noise in the 3D-transformed domain using the discrete cosine transform
(DCT). BM3D uses local and non-local similarities in the image to effectively reduce noise
while preserving image structure and texture.

However, these noise removal methods do not explicitly account for the spatial smooth-
ness and texture of the DMD mode. Improving the spatial smoothness and texture of both
the video frames and their DMD modes is critical to obtaining reliable results for prac-
tical video analysis in the presence of noise. Additionally, for foreground/background
separation applications, noise removal on the DMD mode obtained by its decomposition
must be considered.
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1.3. Contribution

This paper introduces a novel noise removal method for the DMD mode obtained
by applying DMD to noisy videos. We formulate a minimization problem within the
plug-and-play framework that aims to simultaneously reduce the noise in DMD modes
and its reconstructed videos. To solve the proposed problem, we introduce an algorithm
based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). The
experimental results demonstrate the effectiveness of the proposed method by comparing
it with naive noise removal methods. The main contributions of this paper are as follows:

1. Introducing a novel minimization problem that simultaneously removes noise from
DMD modes and improves their reconstructed video quality. This problem includes
two implicit regularization terms for the DMD modes and their reconstructed video,
along with two constraints on the reconstructed video: one for reconstruction error
and the other to ensure real numbers.

2. The development of the PnP-ADMM algorithm is based on the plug-and-play frame-
work and Gaussian denoisers. This algorithm solves the proposed minimization
problem and aims to obtain optimal DMD modes capable of reconstructing a smooth
and noiseless video.

3. Two advanced noise removal methods, the total variation (TV) algorithm and BM3D,
are employed as Gaussian denoisers to implicitly regularize the DMD modes and
their reconstructed video within the optimization algorithm.

In the previous study [26], we used the TV denoiser with the PnP-ADMM algorithm to
remove noise from the DMD modes obtained by decomposing the observed noisy videos.
Since the DMD modes are complex numbers, the reconstructed video may have values in the
imaginary part. Although the reconstructed video must contain real numbers, such constraints
were not explicitly considered when formulating the optimization problem. In the proposed
method, we replaced the TV denoiser with the BM3D denoiser to improve the noise
removal performance. Additionally, we added a constraint to restrict the reconstructed
video obtained by optimal DMD mode to real numbers in the optimization problem.

The remainder of this paper is organized as follows. In Section 2, we present mathe-
matical preliminaries, a DMD algorithm, a PnP-ADMM algorithm, some proximal tools,
and total variation regularization. Section 3 introduces the proposed minimization problem
for noise removal of the DMD mode. In Section 4, several examples are presented and com-
pared with some naive noise removal methods to verify the effectiveness of the proposed
method. Finally, Section 5 concludes the paper.

2. Preliminaries

Throughout this paper, bold-faced lowercase and uppercase letters indicate vectors
and matrices, respectively. The notations RN and CN denote real- and complex-valued
vector spaces of N dimensions, respectively. We define the notations RN×M and CN×M as
the set of N ×M real-valued and complex-valued matrices, respectively. The symbols (·)⊤
and (·)∗ denote the operations of non-conjugate and conjugate transpose of vectors and
matrices, respectively. The symbol diag(X) denotes the operation of extracting the diagonal
components of a diagonal matrix X and converting it into a column vector.

2.1. Dynamic Mode Decomposition

The DMD algorithm is defined for pairs of N-dimentional data {xi, yi} satisfying
yi = Axi (i = 1, . . . , M), for some matrix A ∈ RN×N . These vectors are sampled by
equispaced snapshots of a dynamical system. However, the matrix A is not completely
determined by the snapshots. The DMD algorithm estimates A such that satisfying Y ≈ AX,
where Y := [y1, . . . , yM] and X := [x1, . . . , xM]. Several methods have been proposed to
compute DMD [10,13,14,27,28].

In this paper, we use the basic DMD algorithm [10] described as follows:
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(i) Calculate the (reduced) singular value decomposition (SVD) of the matrix X as X =

USV∗, where U ∈ CN×r, S ∈ Cr×r, and V ∈ CM×r, with the rank r.
(ii) Let Ã be defined by Ã = U∗YVS−1.
(iii) Compute the eigenvalue decomposition of Ã as ÃW = WΛ, where W := [w1, . . . , wr]

is a matrix configured by arranging the eigenvectors wi ∈ Cr (i = 1, . . . , r) and Λ is a
diagonal matrix having eigenvalues λi (i = 1, . . . , r) as the diagonal elements.

(iv) The DMD mode Φ := [ϕ1, . . . , ϕr] (ϕi ∈ CN) is obtained by Φ = UW.
(v) Then, we define Σ ∈ Cr×M as

Σ := [diag(Λ0) diag(Λ1) · · · diag(ΛM−1)]. (1)

(vi) Estimate the diagonal matrix B ∈ Cr×r by minimizing the cost function

E(B) := ∥X−ΦBΣ∥2
F. (2)

(vii) Finally, X is represented by ΦBΣ as

X ≈ ΦBΣ. (3)

In this manner, the DMD algorithm decomposes X into Φ, B, and Σ, where Φ is the
set of dynamic modes of observed dynamical systems, each diagonal element of B is the
amplitude of each mode, and each row of Σ is a Vandermonde matrix describing the
temporal evolution of each mode.

2.2. Plug-and-Play Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) [29] is a proximal splitting
algorithm for convex optimization problems of the form

min
x∈RN1 , z∈RN2

F(x) + G(z) s.t. z = Lx, (4)

where F and G are usually assumed to be a quadratic and proximable function, respectively,
and L ∈ RN2×N1 is a matrix with full-column rank. For any x(0) ∈ RN1 , z(0) ∈ RN2 , b(0) ∈
RN2 and ρ > 0, the ADMM algorithm is given by

x(t+1) = arg min
x

{
F(x) +

ρ

2
∥z(t) − Lx− b(t)∥2

2

}
,

z(t+1) = arg min
z

{
G(z) +

ρ

2
∥z− Lx(t+1) − b(t)∥2

2

}
,

b(t+1) = b(t) + Lx(t+1) − z(t+1),

(5)

where the superscript (t) denotes the iteration number. The sequence generated by Equation (5)
converges quickly to an optimal solution of Equation (4).

In PnP-ADMM [30,31], the solution of the sub-problem with respect to z (assuming L
is the identity matrix) is replaced by an off-the-shelf noise removal algorithm, to yield

z(t+1) = Dσ

(
x(t+1) + b(t)

)
, (6)

where Dσ denotes the Gaussian denoiser and σ is the standard deviation of the assumed
additive white Gaussian noise (AWGN).

2.3. Proximal Tools

The proximity operator [32] is a key tool of proximal splitting techniques. Let x ∈ RN

be an input vector. For any γ > 0, the proximity operator of f over RN is defined by

proxγ f (x) := arg min
y∈RN

f (y) +
1

2γ
∥x− y∥2. (7)
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For a given nonempty closed convex set C, the indicator function of C is defined by

ιC(x) :=
{

0, if x ∈ C,
+∞, otherwise.

(8)

The proximity operator of ιC is expressed as

proxγιC
(x) := arg min

y∈RN
ιC(x) +

1
2γ
∥x− y∥2

2. (9)

The solution of proxγιC
should be in the set C and minimize ∥x− y∥2

2. Thus, for any
index γ > 0, this proximity operator is equivalent to the metric projection onto C, i.e.,
PC(x) = proxγιC

(x).
Let l and u ∈ RN be the lower and upper bounds, respectively. The box constraint

forces each element of x into the dynamic range [li, ui] for i = 1, . . . , N, and its closed
convex set is defined as

C[l,u] :=
{

x ∈ RN | li ≤ xi ≤ ui (i = 1, . . . , N)
}

. (10)

The computation of the metric projection onto C[l,u] for i = 1, . . . , N is given by

[
PC[l,u](x)

]
i
=


li, if xi < li,
ui, if xi > ui,
xi, if li ≤ xi ≤ ui.

(11)

The ℓ2 ball constraint forces the Euclidean distance between a vector x and a centered
vector v to be less than a radius ϵ, and its closed convex set is defined as

B2
v,ϵ :=

{
x ∈ RN | ∥x− v∥2 ≤ ϵ

}
. (12)

The computation of the metric projection onto B2
v,ϵ is given by

PB2
v,ϵ
(x) =

{
x, if ∥x− v∥2 ≤ ϵ,
v + ϵ x−v

∥x−v∥2
, otherwise . (13)

2.4. Total Variation

The total variation (TV) is defined as the total magnitude of the vertical and hori-
zontal discrete gradients of an image [16]. When we utilize the TV as a regularization
on minimization problems for images, it promotes the local smoothness of images to
be estimated.

Let x ∈ RN be a vectorized grayscale image, where N is the total number of pixels.
Also, let Dv and Dh ∈ RN×N be the vertical and horizontal first-order differential operators
with a Neumann boundary, respectively. Then, the differential operator with respect to x is
defined by D := [D⊤v D⊤h ]

⊤(∈ R2N×N)
, and thus the TV is defined as [16,33,34]

∥x∥TV := ∥Dx∥1,2 =
N

∑
i=1

√
(Dvx)2

i + (Dhx)2
i , (14)

where (Dvx)i and (Dhx)i are the i-th element of Dvx and Dhx, respectively.
The minimization problem with TV regularization, which is often used in PnP-ADMM

as a denoiser, is defined as

x⋆ = arg min
x∈RN

λ∥x∥TV +
1
2
∥x− xin∥2

2, (15)
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where xin is a vectorized input image and λ > 0 is a balancing weight of two terms. We
can find the optimal solution of Equation (15) by using the ADMM algorithm.

By introducing auxiliary variables z ∈ R2N , we rewrite Equation (15) into the following
equivalent expression:

min
x,z

λ∥z∥TV +
1
2
∥x− xin∥2

2 s.t. z = x. (16)

The algorithm for solving Equation (16) with ρ > 0 is summarized in Algorithm 1. The
update of x can be achieved by solving a simple quadratic minimization problem. The solution
of the sub-problem with respect to z can be obtained for each sub-vector zG1 , . . . , zGN , by

zGi = proxλ/ρ∥·∥TV

(
yGi

)
= max

{
1− λ

ρ

(
y2

i + y2
i+N

)− 1
2 , 0

}
yGi , (17)

where zGi =: {zi, zi+N} and yGi =: {yi, yi+N} are the i-th sub-vector of z and y, respectively.

Algorithm 1 Solved algorithm for Equation (16)

1: Input : xin, z(0), b(0), ρ, λ

2: Output : x(t)

3: while A stopping criterion is not satisfied do
4: x(t+1) ← arg minx

1
2 ∥x− xin∥2

2 +
ρ
2 ∥z(t) −Dx− b(t)∥2

2 ;

5: z(t+1) ← proxλ/ρ∥·∥TV

(
Dx(t+1) + b(t)

)
;

6: b(t+1) ← b(t) + Dx(t+1) − z(t+1) ;
7: t← t + 1;
8: end while

3. Proposed Methods
3.1. Data Model

We consider the following observation model

ym = xm + nm, (18)

where xm ∈ RN(m = 1, . . . , M + 1) denotes a vectorized latent video frame, N is the
number of pixels, M + 1 is the number of frames, nm ∈ RN is an AWGN vector, and
ym ∈ RN(m = 1, . . . , M + 1) is a vectorized observed video frame. Furthermore, we
defined the matrix form of m = 1, . . . , M frames of the observed and decomposed video by
using the above ym and the DMD algorithm described in Section 2.1 as

Y := [y1 y2 . . . yM] ≈ Φ̂BΣ, (19)

where Φ̂ ∈ CN×r is the matrix consisting of noisy DMD modes arranged to the row
direction. We assumed that DMD modes are degraded, while its amplitudes B and the
temporal evolution Σ are scarcely affected by noise.

3.2. Minimization Problem

Our aim is to find a noiseless DMD mode matrix Φ⋆ from a noisy observed video
Y ≈ Φ̂BΣ. To estimate Φ⋆, we formulate the following minimization problem:

min
Φ

αRr(ΦBΣ) + (1− α)Rm(Φ) s.t. ∥Y−ΦBΣ∥F ≤ ϵ, ΦBΣ ∈ RN×M, (20)

where Rr and Rm are regularization terms for a reconstructed video ΦBΣ and a DMD
mode matrix Φ, respectively, and α ∈ [0, 1] is the balancing weight of these terms. The
observed video matrix consists of real numbers, but the reconstructed video may contain
complex numbers due to the nature of the matrices obtained by the DMD algorithm, which
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are complex. Therefore, we introduce a real-valued constraint on the reconstructed video
in the minimization problem.

To find a solution of Equation (20), we employ the PnP-ADMM algorithm described
in Section 2.2.

3.3. Optimization

The minimization problem Equation (20) is not directly applicable to PnP-ADMM. We
reformulate it in a form that can be applied to PnP-ADMM. First, we define the convex set
BF

Y,ϵ as

BF
Y,ϵ :=

{
X ∈ RN×M | ∥X− Y∥F ≤ ϵ

}
. (21)

Then, we reformulate Equation (20) into the following unconstrained problem:

min
Φ

αRr(ΦBΣ) + (1− α)Rm(Φ) + ιBF
Y,ϵ
(ΦBΣ) + ιRN×M (ΦBΣ), (22)

where ιBF
Y,ϵ
(·) is the indicator function of BF

Y,ϵ. This function guarantees that the Frobenius

norm of Y−ΦBΣ is less than or equal to ϵ. Similarly, ιRN×M (·) is the indicator function of
RN×M. This function guarantees that the reconstructed video is composed of real numbers.
Thus, the role of the third and fourth terms of Equation (22) correspond to the constraints of
the minimization problem Equation (20). Furthermore, by introducing auxiliary variables
Z1 ∈ CN×M, Z2 ∈ CN×r, Z3 ∈ CN×M, and Z4 ∈ CN×M, we rewrite the minimization
problem Equation (22) into the following equivalent expression:

min
Φ,Zi(i=1,2,3,4)

αRr(Z1) + (1− α)Rm(Z2) + ιBF
Y,ϵ
(Z3) + ιRN×M (Z4), s.t. Z1 = ΦBΣ, Z2 = Φ, Z3 = ΦBΣ, Z4 = ΦBΣ. (23)

The minimization problem Equation (23) can be applied to PnP-ADMM. The process of
PnP-ADMM for solving Equation (23) with ρi (i = 1, 2, 3, 4) is summarized in Algorithm 2.

Algorithm 2 Proposed algorithm for Equation (23)

1: Input: Y, Z(0)
i , Θ

(0)
i , ρi (i = 1, 2, 3, 4), α, ϵ

2: Output : Φ(t)

3: while A stopping criterion is not satisfied do
4: Φ(t+1) ← arg minΦ

ρ1
2 ∥Z

(t)
1 − ΦBΣ − Θ

(t)
1 ∥2

F + ρ2
2 ∥Z

(t)
2 − Φ − Θ

(t)
2 ∥2

F + ρ3
2 ∥Z

(t)
3 − ΦBΣ − Θ

(t)
3 ∥2

F +
ρ4
2 ∥Z

(t)
4 −ΦBΣ−Θ

(t)
4 ∥2

F ;

5: Z(t+1)
1 ← DRr,α/ρ1

(
Φ(t+1)BΣ + Θ

(t)
1

)
;

6: Z(t+1)
2 ← DRm,(1−α)/ρ2

(
Φ(t+1) + Θ

(t)
2

)
;

7: Z(t+1)
3 ← PBF

Y,ϵ

(
Φ(t+1)BΣ + Θ

(t)
3

)
;

8: Z(t+1)
4 ← PRN×M

(
Φ(t+1)BΣ + Θ

(t)
4

)
;

9: Θ
(t+1)
1 ← Θ

(t)
1 + Φ(t+1)BΣ− Z(t+1)

1 ;

10: Θ
(t+1)
2 ← Θ

(t)
2 + Φ(t+1) − Z(t+1)

2 ;

11: Θ
(t+1)
3 ← Θ

(t)
3 + Φ(t+1)BΣ− Z(t+1)

3 ;

12: Θ
(t+1)
4 ← Θ

(t)
4 + Φ(t+1)BΣ− Z(t+1)

4 ;
13: t← t + 1;
14: end while

The update of Φ in step 4 of Algorithm 2 is achieved by solving the quadratic mini-
mization problem. The optimal solution satisfies the condition that the partial derivative of
the following quadratic cost function with respect to Φ is zero (hereafter, the superscript
(t) is omitted for simplicity):

E(Φ) =
ρ1

2
∥Z1 −ΦBΣ−Θ1∥2

F +
ρ2

2
∥Z2 −Φ−Θ2∥2

F +
ρ3

2
∥Z3 −ΦBΣ−Θ3∥2

F +
ρ4

2
∥Z4 −ΦBΣ−Θ4∥2

F. (24)
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By setting the first-order derivative to zero, the optimal solution is determined by
solving the system of linear equations:

ΦΨ = Ξ,{
Ψ = ρ1BΣΣ∗B∗ + ρ2I + ρ3BΣΣ∗B∗ + ρ4BΣΣ∗B∗,
Ξ = ρ2(Z1 −Θ1)Σ

∗B∗ + ρ2(Z2 −Θ2) + ρ3(Z3 −Θ3)Σ
∗B∗ + ρ4(Z4 −Θ4)Σ

∗B∗,
(25)

where I ∈ RM×M is the identity matrix. The optimal solution is obtained by the inverse
problem Φ⋆ = ΞΨ−1.

The updates of Z1 and Z2 in steps 5 and 6 of Algorithm 2 can be accomplished by
employing the Gaussian denoiser DRr,α/ρ1

and DRm,(1−α)/ρ2
as regularization termsRr and

Rm, respectively. In our experiments, we utilized the TV algorithm discussed in Section 2.4
or BM3D [22] for both denoisers of DRr,α/ρ1

and DRm,(1−α)/ρ2
. These Gaussian denoisers can

restore smooth reconstructed frames and DMD modes while effectively removing noise.
The updates of Z3 and Z4 in steps 7 and 8 of Algorithm 2 require the computation of the

proximity operators for the indicator functions of ιBF
Y,ϵ
(·) and ιRN×M (·), which are equivalent

to the metric projections onto them. Similar to Equation (13), the metric projection onto
BF

Y,ϵ is given by

PBF
Y,ϵ
(X) =

{
X, if X ∈ BF

Y,ϵ,

Y + ϵ
(X−Y)
∥X−Y∥F

, otherwise.
(26)

Then, the metric projection onto RN×M is given by PRN×M (X) = real(X), where
real(X) is the real part of X.

4. Experiments

To demonstrate the effectiveness of the proposed method, we applied it to several
noisy videos and compared it with naive noise removal methods in which the TV and
BM3D denoisers were applied directly to the video frames. We refer to these methods as
“naive TV” and “naive BM3D”. These results were obtained by setting α to 1, and these
methods did not consider any regularization for the DMD mode. By comparing with such
naive noise removal approaches, we can confirm the effectiveness of our proposed method
that considers regularization for the DMD mode, namely the effectiveness of explicitly
applying denoisers to the DMD mode. We refer to our method with the TV denoiser and
the BM3D denoiser as “Ours with TV” and “Ours with BM3D”.

Figure 1 shows the original video scenes used for experiments. Scene 1 and Scene
2 videos were captured by the authors, Scene 3 and Scene 4 videos were selected from
the SBMnet dataset [35], and Scene 5 video was selected from the DAVIS dataset [36].
We extracted M = 10, 20, 30 [frames] from the first frame of each video. For the sake of
simplicity, a color video was converted to grayscale. The details of each scene are briefly
summarized as follows:

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Figure 1. Input video scenes. Scene 1: A person walks in front of a simple stationary background.
Scene 2: A bicycle passes in front of a complex stationary background. Scene 3: Some people walk in
front of a simple stationary background. Scene 4: A car passes in front of a dynamic background.
Scene 5: Background and foreground move simultaneously. The camera is not fixed.
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We independently added AWGN with three intensities, i.e., 15/255, 25/255, and
35/255, to input video frames. The visually best results with the proposed method were
obtained by setting ϵ = 0.95

√
NMσ2 and adjusting the value of α from 0 to 1 in steps of 0.1.

For the quality metrics, we used the peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [37]. If the structure similarity between the input and reference
images is high, the SSIM value is closer to 1 (for details, see [37]).

Tables 1 and 2 show the average PSNR and SSIM of all frames obtained by the proposed
and naive methods. In the cases of “Ours with TV” and “Ours with BM3D”, the values
of α that yielded the best results are shown in brackets. One can see from Table 1 that
“Ours with BM3D” has the highest average PSNR values compared to naive TV, naive
BM3D, and “Ours with TV”. Then, one observes from Table 2 that “Ours with BM3D” has
higher average SSIM values than the other methods in most cases. However, in Scene 2,
“Ours with TV” tends to have higher values than the other methods. This is because BM3D
cannot preserve the complex texture of the background concrete wall, and it is lost due
to over-smoothing. Thus, the SSIM values of BM3D denoiser-based methods tend to be
lower than those of TV denoiser-based methods. It has been observed that “Ours with
TV” has higher PSNR and SSIM values than naive TV, regardless of noise intensity in the
cases of M = 10 and 20. However, in the case of M = 30 and σ = 35/255, the values of
“Ours with TV” are lower than those of naive TV. As frames increase, the DMD algorithm
yields more DMD modes, including high-frequency modes representing fine vibrational
components. The TV denoiser is suitable for improving spatial smoothness but does not
preserve textures like repeating patterns. The estimated DMD modes by “Ours with TV”
have fewer high-frequency components, so PSNR and SSIM values deteriorate.

Table 1. Average PSNR comparison.

Scene σ

M = 10 [Frame] M = 20 [Frame] M = 30 [Frame]

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

1
15/255 24.62 32.29 34.14 32.81 (0.4) 34.64 (0.1) 24.62 32.27 33.06 32.77 (0.5) 34.64 (0.1) 24.62 32.27 33.05 32.70 (0.6) 34.59 (0.1)
25/255 20.23 30.21 31.81 30.31 (0.8) 32.24 (0.3) 20.23 30.28 31.65 30.25 (0.9) 32.19 (0.3) 20.23 29.95 31.65 30.25 (0.9) 32.18 (0.3)
35/255 17.45 28.53 30.50 28.06 (0.9) 30.64 (0.5) 17.45 28.53 30.49 28.06 (0.9) 30.63 (0.5) 17.45 27.56 30.36 26.82 (0.9) 30.59 (0.6)

2
15/255 24.66 28.37 29.46 28.96 (0.5) 29.55 (0.4) 24.66 28.36 29.50 28.95 (0.6) 29.56 (0.6) 24.66 28.37 28.78 28.88 (0.8) 29.25 (0.1)
25/255 20.32 26.34 27.47 26.55 (0.7) 27.48 (0.8) 20.32 26.52 27.00 26.54 (0.9) 27.28 (0.4) 20.32 26.29 27.04 26.02 (0.9) 27.32 (0.4)
35/255 17.55 25.18 26.09 25.16 (0.9) 26.14 (0.5) 17.55 25.02 26.00 23.91 (0.9) 26.14 (0.5) 17.54 24.34 26.03 22.55 (0.9) 26.18 (0.5)

3
15/255 24.76 31.85 34.80 32.54 (0.4) 35.83 (0.1) 24.76 31.85 34.77 32.45 (0.6) 35.71 (0.2) 24.76 32.23 34.73 32.44 (0.6) 35.68 (0.1)
25/255 20.44 29.25 32.74 29.63 (0.8) 33.08 (0.3) 20.44 29.57 32.74 29.61 (0.9) 33.07 (0.3) 20.45 29.41 32.70 29.09 (0.9) 33.03 (0.3)
35/255 17.64 27.57 30.80 27.28 (0.9) 30.91 (0.7) 17.65 26.92 30.73 26.36 (0.9) 30.86 (0.6) 17.65 25.60 30.72 24.92 (0.9) 30.82 (0.6)

4
15/255 24.75 26.84 28.49 28.10 (0.3) 28.55 (0.4) 24.74 26.90 28.51 28.02 (0.5) 28.57 (0.6) 24.74 26.91 28.51 28.03 (0.6) 28.55 (0.7)
25/255 20.43 24.31 25.66 25.17 (0.5) 25.67 (0.7) 20.43 24.93 25.27 25.16 (0.8) 25.27 (0.2) 20.43 24.93 25.28 25.16 (0.8) 25.40 (0.2)
35/255 17.66 23.16 23.30 23.42 (0.8) 23.49 (0.3) 17.66 23.42 23.25 23.40 (0.9) 23.51 (0.3) 17.66 23.24 23.25 23.01 (0.9) 23.50 (0.3)

5
15/255 24.71 30.00 31.22 30.41 (0.6) 32.56 (0.2) 24.70 29.99 31.12 30.41 (0.7) 32.46 (0.2) 24.70 30.34 31.12 30.20 (0.9) 32.45 (0.2)
25/255 20.41 27.43 29.26 27.68 (0.8) 29.67 (0.4) 20.39 27.67 29.18 27.57 (0.9) 29.66 (0.3) 20.38 27.09 29.17 26.70 (0.9) 29.65 (0.4)
35/255 17.64 25.92 27.55 25.85 (0.9) 27.70 (0.7) 17.61 24.81 27.67 24.29 (0.9) 27.72 (0.9) 17.61 23.33 27.66 22.80 (0.9) 27.71 (0.6)

Table 2. Average SSIM comparison.

Scene σ

M = 10 [Frame] M = 20 [Frame] M = 30 [Frame]

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

Noisy Naive
TV

Naive
BM3D

Ours with
TV (α)

Ours with
BM3D (α)

1
15/255 0.4092 0.8536 0.8857 0.8618 (0.5) 0.8953 (0.1) 0.4094 0.8536 0.8620 0.8609 (0.6) 0.8955 (0.1) 0.4095 0.8534 0.8617 0.8590 (0.7) 0.8933 (0.1)
25/255 0.2383 0.8042 0.8374 0.8044 (0.9) 0.8502 (0.3) 0.2381 0.8017 0.8323 0.7909 (0.9) 0.8484 (0.2) 0.2381 0.7613 0.8324 0.7904 (0.9) 0.8480 (0.2)
35/255 0.1591 0.7215 0.8077 0.6779 (0.9) 0.8135 (0.5) 0.1591 0.7222 0.8075 0.6783 (0.9) 0.8133 (0.5) 0.1592 0.6367 0.7929 0.5783 (0.9) 0.8107 (0.7)

2
15/255 0.6173 0.7465 0.7792 0.7865 (0.5) 0.7822 (0.4) 0.6197 0.7501 0.7833 0.7912 (0.6) 0.7854 (0.6) 0.6202 0.7514 0.7370 0.7887 (0.8) 0.7659 (0.1)
25/255 0.4191 0.6513 0.6842 0.6800 (0.7) 0.6852 (0.8) 0.4226 0.6760 0.6446 0.6824 (0.9) 0.6687 (0.2) 0.4233 0.6757 0.6487 0.6641 (0.9) 0.6725 (0.2)
35/255 0.3022 0.6031 0.5991 0.6084 (0.9) 0.6045 (0.5) 0.3062 0.6097 0.5939 0.5577 (0.9) 0.6114 (0.5) 0.3066 0.5795 0.5982 0.4961 (0.9) 0.6159 (0.5)

3
15/255 0.4541 0.8882 0.9123 0.8918 (0.6) 0.9241 (0.1) 0.4541 0.8879 0.9118 0.8903 (0.8) 0.9216 (0.1) 0.4556 0.8868 0.9115 0.8900 (0.8) 0.9218 (0.1)
25/255 0.2913 0.8449 0.8907 0.8445 (0.9) 0.8966 (0.3) 0.2913 0.8394 0.8897 0.8263 (0.9) 0.8950 (0.5) 0.2925 0.7969 0.8891 0.7633 (0.9) 0.8940 (0.3)
35/255 0.2082 0.7530 0.8658 0.7108 (0.9) 0.8679 (0.5) 0.2081 0.6728 0.8639 0.6200 (0.9) 0.8661 (0.5) 0.2088 0.5611 0.8554 0.5139 (0.9) 0.8651 (0.5)

4
15/255 0.7696 0.8540 0.8963 0.8876 (0.4) 0.8965 (0.8) 0.7676 0.8545 0.8966 0.8821 (0.5) 0.8969 (0.6) 0.7678 0.8545 0.8966 0.8863 (0.6) 0.8972 (0.1)
25/255 0.6069 0.7631 0.8174 0.8062 (0.5) 0.8178 (0.1) 0.6045 0.7955 0.7971 0.8050 (0.8) 0.8175 (0.1) 0.6043 0.7952 0.7971 0.8047 (0.8) 0.8076 (0.2)
35/255 0.4835 0.7177 0.7058 0.7365 (0.8) 0.7530 (0.2) 0.4813 0.7350 0.7032 0.7347 (0.9) 0.7526 (0.2) 0.4810 0.7255 0.7031 0.7138 (0.9) 0.7523 (0.2)

5
15/255 0.5465 0.8786 0.8990 0.8810 (0.7) 0.9167 (0.1) 0.5442 0.8766 0.8962 0.8774 (0.9) 0.9141 (0.1) 0.5457 0.8511 0.8956 0.8350 (0.9) 0.9140 (0.1)
25/255 0.3851 0.8186 0.8663 0.8142 (0.9) 0.8761 (0.4) 0.3821 0.7947 0.8628 0.7719 (0.9) 0.8734 (0.3) 0.3819 0.7175 0.8612 0.6849 (0.9) 0.8725 (0.3)
35/255 0.2914 0.7450 0.8319 0.7178 (0.9) 0.8341 (0.7) 0.2883 0.6049 0.8228 0.5676 (0.9) 0.8310 (0.6) 0.2874 0.5102 0.8205 0.4828 (0.9) 0.8292 (0.5)
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Figure 2a,b illustrate the PSNR trends for “Ours with TV” under AWGN with σ =
15/255 and 35/255, respectively. They indicate that as the frame count rises, particularly
under high noise levels, the performance of “Ours with TV” declines due to the increasing
complexity of the DMD mode. The TV denoiser struggles to preserve minor DMD mode
changes. Figure 2c,d demonstrate that “Ours with BM3D” maintains consistently high
PSNR values, even with more frames and elevated noise levels. This stability is attributed
to BM3D’s ability to exploit similar patches in the high-frequency DMD mode effectively.
Similar trends were observed in the average SSIM values.

(a) “Ours with TV” in σ = 15/255 (b) “Ours with TV” in σ = 35/255

(c) “Ours with BM3D” in σ = 15/255 (d) “Ours with BM3D” in σ = 35/255

Figure 2. Relationship between number of frames and PSNR of the proposed methods.

Figure 3 shows some close-ups of Scenes 1 and 4 degraded by AWGN with the standard
deviation σ = 25/255. In Scene 1, “Ours with BM3D” and naive BM3D can remove noise,
preserving the human silhouette, while “Ours with BM3D” shows superior preservation
of wood fine texture. However, “Our with TV” and naive TV only partially restore sharp
edges and textures. In Scene 4, “Ours with BM3D” and naive BM3D successfully remove
noise while maintaining the car and wood silhouette, whereas “Ours with TV” and naive
TV cannot restore sharp edges. Notably, “Ours with BM3D” outperforms naive BM3D in
restoring tree edges and textures. Its direct noise removal in the DMD mode effectively
preserves high-frequency modes even in areas with motion and complex textures.

20th frame in Scene 1 20.23 29.95 31.65 30.25 32.18

10th frame in Scene 4 20.43 24.93 25.28 25.16 25.40

Figure 3. Experimental results of (top) the 20th frame in Scene 1 and (bottom) the 10th frame in Scene
4 and their PSNR values [dB]. The close-up images indicated by the red and blue boxes are shown as
follows: (from left to right) reference frame, input frame, naive TV, naive BM3D, Ours with TV using
the best α, and Ours with BM3D using the best α.
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Figure 4 shows some close-ups of the DMD mode of Scene 1 in the case of AWGN with
σ = 25/255. This figure shows that “Ours with BM3D” can remove noise while preserving
the edges and rich textures of the DMD modes Φ1 and Φ20. The restoration results of naive
BM3D can effectively remove noise similar to “Ours with BM3D”. However, due to the
implicit restoration of the DMD mode, its restoration accuracy seems inferior to “Ours with
BM3D”. In contrast, “Ours with BM3D” can restore the textures of the DMD mode more
clearly than naive BM3D. This is because noise removal can be applied directly to the DMD
mode, resulting in preserved edges and textures. Although “Ours with TV” can reduce
noise better than naive TV, it is less effective at removing noise than both methods based
on the BM3D denoiser, especially in the high-frequency mode Φ20.

(a) 1st DMD mode Φ1

(b) 20th DMD mode Φ20

Figure 4. Results of the estimated DMD modes in Scene 1 (a) Φ1 and (b) Φ20. The close-up images
indicated by the red and blue boxes are shown as follows: (from left to right) reference frame, input
frame, naive TV, naive BM3D, “Ours with TV” using the best α, and “Ours with BM3D” using the
best α.

Next, we applied “Ours with BM3D” and “Ours with TV” to real noisy video captured
with a high ISO setting in low light conditions and compared the results with those of
naive TV and naive BM3D to show their effectiveness on real video. Figure 5 shows some
close-ups of the resulting images with the gamma correction set to γ = 1.3 for better
visibility. This figure shows that “Ours with BM3D” effectively preserves the edge of the
fence and has a better noise removal effect than naive TV, naive BM3D, and “Ours with
TV”. Conversely, “Ours with TV” is better at preserving complex details, such as concrete
wall patterns that are difficult to recover with the BM3D denoiser.

Figure 5. Results of the 20th frame in a real scene captured with high ISO setting. The close-up
images indicated by the red and blue boxes are shown as follows: (from left to right) input frame,
naive TV, naive BM3D, “Ours with TV” using the best α, and “Ours with BM3D” using the best α.

Finally, we discuss the computational cost of the proposed method. All experiments
were conducted using MATLAB R2021a on a system equipped with an AMD EPYC 7402P
2.80 GHz processor and 128 GB RAM. Our method uses the iterative algorithm based on
the PnP-ADMM framework, where each iteration requires a denoiser computation. The
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TV denoiser requires iterative computation using the ADMM algorithm (see Section 2.4
for details). Fortunately, as shown in the reference [21], it is possible to perform fast
computations using the fast Fourier transform to solve the quadratic minimization problem
with respect to x in Equation (16). Therefore, this denoiser can be executed in a relatively
short computation time. The BM3D denoiser requires iterative computation using a non-
local mean algorithm. Specifically, it is necessary to repeatedly search for many patches
similar to the target patch from a wide range around it, which requires high computational
cost and relatively long execution time. Figure 6 shows the average computational time
when naive TV, naive BM3D, “Ours with the TV”, and “Ours with BM3D” on a video with
an image size of 256× 256. The execution time when applying each method to a video with
a frame size of 10 was as follows:

• Naive TV was performed in less than 10 s.
• Naive BM3D was performed in about 25 s.
• “Ours with TV” was performed in about 20 s and shorter execution time than naive BM3D.
• “Ours with BM3D” was performed in about 75 s and about three times slower than

naive BM3D.

“Ours with BM3D” achieves the highest noise removal accuracy among the compared
methods. However, it also requires a longer computational time. Despite taking roughly
three times longer than naive BM3D, we still consider it practical. Furthermore, the figure
illustrates that the computation time for each method increases proportionally with the
number of frames.

Figure 6. Average computational time measurement results.

5. Conclusions

In this paper, we introduced a novel noise removal method for the DMD mode of a
noisy video. Specifically, the minimization problem that simultaneously reduces the noise
of the DMD mode and the reconstructed video was defined. Then, we solved the proposed
problem using the PnP-ADMM algorithm. The experiments confirmed that the proposed
method can effectively remove noise in the DMD mode and the reconstructed video. These
results suggest the potential to provide more reliable results in image recognition and
object detection, especially in video surveillance and object tracking applications where
foreground and background separation is essential. The proposed method consistently
demonstrated effectiveness over naive noise removal methods throughout the experiments.

In future work, we will employ stochastic gradient descent algorithms to improve the
computational efficiency of the proposed PnP-ADMM algorithm. We will also apply the
proposed method to other high-dimensional volume data noise removal problems, e.g.,
hyperspectral and CT/MRI imaging.
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